
Declarative Term Graph Attribution for Program Generation

Wolfram Kahl
(University of the Federal Armed Forces Munich, Germany

kahl@informatik.unibw-muenchen.de)

Frank Derichsweiler
(University of the Federal Armed Forces Munich, Germany

deri@informatik.unibw-muenchen.de)

Abstract: We show how the declarative spirit of attribute grammars can be employed to define an
attribution mechanism forterm graphs, where the non-uniqueness of inherited attributes demands
an appropriately generalised treatment.

Since term graphs are a useful data structure for symbolic computation systems such as theorem
provers or program transformation systems, this mechanism provides a powerful means to gen-
erate concrete programs (and other relevant text or data structures) from their abstract term graph
representations.

We have implemented this declarative term graph attribution mechanism in the interactive term
graph program transformation system HOPS and show a few simple examples of its use.

Categories:D.1.2 — Automatic Programming, D.2.6 — Programming Environments, F.4.2 —
Grammars and Other Rewriting Systems, D.2.2 — Tools and Techniques, D.1.1 — Applicative
(functional) Programming

Key Words: Program generation, term graph attribution, declarative attribute grammars, graph
traversals

1 Introduction and Related Work

Attribute grammars have been developed by Knuth for specifying and implementing
the (static) semantic aspects of programming languages [Knu68, Knu90]. Since then,
attribute grammars have grown into a recognised field of study with numerous applica-
tions; for one of many surveys see [Paa95].

Attribute grammar ideas also have found their way into graph transformation re-
search. One kind of approaches, like those of [G¨ot82, Sch87, ZM96], attributes graph-
grammar parse trees instead of string-grammar parse trees. Most current approaches
consider attributed graphs and their derivation or transformation. One of the most well-
known frameworks in this context seems to be PROGRES [Sch90, Sch97], where, how-
ever, the declarative nature of attribute grammars is given up in favour of an operational
approach. In the same way, also the algebraic approach of [LKW93, WG96] imple-
mented in AGG [ERT99] is not oriented towards a declarative view of attributions, but
towards describing transformations of attributed graphs.

The approach documented in [Ber96] attempts to move closer to the original at-
tribute grammar setting by concentrating not only on attributions, but also on the traver-
sals necessary to calculate the attributions; it thus necessarily stresses the operational as-
pects of the attribute grammar view, so this approach, too, abandons pure declarativity.

Only in the field of incremental graph attribution there are approaches that main-
tain pure declarativity for the definition of graph attributions via attribute-grammar-like

Journal of Universal Computer Science, vol. 7, no. 1 (2001), 54-70
submitted: 1/9/00, accepted: 13/10/00, appeared: 28/1/01  Springer Pub. Co.



formalisms. In many respects quite similar to our approach is that of [ACR+88], which
however still sends unique attribute values along its “cables”. Since this is realised via
restricting nodes to have a predefined number of incoming edges, this is not applicable
in a general term graph setting.

In this paper we present apurely declarativeapproach toterm graph attributions
in a formalism which is essentially a straight-forward transfer of the attribute-grammar
paradigm to the slightly more general setting of term graphs, and appropriately deals
with sharing. Furthermore, we present an implementation of this approach in the term
graph programming system HOPS, and applications of an implementation of this ap-
proach to program generation in Smalltalk, Ada, and Haskell.

2 From Syntax Tree Attributions to Term Graph Attributions

We now shortly sketch the principles behind our declarative approach to term graph at-
tribution. We keep this completely general and independent of our specific implemen-
tation, which will be presented in [Section 4] together with choices for the involved
languages and further details, as well as example rules.

Attribute grammars are an extension of context-free grammars which consists of
semantic rulesadded to the syntactic rules of the context-free grammar. In our view, a
semantic rule consists of

– a tree patternP determining applicability of the rule,

– anattribute nameN for the attribute to be defined, and

– an expressionE defining the values of theN -attributes of those nodes where the
patternP matches; this expression

� is written in anattribute definition language, and

� containsattribute referencesto other attributes, written in anattribute reference
languagewhich allows access to attributes of nodes accessible via navigation
primitives or as images of nodes in the patternP .

In purely declarative attribute grammars, attribute definition languages are referentially
transparent, i.e., cannot express side-effects.

Such an attribute grammar is then used to defineattributionsof syntax trees, and
since syntax trees can be considered as a special kind of graphs, we consider an attri-
bution as a (partial) function mapping a node of the graph and an attribute name to an
attribute value from an attribute value set depending on the attribute name.

Usually only certain attribute values at the root of the tree are relevant, but we may
as well consider theattribution of the whole tree(or graph) as the result of applying the
semantic rules of an attribute grammar to a given syntax tree (or graph).

This view of attributions carries over to graphs without any problems, and thesyn-
tactic definition of semantic rules also does not need noteworthy adaptation. What
changes, however, is thesemanticsof an attribute grammar, since the interpretation
of the attribute reference language will have to change, according to the following dis-
cussion.

