Journal of Universal Computer Science, vol. 6, no. 9 (2000), 850-860
submitted: 1/3/00, accepted: 8/9/00, appeared: 28/9/00 [Springer Pub. Co.

Uniquely Parsable Accepting Grammar Systems

Carlos Martin-Vide
(Research Group in Mathematical Linguistics and Language Engineering
Rovira i Virgili University
Pca. Imperial Tarraco 1, 43005 Tarragona, Spain
cmv@astor.urv.es)

Victor Mitrana
(University of Bucharest, Faculty of Mathematics
Str. Academiei 14, 70109, Bucharest, Romania
mitrana@funinf.math.unibuc.ro)

Abstract: We extend the restrictions which induce unique parsability in Chomsky
grammars to accepting grammar systems. It is shown that the accepting power of global
RC-uniquely parsable accepting grammar systems equals the computational power of
deterministic pushdown automata. More computational power, keeping the parsability
without backtracking, is observed for local accepting grammar systems satisfying the
prefix condition. We discuss a simple recognition algorithm for these systems.

Category: F.4.2, F.4.3

1 Introduction

Cooperating distributed grammar systems (CD grammar systems) have been intro-
duced in [Csuhaj-Varju and Dassow 1990] as a grammatical approach to the so-called
“blackboard model” in the problem solving theory [Nii 1989]. A similar language gen-
erating device was considered in [Meersman and Rozenberg 1978], while a particular
variant of it appeared in [Atanasiu and Mitrana 1989], with motivations coming from
regulated rewriting area. Most of the results known in this field until the middle of
1992 can be found in [Csuhaj-Varju et al. 1994], while more recent results are surveyed
in [Dassow et al. 1997].

However, there are still lots of classical topics in formal language theory or in
related areas which have not been studied so far in the grammar systems set-up. The
construction of parsers is such a topic which is not only of theoretical interest, but will
make grammar systems more appealing to researchers in applied computer science.
This will clearly bring to the user all the advantages of having a model which can
cope with such phenomena as cooperation and distribution of the work carried out
by several processors. Of interest to this aim are the results in [Fernau et al. 1996]
and [Dassow and Mitrana 1999]. Thus, a comparison of the accepting capacity of CD
grammar systems with respect to their generating power, or to that of other classes
of grammars in the regulated rewriting area, is presented in [Fernau et al. 1996] and
[Fernau and Holzer 1996]. Accepting multi-agents systems seem to be more adequate
for the initial motivation of introducing grammar systems. [Dassow and Mitrana 1999]
considers the same strategies of cooperation among the components of a grammar
system for the stacks of a multi-stack pushdown automaton, in the aim of characterizing
the languages generated by grammar systems in terms of recognizers; but that model
turned out to be too powerful for the authors’ scope.

Martin-Vide C., Mitrana V.: Uniquely Parsable Accepting Grammar Systems 851

In [Mihalache and Mitrana 1997], one investigates the effect of some syntactical
constraints similar to those considered for strict deterministic context-free grammars
applied to CD grammar systems. It is known that the family of languages generated
by strict deterministic context-free grammars is the same as the family of languages
generated by LR(0) grammars (see Theorem 11.5.5 in [Harrison 1978]), which are ones
of the most used class of grammars for parsing. They obtained a promising result in
this respect, namely the unambiguity of derivations holds for some classes of grammar
systems.

We belive that a more involved study of the derivations in a CD grammar system
would be very useful to an eventual constructor of parsers for the languages gener-
ated by grammar systems. To this aim, the present paper introduces a new class of
accepting devices called uniquely parsable accepting grammars systems (UPAGS, for
short). These mechanisms have a restricted type of accepting rules such that pars-
ing can be done without backtracking. Each component of a UPAGS is a so-called
RC-uniquely parsable grammar [Morita et al. 1997] viewed as an accepting grammar.
In [Morita et al. 1997] a hierarchy of uniquely parsable grammars that gave a simple
grammatical characterization of the deterministic counterpart of the classical Chomsky
hierarchy was introduced.

When extending the restrictions of unique parsability to accepting grammar sys-
tems, two variants should be taken into consideration, depending on the level, lo-
cal/global, to which the restrictions address. In the global level case, the restrictions
apply to all rules of a system considered altogether as a single set. The accepting capac-
ity of these systems equals the accepting power of deterministic pushdown automata.
In other words, each system collapses to an RC-uniquely parsable grammar. When the
local level is considered, where conditions apply to all rules of each component indepen-
dently, some more restrictive classes have more computational power but still keeping
the parsability without backtracking. We propose a simple recognition algorithm for
these systems.