If we consider the attribute flow over the syntax tree in a conventional attribute
grammar, then attribute values usually flow along single edges, and they may flow along

55Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...



an edge in either direction. So a single node may havesynthesisedattribute values
coming in from below (i.e., via its outgoing edges), and it is relevant via which edge
each attribute value arrives, andinheritedattribute values come from above, and here,
too, it may be relevant which edge among the node’s parent’s outgoing edges this is.

When considering trees as term graphs, then the ordering among outgoing edges is
replaced by edge labels attached to these edges, and for every node, no two outgoing
edges have the same label. Since every tree node has only at most one incoming edge,
it is also true that for every tree node, no two incoming edges have the same label.
Generalising, we now consider the direction in which an edge is attached to a node
together with its label as one “input channel” of the node in question (somewhat similar
to the “cables” of [ACR+88]). Then conventional attribute grammars (and the attributed
graph specifications of [ACR+88]) are always confronted with single attribute values
coming from any input channel. A corresponding formalism for general term graphs,
however, has to cope with arbitrary numbers of attribute values in the input channels
coming in from above, i.e., from the direction of the parent nodes.

Furthermore, in contrast to the operational definition of [Ber96], where different
values are arrived at in a sequential manner (see also [Section 5]) and can therefore be
considered to be organised in lists, in our purely declarative formalism there is no such
obvious structure organising the different attribute values — the only fact that must
not be hidden is the possibility of multiple occurrences of the same attribute value.
Therefore, multisets are exactly the structure that naturally organises attribute values in
general labelled graphs.

As a result, elements of the attribute reference language that refer to inherited at-
tributes have to change their interpretation: instead of referring to a single attribute
value, they now refer to a multiset of attribute values. Furthermore, the attribute def-
inition language will have to provide primitives to implementdeclarativefunctions
mapping these multisets to single values that can be used for the defined attributes.

Summarising, we may observe that the move from syntax tree attributions to term
graph attributions can easily be realised without violating the purely declarative at-
tribute grammar principles. Only appropriate machinery for representing and manipu-
lating multi-sets is required and needs to be employed for inherited attributes.

Given these principles of declarative term graph attributions, we may now further
develop our approach by turning to attribute value sets that are CPOs. As in the conven-
tional attribute grammar setting [Far86], this lets even cyclic attribute dependencies and
cyclic term graphs be dealt with easily by defining the attribution via a fixed-point con-
struction. In implementations, this may be realised via lazy evaluation, which is the path
that we choose by relying on Haskell [HPJW+92] as our attribute definition language,
see [Section 4].

3 HOPSOverview

TheHigherObjectProgrammingSystem HOPS is a graphically interactive term graph
programming system designed for transformational program development, see also
[Kah99, Der99, Kah98a, Kah94, ZSB86].

In the spirit of Literate Programming [Knu84], HOPS modules are documents con-
taining program fragments. In HOPS, these are mostly declarations, transformation
rules, and attribution definitions — declarations and rules are created and manipulated
asterm graphs. An example view of a module editor window is shown in [Fig. 1].

56 Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...



Figure 1: A HOPS module editor window

HOPS manipulates arbitrary second-order term graphs, where all the structure usually
encoded via name and scope is made explicit. Term graphs in HOPS therefore feature
nameless variables, explicit variable binding (to denote which node binds which vari-
able), explicit variable identity (to denote which nodes stand for the same variable) and
metavariables with arbitrary arity; for a detailed introduction to this term graph concept
see [Kah98c].

Term graphs are in fact a standard representation of terms, used mostly for effi-
ciency reasons in symbolic computation systems as well as in many implementations
of functional programming languages. Most of the literature, however, when drawing
term graphs for�-expressions still establishes variable binding via names and scope
— here HOPS differs in that it uses a term graph concept where variable bindings are
explicit and denoted by additional edges. As an example we show, on the left side of
[Fig. 2], a term graph corresponding to the following expression in a�-calculus en-
riched with arithmetic operators and constants (the thick curved arrow denotes variable
binding):

(�x : x � x+ x � 2 + 3)(3 + 5)

HOPS types are integrated into the HOPS program term graph structure, and term
graph nodes are connected to their types via specialtyping edges. (For the purposes of
attribution, variable binding, variable identity, and typing can be considered as edges
with designated labels.) In the right part of [Fig. 2], the same graph is shown again as
in the left part, but with the display of its typing nodes enabled. Usually we shall show
term graphs with display of typing nodes disabled for better readability; in the inter-
active system, however, the omnipresence and accessibility of the typing is extremely
valuable.

57Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...



@
λ

x

+
+

* *
2

3

+

5

@

Integer

λ
→

x

+
+

* *
2

3

+
5

Figure 2: Example term graph — without and with typing

The basis for the typing system aretyping elements, i.e., simple term graphs that intro-
duce a new node label together with its typing schema making explicit how the typing
of a node with this new label is related to the typing of its successors and bound vari-
ables. Every HOPS declaration contains one such typing element. Since sets of typing
elements define HOPS languages, typing elements also serve asattribute rule patterns,
so we shall explain this concept in some detail.