2 RC-accepting grammars

An alphabet is always a finite and nonempty set of letters; if V' is an alphabet, then
V™ is the set of all words over V. The empty word is denoted by ¢ and the set of all
nonempty words is VT = V* — {¢}. For a word # € V*, we denote by |z| the length
of z and by Z the mirror image of z. For a finite set A, card(A) denotes the number
of elements in A. The reader is referred to [Rozenberg and Salomaa 1997] for basic
elements of formal language theory.

Unlike usual, when grammars are understood as word generating devices, in this
paper we are dealing with word accepting grammars. The idea is not new, variants of
accepting grammars have been considered for the main regulated generative grammars,
see, e. g., [Fernau et al. 1996] and the references therein. Furthermore, the accepting
grammars which are to be defined here are of a special form which allows us to impose
some syntactical conditions leading to parsing algorithms without backtracking.

An RC-accepting grammar (RC-AG for short) is a construct:

G = (N,T,S,P,$)

where N and T are the sets of nonterminal and terminal symbols respectively, S € N
is the goal symbol, $ ¢ NUT is a special end-marker, and P is a finite set of accepting
rules of the following forms:

(1) ar — 3, $az — $3, az$ — B8, az — $48,
with o € N*,8 € Nt,2 € TT. The rules of the form above are called right-
terminating rules (R — rules).

852 Martin-Vide C., Mitrana V.: Uniquely Parsable Accepting Grammar Systems

(i) «a — A, $a — 34, af — A3, a — $A%, $8 — $A8,

with A € N, a € N*. The rules of the form above are called context-free-like rules

(C-rules).
This definition is essentially similar to that introduced in [Morita et al. 1997] for gen-
erative grammars. The relation of direct reduction in G, denoted by = p, is defined
as usual, namely © = p y iff x = z1az2,y = 21822 and @« — 3 € P. The reductions
consisting of k direct reduction steps as above are denoted by =%, while an arbitrary
reduction is denoted by =>p.

The language accepted by an RC-accepting grammar G as above is

Ace(G) = {w € T | w =} 5}.

We shall prove first that these grammars accept exactly the class of context-free lan-
guages. We consider that two languages are equal if they differ by at most the empty
word.

Proposition 1. The family of languages accepted by RC-accepting grammars is the
family of context-free languages.

Proof. We start with a context-free grammar G in the Greibach normal form
[Rozenberg and Salomaa 1997], with productions of the form A — bA1 A, ... Ay, where
A Aq, Ay, ..., A, are nonterminals and b is a terminal symbol. We consider a new
nonterminal, denoted by A, and for each production A — ba of G, we consider the
following RC-accepting rules:

~ $b— $a, if A=,

— Ab = a and AAb — &, if a # ¢,

— Ab > Aand AAb - A ifa=c¢.
Add to the set of rules above the rules $$ — $5% and 4 — 5. Now it is easy to
prove formally, by induction on r, that

S =y ra =, vy if zy =" ay =" $5% or
ry =" aAy =" $5%.

We have denoted by =4 the relation of leftmost derivation in G. Therefore, the
RC-accepting grammar defined above accepts the language generated in the leftmost
manner by G. In conclusion, all context-free languages can be accepted by RC-accepting
grammars.

The converse inclusion follows from a result of Baker, see [Baker 1974]. This result
states that each grammar having its productions of the form

$0A1:1}1A2 . xn—lAnfEn — yOBlleQ . ym—leym

where z;, y; are terminal words, 0 < i < mn, 0 < j < m, and A;, B; are nonterminals,
1<i<n,1<j5<m,and satisfying one of the following two conditions:

1.n=1,

2. there exists some j such that |y;| > |z;| for all 0 < ¢ < n,
generates a context-free language.

Given an RC-accepting grammar G = (N, T, S, P,$) we construct a grammar G' =
(N, T U {$,c},S, P'), where c is a new terminal and the rules of P’ are defined as
follows:

1. Take each C-rule of P and change its two sides with each other.

2. Do the same with each R-rule of P excepting those of the form $ax — $3, with
a # ¢. For each such a rule, we add the rule $8 — $azxc.