→

T T
Num 1 Num

+ Num

V V

@

TV

→

TV

λ →

T
T

x

V

Figure 3: Example typing elements

In [Fig. 3] we show six example typing elements for simply-typed�-calculus and for
arithmetics — the typing function is denoted by thin, light arrows with tiny heads.
Nodes labelled with “T ” are type variables; nodes labelled with “V ” are instantiatable
(typed) program metavariables, and nodes labelled with “x” are typed bound variables.
Different variable nodes always belong todifferent variables(unless joined by variable
identity lines — not to be seen in this paper).

The typing elements of [Fig. 3] may be interpreted as follows:

“!”: Nodes with this label are untyped (i.e., type nodes) and have two untyped suc-
cessors. (Nodes with this label representfunction types.)

“Num”: Nodes with this label are untyped (i.e., type nodes) and have no successors.

“1”: Nodes with this label have a typing arrow towards a node with label “Num”, i.e.,
are typed with “Num”.

“+”: Nodes with this label are typed with a “Num” node and have two successors
which are both typed with that same “Num” node.

“@”: Every node with this label (function application) has two successors, where the
left successor is typed with a function typef , the right successor is typed with the
argument type off , and the node itself is typed with the result type off .

58 Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...



“�”: Nodes with this label (function abstraction) are binders and can bind at most one
variable, which may occur below their first outgoing edge (which is also the only
outgoing edge). Every�-node is typed with a function typef ; its successor is typed
with the result type off , and the bound variable (if any) is typed with the argument
type off .

The typing elements for! andNum, although they do not contain any typing arrows,
are necessary for introducing their respective label and for fixing this label’s arity.

A term graphG is well-typedif for every node there is a homomorphism from the
typing element for that node’s label intoG at that node; the details of this kind of type
system have been introduced in [Kah98b].

Via the typing elements it contains, every set of HOPS modules (closed in an ap-
propriate sense) defines aterm graph language. Although the languages of all term
graphs in this paper are based on typed�-calculus and include the above typing ele-
ments, it is perfectly possible to define completely different languages as long as their
type system is expressible via such typing elements. We also have experimented e.g.
with �-calculus.

Having no hard-coded language is considered to be one of the advantages of HOPS
(only the variables are fixed within the implementation): Different languages for differ-
ent domains and/or levels of abstraction give flexibility. The HOPS user declares and
uses the bricks which are appropriate for his situation.

While declarations serve to introduce the language as such, rules may be used to
turn the language into a calculus, i.e., to constrain the semantics of language constructs.
Since the term graph rewriting mechanism of HOPS is not central for this paper, we
describe this aspect of HOPS only very shortly: Rules are term graphs with an addi-
tional rule arrow connecting the left- and right-hand sides. Rules may contain typed
meta-variables with successors, i.e., second-order rules are allowed; the details of this
rule mechanism have been defined in [Kah96]. Application of matching rules is always
possible during editing; this may be manual application of single rules or invocation of
transformation strategies[Der99].

An example transformation sequence may be started from the term graph of [Fig. 2]
and is shown in [Fig. 4]; in the first step, the rule for distributivity of multiplication
over addition is applied inside the body of the�-abstraction and yields a term graph
corresponding to(�x : x � (x+2)+3)(3+5); in the second step the�-calculus rule of
�-reduction is applied, yielding(3+5) �((3+5)+2)+3. Note that sharing is preserved
as far as possible — this corresponds to the usual definition of lazy evaluation via graph
reduction.

@
λ

x

+
+

* *
2

3

+

5

@
λ

x

+

*
+

2

3

+

5

+

*

+
3 5

+
2

Figure 4: Example term graph transformation sequence

59Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...



Transformation strategies may also be used to selectively apply rules, which pro-
vides flexibility similar to instantiation of parametric modules. E.g. within a specifi-
cation on an abstract level, a brick calledsort might be used for a sorting function.
No decision about the special sorting algorithm is made; only type and arity are fixed.
During a refinement step the decision for a special sorting algorithm is reflected by
transforming thesort e.g. into e.g. aheapsort via a selective transformation step.
Continuing the development, the HOPS transformation engine may then be used to
expand an implementation forheapsort by applying an appropriate rule.

4 Declarative Term Graph Attribution in HOPS

HOPS realisessemantic rulesas module entries of their own, calledattribution defini-
tions. As mentioned above, the typing elements of HOPS declarations serve as attribute
rule patterns, so every attribution definition has to refer to some declaration. The sepa-
ration of node-label declarations and the corresponding attributions gives flexibility:
Using different attribution sets allows to produce different output from the same source
(e.g. producing source code in different programming languages from one term graph).

Each attribution definition consists of a target at which it is directed and the defini-
tion text proper. These definition texts take on the shape of series of Haskell definitions
interspersed with attribute reference expressions written in a syntax similar to that of
FunnelWeb, a powerful literate programming system [Wil92].

This means that Haskell here serves as theattribute definition languageused to
produce the real result values, where the central attributes will usually (at least in the
examples of this paper) carry strings or functions delivering strings as their values (these
strings may then be interpreted in the target language). However, the HOPS attribution
mechanism only very weakly depends on Haskell as its attribute definition language;
adapting this mechanism to a different language would be extremely easy.

The FunnelWeb-likeattribute reference languageis a typed functional language
with only the String type allowed for direct embedding into Haskell code, but also
featuring aNodetype and certain function types.

A typical fragment is the following, where the attributetypeis defined in terms of
the typeattributes of the successors, and thelabel of the node is used inside a string
constant.

@<type@>@(@1@) = Constr "@<label@>@(@1@)" (map tp succtypes)

where succtypes = @<successors@>@(@1@,@<type@>@)

In the document output, however, and for easier reading, HOPS renders the attribute
reference language without “@”-characters and in different fonts — note that attribute
reference language parentheses and commata are large, bold, and not in typewriter font:

type(1) = Constr "label(1)" (map tp succtypes)

where succtypes = successors(1,type)
To give a first flavour of how this attribution mechanism is used, we show here the
definitions of two attributesexprandpexprin a simplified Haskell conversion that does
not respect sharing in any way and takes care of parenthesisation in only a rather crude
way. Note that in this application not only the attribute definition language is Haskell,
but the generated strings are going to be Haskell code, too. The value of the attribute
exprat a noden is a string containing a Haskell expression corresponding to the sub-
graph induced by the noden, and this Haskell expression is not parenthesised on the

60 Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...



outside if easily avoidable. The string value of the attributepexprhas parentheses added
at least if this makes a difference.

The definition for the conversion of function application (with node label “@”)
shows how to use the natural numbering of the typing element nodes for referring to the
attributes of different nodes:

HaskellAttrib for Standard.@

expr(1) = expr(2) ++ ' ' : pexpr(3)
pexpr(1) = '(' : expr(1) ++ ")"

The “1” is an attribute reference language expression of typeNodeand refers to the
image source node of the actual pattern, which here is the node labelled with “@”. This
definition therefore means that theexprattribute of an application node is the concate-
nation (with a space character in-between) of theexpr attribute of the first successor
(number2) and thepexprattribute of the second successor (number3); the pexprat-
tribute is calculated from theexprattribute by just adding parentheses.

In the definition for�-abstraction, we have to take care whether there is a bound
variable or not; we choose to use different conversions for this purpose. This is imple-
mented via the built-in macrobvarwhich takes five arguments: The first argument refers
to a node; if this node has a bound variable, then the call evaluates to the fourth argument
in an environment where the second argument, considered as a macro name, is bound to
the result of applying the third argument (which has to be a function with argument type
Node) to the bound variable node in the term graph. Otherwise it evaluates to the fifth
argument. E.g., if1 refers to a binder having a bound variable node with the built-in
numberattribute being1005 then the macro call “bvar(1,bv,number,"xbv",[])” eval-
uates to “x1005”. If 1 however refers to a binder that does not bind any variable (as e.g.
in �x:3), then that macro call evaluates to “[]”.

Here this is used to implement the distinction between a�-abstraction in Haskell
and an application ofconst, which is more readable than a�-abstraction where there
is no occurrence of the bound variable in the body. Since�-abstractions already need
parentheses in our context, we make the distinction between the two cases on the top-
level:

HaskellAttrib for �

bvar(1,bv,expr,
expr(1) = "(\\ " ++ bv ++ " -> " ++ expr(2) ++ ")"

pexpr(1) = expr(1)
,
expr(1) = const pexpr(2)
pexpr(1) = '(' : expr(1) ++ ")"

)
Since HOPS is a language-independent term graph programming framework, it is easy
to define term graph languages for different purposes and oriented at different program-
ming language paradigms. We now present two applications where programs in other
languages are generated from more or less specialised HOPS languages.

61Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...



5 Specialised Graph Traversals in Smalltalk

Many problems on graphs can be solved via algorithms that are instances of a depth-first
traversal coupled with inherit-synthesise attribute calculations [Ber96]. Examples for
instances of this inherit-synthesise scheme are the computation of strongly connected
components of a graph, or unification.

The general principles of this algorithm scheme are:

– start with a giveninitial value associated with the algorithm call and compute the
initial inherited attribute;

– calculate theinherited attribute for the first successor, and traverse the first succes-
sor, yielding a synthesised attribute for that node;

– combine that synthesised attribute with the current node’s inherited attribute to
yield theinherited attribute for the next successor;

– when all successors are exhausted, use their synthesised attributes together with the
current node’s inherited attribute to calculate thesynthesised attribute; and

– whenever encountering a node that has been visited before, use the synthesised
attribute calculated at that time (if already available) together with the old and new
inherited attributes to calculate thenew synthesised attributefor that node.

(The last step is the most direct culprit for the loss of pure declarativity here.)
Building on primitive graph access function, we produced a HOPS definition for

this algorithm scheme for inherit-synthesise graph traversals. The whole scheme is rep-
resented by a HOPS brick “IS” with 13 parameters — this is defined from several sub-
schemes taking three to five arguments each, see [Fig. 5]; the fully expanded version
comprises about 250 nodes. (In [Fig. 5], all successors of the tip of the rule’s left-hand

IScrownwrap
inhInit IScrown

inhSrc

inhStart

Y

x

ISnodeVisBranch
isVisited ;
FPair

rho

;
Split

;
isSink

Either
Uncurry

syn0

ISwrapNode
seed

ISinnerNode

inhNStart
Uncurry

ISstepNode’

inhNStep synN

harvest

Uncurry
visitNode

;
switch

Uncurry
Uncurry visited

synSrc0
synSrc

synFinish

IS

Figure 5: Inherit-synthesise graph traversal “IS”

side, i.e., the node labelled “IS”, are metavariables — theirnode labelis still “V ”, but
they have been equipped with variable names that only serve documentation purposes,
and which are displayed in a (blue) oblique sans-serif font.)