Clearly, G’ satisfies the conditions required by the aforementioned result. Further-
more, h(L) = Ace(G) holds, where h is a homomorphism which erases the symbols $
and c and leaves unchanged the other ones, and L is the language generated by G'. As
the class of context-free languages is closed under arbitrary homomorphisms, it follows
that Acc(G) is also context-free.

Martin-Vide C., Mitrana V.: Uniquely Parsable Accepting Grammar Systems 853

3 TUP-conditions

As one can see, there are many possible rules that can be applied to a certain step of a
reduction process in an RC-accepting grammar. Despite that the following conditions
do not change the nondeterministic feature of the reduction process, they induce a kind
of confluence property to all reductions. Furthermore, for each reduction there exists a
unique leftmost reduction. Thus, parsing can be performed in a deterministic way by
leftmost reductions.

An RC-accepting grammar G = (N, T, S, P, $) is an RC-uniquely parsable accepting
grammar (RC-UPAG, for short) iff the following conditions, called UP-conditions, are
satisfied:

1. Neither 5,85, S$ nor 5 belong to dom(P) = {a |« — 8 € P}.

2. For any 1 < j < n and for any two rules a; — 3; € P, i = 1,2, if a1 = o} and
az = dab, for some 6, ,ah € (NUT U {$})™, then 31 = B0 and B> = 4435, for
some (1,02 € (NUT U{8$})".

3. For any two rules a; — (B; € P, i = 1,2, if a1 = ~a27/, for some v,7 €
(NUTU{8})", then 81 = B2 and y =+ =e.

Note that for any two rules a; — 34, i = 1,2, if a1 = a6, as = dah, then § € NU{$}.

Otherwise stated, if a suffix and a prefix of the lefthand side of two rules are
the same word, then this word remains unchanged by application of these rules no
matter the order. Thus, if more rules are applicable at a given step, the application of
one of them does not cancel the possibility of a further application of any other one.
(From this property, one can derive that any given terminal word is either accepted or
rejected by a process without backtracking. Consequently, RC-UPAGs preserve also a
nice property of context-free grammars, namely for every accepted word w there exists
a leftmost reduction which accepts w (a leftmost reduction is a reduction such that
each direct reduction is made as far to the left as possible).

In [Morita et al. 1997] it was proved that the class of languages generated by RC-
uniquely parsable grammars is the class of languages accepted by deterministic push-
down automata.

4 RC-uniquely parsable accepting grammar systems

We extend the above definitions for accepting grammar systems, more precisely for
accepting cooperating grammar systems [Fernau et al. 1996]. Roughly speaking, an
RC-accepting grammar system (RC-AGS) consists of several RC-accepting grammars
that are called the components of the system. Formally, an RC-AGS of degree n is a
construct

I'=(N,T,S,P,Ps,...,P,8),

where (N, T, S, P;,$) is an RC-AG for all 1 <4 < n. For all grammars and grammar
systems that are to be considered in the sequel contain only RC-rules we simply omit
the prefix RC.

If all components of an AGS I' are UPAG, then I' is a local uniquely parsable
accepting grammar system. If the grammar Gr = (N, T, S, |JI_, P, $) is a UPAG,
then I' is called a global uniquely parsable accepting grammar system. Obviously, each
global UPAGS is a local UPAGS but the converse does not hold.

The relation of direct reduction in every set P;, denoted by = p, is defined as usual,
namely x =>p, y iff v = 1022,y = 1822 and @ — 3 € P;. The reduction consisting
of exactly k direct reduction steps as above is denoted by =>’§>i, an arbitrary reduction
is denoted by == p,, whereas a maximal reduction is denoted by :>fpi. Formally, we

write x :>t[)l. y iff © =3, y and there is no z € (N U T U {$})" such that y = p, 2.

854 Martin-Vide C., Mitrana V.: Uniquely Parsable Accepting Grammar Systems

The language accepted by I', denoted by Acc(I), is defined by
Ace(T) ={w € T" | w =p, un =b,_ ... =p, wn = $S58,
for some m > 1,1 <i; <n,1 <j<m}.
Example 1 The AGS
Ir={sS,A,B,C,A,B:,C.,X,Y, Z F} {a,b,c}, S, P, P>, Ps,$),

where Py consists of the following rules

$XY Z$ —» $S8, AA, — X,
$A4:B1C1$ — 858, BB, —Y,
AXY — F, cCcy — Z
BYZ —s F,

P consists of the following rules

AX — A4, Bb — BB, Ab — A B,
BY — By, Be — B1C, Aa — AA,
CZ — (4, Cec— CC, $a — $A,
C$ — C18,
and Ps consists of the following rules
$XB — $F,
$XYC — $F,

1s a local but no global UPAGS accepting the language L = {a™b"c"|n > 1}.
Indeed, each word a™b"c", n > 1, is accepted by I' as shown below for n = 3.
$a’b°c*$ =%, $AAABBB,CCC1$ =%, $AXBYCZ$
:>tp2 $A:B:1C:1$:>§31 $SS.