62 Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...



Only instantiations for these parameter functions are required in order to produce an
algorithm which solves a given problem. Having instantiated the parameter functions,
we use partial evaluation to derive a simplified instance of this algorithm scheme. Partial
evaluation as a variant of program transformation is realised using the rule application
mechanism and transformation strategies of HOPS.

Not every problem needs the whole generalised power of the algorithm scheme for
the algorithm solving it; frequently the parameters are instantiated with functions that
just select one of their arguments and forward it unchanged. Since we have chosen an
approach where “default” instantiations are provided for the parameters, when realising
a new algorithm it is possible to specify only the “non-default” parameters via a special
selective transformation strategy for the instantiation process.

The result of the simplification strategy application produces an optimised ver-
sion of the specific algorithm in question. There, e.g. unnecessary handling of values
is avoided, and simplification rules have been applied. For simple applications, such
an optimised version frequently has significantly fewer nodes than the (expanded) un-
instantiated scheme. As an extreme example for this we show the instance that checks
for absence of cycles. The use of non-strict boolean operators ensures that in the case
of a cyclic graph this result is propagated as fast as possible, and that no unnecessary
traversal is performed. For this application, the fully expanded applicative version of
the optimised algorithm is given by the 63-node DAG shown in [Fig. 6].

λ

x

λ
@

Y

x

λ

x

If

@
null

π ρ

@

Pair

Tail
And

@
@

Y

x

λ

x

λ

x

@
Maybe

@
@

visitNode
If

@
isSink

π
FoldL

λ

x

λ

x

Pair
@

@
π

π
ρ

Pair
@

@
π Head

Zip

Succs
FromTo

1 OutDeg
Pair

Tail

id @
isVisited

Head

Pair
True

Figure 6: Optimised acyclicity check

On such an optimised version, the attribution mechanism is now used in order to pro-
duce textual source code for the algorithm. (Furthermore it is also possible to simulate
the application of the produced algorithm by providing some actual parameters and

63Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...



again using the HOPS transformation facilities.) Just as different parameters instan-
tiate the algorithm scheme to solve a different problem, we might also use different
attribution definitions to produce implementations very easily in different textual pro-
gramming languages.

To continue our example of the acyclicity check, we use the code generation mech-
anism on the optimised version of [Fig. 6] to produce methods in the programming
language Smalltalk, thus implementing an efficient cycle-check based on simple graph
navigation primitives. The methods are shown below (manually uglified for reasons of
space); and the reader may observe how the term graph structure has been translated
rather directly into Smalltalk. Apart from the top-level methodcycle_check, a sepa-
rate Smalltalk method is generated for every recursive function (i.e. sub-DAG induced
by aY-brick); parameters of subsequent�-abstractions are accumulated:

cycle_check: n_359 with: dummy_n_363

^self lf_n_294: (Array with: n_359 with: true)

lf_n_294: n_290

n_290 fst isEmpty ifTrue: [^n_290 snd]

ifFalse: [^self lf_n_294:

(Array with: (n_290 fst cpRemIdx: 1)

with: (n_290 snd and: [self lf_n_304: n_290 snd

with: n_290 fst fst]))]

lf_n_304: n_303 with: n_299

^(self visValOrNil: n_299)

isNil:

[self visVal: n_299 with:

(n_299 isSink ifTrue: [n_303]

ifFalse: [(((n_299 succs zip: (1 to: n_299 outDeg)) cpRemIdx: 1)

foldLeft: [:zero_n_335 :value_n_335 |

self lf_n_314: zero_n_335 with: value_n_335]

zero: (Array with: (self lf_n_304: n_303 with:

(n_299 succs zip: (1 to: n_299 outDeg)) fst fst)

with: (Array with: n_303 with: n_299))) fst])]

orApply: [:value_n_341 | self lf_n_340: value_n_341]

lf_n_314: n_305 with: n_308

^Array with: (self lf_n_304: n_305 fst with: n_308 fst) with: n_305 snd

lf_n_340: n_339 ^n_339

The alert reader may have noticed thatlf_n_340: is an identity function — it corre-
sponds to the single “id” node in [Fig. 6]. Alternatively, we might have chosen not to
generate strings containing Smalltalk code, but abstract syntax trees for Smalltalk as an
appropriate Haskell datatype inside the attribute definition language. In that case, the
application of this identity might have been eliminated as a “peephole optimisation”
during the subsequent concrete code generation. As yet another possibility it would
be possible to define a HOPS language closer to Smalltalk and transform the acyclic-
ity check into that language before employing the attribution mechanism. This kind of
far-reaching transformations is, however, outside the scope of the present paper.

6 Ada Code Transformation

In another example we employ the HOPS transformation mechanism to transform Ada
code for a primeness predicate on natural numbers into a more efficient shape.

The starting point is a given Ada algorithm with unnecessary parameters within
local functions. First we translate the given program into HOPS rules; then, by using
fold/unfold techniques and the transformation facilities, a new and optimised version
of the function is generated. Finally the attribution mechanism is used to produce Ada
again.

64 Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...



On the whole, we started from a HOPS representation of the following initial,
“purely functional” Ada code, where no function has side-effects:

function Isprim (n : Nat) return Boolean is

function Isdiv (k, n : Nat) return Boolean is

function Divides (k, n : Nat) return Boolean is

begin if n < k

then return (n = 0);

else return Divides (k, n - k);

end if;

end Divides;

begin if k <= 1

then return False;

else return (Divides (k, n) or Isdiv (k - 1, n ));

end if;

end Isdiv;

begin return not (Isdiv (n / 2, n )) and (2 <= n);

end Isprim;

This was then transformed into a version that accesses local variables from within
nested functions:

function Isprim (n2 : Nat) return Boolean is

function f4 (n9 : Nat) return Boolean is

function f6 (n3 : Nat) return Boolean is

begin if n9 > n3

then return n3 = 0;

else return f6(n3 - n9);

end if;

end f6;

begin if 2 > n9

then return False;

else return (f6(n2)) or (f4(n9 - 1));

end if;

end f4;

begin return (not (f4(n2 div 2))) and (n2 > 1);

end isPrim;

7 Let Sharing Make a Difference

The translation to Haskell as sketched in [Section 4] could equally well be handled
via expanding the term graph to a syntax tree first, and then applying conventional
attribution techniques — largely this also applies to the Smalltalk and Ada examples of
the last two sections.

Term graphs are, however, not in all contexts equivalent to terms, and therefore we
now present an application that crucially depends on the possibility to recognise and
classify different sharing situations. The problem we shall tackle is the generation of
Haskell definitions from term graph rules with the constraint thatsharingbe reflected
in the formulation of the Haskell rule. Therefore, we again have the case that Haskell is
used both as the attribute definition language and as the language of the strings gener-
ated as attribute values.

The following cases have to be distinguished:

65Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...



1. If a shared node has no successors, then it will be represented by a single identifier
and the sharing may be ignored. All other cases therefore assume that the shared
node has successors. In [Fig. 7], an example is shown where not only the local

and

x

@
all

xs

@

:

@

all
++

xs ys

and
@ @

all (b:bs) = b && all bs

all (xs ++ ys) =

(all xs) && (all ys)

Figure 7: Laws forall :: [Bool] -> Bool with generated Haskell

variablesx, xs, andys need no special device to express their sharing, but also
the shared occurrences ofall — also in the second rule where there are several
occurrences ofall on the right-hand side.

2. If the shared node is only reachable from the rule’s right hand side, then:

– If there is no�-bound variable occurring free below the shared node, then the
expression represented by that node should be the right-hand side of a defini-
tion for an identifier for that node in awhere-clause.

– Otherwise the corresponding definition has to be put inside alet-binding in-
side the innermost�-abstraction binding one such free variable.

Examples are in [Fig. 8]; the second example is again not a Haskell definition, but
only a law.

comp

comp

f

quad
λ

x

pair
@

g @
f

@
h

comp

fpair

quad f = v5 . v5

where v5 = f . f

fpair g h . f = \ x ->

let v7 = f x in (g v7, h v7)

Figure 8: Right-hand-side sharing with generated Haskell bindings

3. If a node with successors is reachable from both rule sides, and if the expression
represented by the shared node is a pattern, then this should be converted into an
as-pattern (of the shape “var@pattern” in Haskell) on the left-hand side and into a
reference to the variable bound to the whole pattern on the right-hand side, as for
example in the definition of the Haskell prelude functiondropWhile in [Fig. 9].

if_then_else
@

p x

@
dropWhile

xs

:
@ dropWhile p v10@(x : xs) =

if p x then dropWhile p xs

else v10

Figure 9: Inter-rule-side sharing with generated as-pattern

66 Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...



4. If the left-hand side occurs as a whole within the right-hand side, then the right-
hand side is replaced by awhere-bound variable, as in the definition ofrepeat in
[Fig. 10], for which, again, exactly the Haskell prelude definition is generated (up
to�-conversion). (This kind of definition usually gives rise to cyclic data structures
in Haskell implementations.)

:

V

repeat
repeat v3 = v4

where

v4 = v3 : v4

Figure 10: Generating cyclicwhere-bindings

5. Otherwise, the sharing is ignored. This comprises cases like the shareddropWhile

node in [Fig. 9], which does not represent a pattern.

The (somewhat contrived) term graph rule of [Fig. 11] illustrates the the co-occurrence
of some of these effects in a single rule. This rule is translated automatically into the

pair
@

a

λ

x

pair
@

@
g

b

const
@

pair

@

@

f

Figure 11: Transformation rule with three different kinds of sharing

following Haskell definition (which nicely demonstrates how the various methods pro-
vided by Haskell (and, similarly, by other text formalisms) to encode sharing using
names and local definitions obfuscate the overall structure):

f (v20 @ (a, b)) g = (a v30, v30)

where v30 = \ x -> let v26 = const x in ((g b v26), v26 v20)

We only sketch our implementation of this solution, which starts from an attribution
with values for three attributes:

1. Every node has an attribute containing a unique Haskell identifier for the case that
that node needs to be represented by a variable (in the above example, three of these
are used:v20, v26, andv30).

2. One attribute contains a Boolean value indicating for each node whether it is the
source node of the rule’s left-hand side.

3. Another Boolean attribute indicates the source node of the right-hand side.

Starting from these, all in all over twenty attributes are used to implement this only
seemingly simple conversion:

67Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...



– Ten attributes for managing all aspects of determining rule sides and sharing status,
among these the following:

� inLhsandinRhsare the characteristic functions of the two rule-sides.

� spineis the characteristic function of the spine of the rule’s left-hand side.

� headof type Maybe String is Nothing outside the spine, and on the spine
it propagates the name of the defined function.

� is sharedholds true for nodes with more than one predecessor.

� is asvarholds true for those left-hand-side nodes that need to be represented
by an as-pattern.

– Eight attributes for expression generation and expressions on both rule sides, among
these the following:

� mkexpris a function that prescribes how the node is to be turned into Haskell
syntax depending on the strings that represent its successors; this syntax pre-
scription is used for building expressions on the right-hand side and patterns
on the left-hand side.

� expr is a String containing the Haskell expression corresponding to the node if
it occurs on the right-hand side.

� pexprcorresponds toexpr, but is guaranteed to represent an atomic expression
— in doubt, it adds parentheses.

� lexpr contains a representation of the node as sub-expression of the left-hand
side; this may include as-patterns.

� wherescontains all information for establishing the bindings of those variables
that represent shared nodes below the node carrying the attribute. This syn-
thesised attribute is scanned at�-nodes for those bindings which contain the
bound variable; these bindings are then integrated into a locallet-binding,
while the remainder is further transmitted via this attribute and, at the top of
the right-hand side, turned into awhere-clause.

� lhsandrhsare only defined for the respective ends of the rule arrow — for the
left-hand side we need the name of the defined function in addition to thelexpr
standing for the whole left-hand side, and for the right-hand side theexpr is
concatenated with an appropriate representation ofwheres.

– Three auxiliary attributes for the administration of local bindings, i.e., for calculat-
ing wheres.

For most of the omitted attributes, their dependencies on other attributes are very sim-
ple; quite a few are only used for being able to share the results of intermediate calcu-
lations between different attributes. The complete definition of this Haskell conversion
is included in the HOPS user manual [Kah98a].

Our implementation converts the resulting attribute value dependencies for an at-
tributed graph into a set of Haskell definitions, for which the top-level attributes are then
evaluated by some Haskell implementation. Since Haskell considers top-level bindings

68 Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...



andlet-bindings as mutually recursive, this implements the lazy attribution semantics
discussed in [Section 2] without any overhead for the user.

Here the big advantage of our purely declarative approach shines: The user does not
even have to think about, for example, the number of traversals necessary to calculate
the defined attribution — we estimate that in the operational approach of [Ber96] at
least two traversals would be necessary: one for establishinginLhsandinRhs, sharing
status, and initialising some binder-related information, and a second one for assem-
bling the expressions. Consequently, while in the declarative approach the user may
concentrate on separation of concerns, in the operational approach the user would have
to concentrate on separation of traversals, and on separation of the visits to individ-
ual nodes. This obviously will often lead to far less well-structured and maintainable
attribution definitions.

Therefore, in our opinion the declarative approach helps to make the analysis of the
problem and the structure of the solution much more explicit.

8 Concluding Remarks

We presented a straightforward extension of the attribute grammar approach to cover
term graph attributions in close analogy to the original syntax tree attributions. Unlike
the mostly operational approaches to be found in the literature, our approach is purely
declarative and includes a natural treatment of sharing and the resulting multiplicity of
inherited attributes.

Since term graphs are a popular data structure in all kinds of symbolic computa-
tion systems, including interpreters, compilers, theorem provers, and proof assistants,
the declarative way of defining term graph attributions as presented in this paper is an
attractive means of defining output from term graphs, especially where it is relevant to
somehow reflect the sharing present in the term graphs into the generated output.

Acknowledgements

We would like to thank the anonymous referees for their useful suggestions.

References

[ACR+88] Bowen Alpern, Alan Carle, Barry Rosen, Peter Sweeney, Kenneth Zadeck. Graph
attribution as a specification paradigm. InProc. ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, 121–
129, 1988.

[Ber96] Rudolf Berghammer. Wiederverwendbare Algorithmenschemata in ML am
Beispiel von Graphdurchlauf-Problemen.Informatik, Forschung und Entwicklung,
11(4):179–190, November 1996.

[Der99] Frank Derichsweiler. Strategy Driven Program Transformation within theHigher
Object ProgrammingSystem HOPS. In Arnd Poetzsch-Heffter, J¨org Meyer, eds.,
Programmiersprachen und Grundlagen der Programmierung, Informatik Berichte
263 — 1/2000, 165–172. FU Hagen, 1999.

[ERT99] Claudia Ermel, Michael Rudolf, Gabriele Taentzer. The AGG approach: Language
and environment. In Grzegorz Rozenberg, ed.,Handbook of Graph Grammars and
Computing by Graph Transformation, Vol. 2: Applications, Languages and Tools.
World Scientific, Singapore, 1999.

69Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...



[Far86] Rodney Farrow. Automatic generation of fixed-point-finding evaluators for circular,
but well-defined, attribute grammars.ACM SIGPLAN Notices, 21(7):85–98, 1986.

[Göt82] H. Göttler. Attribute graph grammars for graphics. In Hartmut Ehrig, Manfred
Nagl, Grzegorz Rozenberg, eds.,GG ’82, LNCS 153. Springer, 1982.

[HPJW+92] Paul Hudak, Simon L. Peyton Jones, Philip Wadler et al. Report on the program-
ming language Haskell, a non-strict purely functional language, version 1.2.ACM
SIGPLAN Notices, 27(5), 1992. See alsohttp://haskell.org/.

[Kah94] Wolfram Kahl. Can functional programming be liberated from the applicative style?
In B. Pehrson, I. Simon, eds.,Proc. IFIP 13th World Computer Congress, Vol. I,
330–335. North-Holland, 1994.

[Kah96] Wolfram Kahl.Algebraische Termgraphersetzung mit gebundenen Variablen. Her-
bert Utz Verlag Wissenschaft, M¨unchen, 1996. ISBN 3-931327-60-4.

[Kah98a] Wolfram Kahl. The Higher Object ProgrammingSystem — User Manual for
HOPS. Fak. f¨ur Informatik, Univ. der Bundeswehr M¨unchen, 1998. electronically
available via:http://ist.unibw-muenchen.de/kahl/HOPS/.

[Kah98b] Wolfram Kahl. Internally typed second-order term graphs. In J. Hromkoviˇc,
O. Sýkora, eds.,Graph Theoretic Concepts in Computer Science, WG ’98, LNCS
1517, 149–163. Springer, 1998.

[Kah98c] Wolfram Kahl. Relational treatment of term graphs with bound variables.Logic
Journal of the IGPL, 6(2):259–303, March 1998.

[Kah99] Wolfram Kahl. The term graph programming system HOPS. In R. Berghammer,
Y. Lakhnech, eds.,Tool Support for System Specification, Development and Verifi-
cation, 136–149, Wien, 1999. Springer-Verlag. ISBN: 3-211-83282-3.

[Knu68] Donald E. Knuth. Semantics of context-free languages. InMathematical Systems
Theory, vol. 2, 127–145. Springer-Verlag, New York, June 1968.

[Knu84] Donald E. Knuth. Literate programming.The Computer Journal, 27(2):97–111,
1984.

[Knu90] Donald E. Knuth. The genesis of attribute grammars. In Pierre Deransart, Martin
Jourdan, eds.,Attribute Grammars and their Applications (WAGA), LNCS 461, 1–
12. Springer, 1990.

[LKW93] Michael Löwe, Martin Korff, Annika Wagner. An algebraic framework for the trans-
formation of attributed graphs. In M.R. Sleep, M.J. Plasmeijer, M.C.J.D. van Eeke-
len, eds.,Term Graph Rewriting: Theory and Practice, 185–199. Wiley, 1993.

[Paa95] Jukka Paakki. Attribute grammar paradigms — A high-level methodology in lan-
guage implementation.ACM Computing Surveys, 27(2):196–255, 1995.

[Sch87] A. Sch¨utte. Spezifikation und Generierung von̈Ubersetzern f¨ur Graphsprachen
durch attributierte Graphgrammatiken. EXpress Edition, 1987. Dissertation, EWH
Koblenz.

[Sch90] Andy Sch¨urr. Introduction to PROGRES, an attribute graph grammar based spec-
ification language. In Manfred Nagl, ed.,Graph-Theoretic Concepts in Computer
Science, WG ’90, LNCS 411, 151–165. Springer, 1990.

[Sch97] Andy Sch¨urr. Programmed graph replacement systems. In Grzegorz Rozenberg, ed.,
Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 1:
Foundations, 479–546. World Scientific, Singapore, 1997.

[WG96] Annika Wagner, Martin Gogolla. Defining operational behaviour of object specifica-
tions by attributed graph transformations.Fundamenta Informaticae, 26:407–431,
1996.

[Wil92] Ross N. Williams. FunnelWeb User’s Manual, May 1992. Part of the FunnelWeb
distribution, available athttp://www.ross.net/funnelweb/.

[ZM96] Gaby Zinßmeister, Carolyn L. McCreary. Drawing Graphs with Attribute Graph
Grammars. In J. Cuny et al., eds.,Graph-Grammars and Their Application to Com-
puter Science, GraGra ’94, LNCS 1073, 443–453. Springer, November 1996.

[ZSB86] Hans Zierer, Gunther Schmidt, Rudolf Berghammer. An interactive graphical ma-
nipulation system for higher objects based on relational algebra. In Gottfried Tin-
hofer, Gunther Schmidt, eds.,WG ’86, LNCS 246, 68–81. Springer, 1986.

70 Kahl W., Derichsweiler F.: Declarative Term Graph Attribution ...