On the other hand, the accepting process of any word a™b™cP is blocked in the third
component provided n # m or m # p.

4.1 Global UPAGS

In this section we shall prove that each global UPAGS can be replaced by a UPAG with
the same accepting power. This can be simply done by putting together all components
into just one component.

The following result, which is an immediate consequence of Theorem 2.1 in
[Morita et al. 1997], is the main tool in our further reasoning.

Proposition 2. Let G = (N, T,S,P,$) be a UPAG and let x be a word in (NUT U
{$Ht. If e =" $S8$, then for any y € (NUT U {$})T such that ¢ = y, for some
k > 1, the relation y =" S holds.

Now we can prove the main result of this section.

Proposition 3. For each global UPAGS I' there exists a UPAG that accepts the lan-
guage Acc(I").

Martin-Vide C., Mitrana V.: Uniquely Parsable Accepting Grammar Systems 855

Proof. Let I' = (N,T, S, P, P>,...,P,,8$) be a global UPAGS of degree n; we con-
sider the accepting grammar G = (N, T, S, P = |J_, P, $). We prove that Acc(I') =
Acc(G). Clearly, the non-trivial inclusion is Acc(G) C Ace(I'). Take an arbitrary word
x € Acc(G) that is $28 = $58. The following algorithm provides an accepting path
in I'.

Algorithm 1 begin
k:=1;
while z # S do
assume that x :V’P'j y =5 $58 for some 1 < j < n.

find the unique xy, such that y =>pr. $z1$;

ik =],

r =Tk,
endwhile;
end.

Now, by this algorithm, it is easy to infer that
z =>§>i1 $21% =>§Jl.2 =>§Jl.k $2.$ = 5,

which concludes the proof.

A direct reduction of a word that is made as far to the left as possible is called a
direct leftmost reduction. The direct leftmost reduction from x to y in P; is denoted
by =>p, y. Formally, ¢ =>p, y iff t = 21022,y = 1822, — B € P;, and for any
o' € dom(P;) and any decomposition z = z}a’z we have |z1| < |z}|. In a similar way
as above, the t-leftmost reduction in a component P; is defined.

Proposition4. Let I' = (N,T,S, P, P»,...,P,,$) be a UPAGS. If :>§>i y, then
T =>>§pl_ Y.
Proof. This is to be proved by induction on the number of direct reductions in x :>§>i
y, say k.
The case k = 1 is trivially true, since only one rule is applicable to z. Assume the
assertion holds for k. Consider a k + 1 steps reduction
T =>p, 2 =>p Y

in which the first step is a leftmost reduction i.e. * =>p, z. By Proposition 2, this
supposition does not induce any loss of generality. ;From the induction hypothesis it
follows z =>%, y, hence x =>5, y and we are done.

The language accepted in the leftmost manner by a UPAGS I' = (N, T, S, P1, P,
..+, Pn, $) is defined by
Ace(Iyleft) = {w € T | w = $w:1$ =>>§>i1 $218 =>p,,
$w.$ =>>§al.2 $228 =>...=>p $z.$ =$SS,
for some m > 1,1 <i; <n,1 <j<m}
In [Morita et al. 1997] it is proved that, parsing can be always performed in a

unique way by leftmost reduction in any UPAG. By the last two propositions one can
easily infer a similar result for UPAGSs, namely

Proposition 5. For each global UPAGS I', Acc(I',left) = Ace(I') holds. Moreover,
each word in Acc(I") there is a unique leftmost reduction in I.

856 Martin-Vide C., Mitrana V.: Uniquely Parsable Accepting Grammar Systems

4.2 Local RC-UPAGS

As we have seen, the accepting process of every word in a global RC-UPAGS is done
without backtracking. Unfortunately, no increase of the accepting capacity of these
systems can be observed in comparison with that of RC-UPAGs.

On the other hand, as shown in Example 1, local RC-UPAGSs are more powerful
than global RC-UPAGSSs, but one loses the confluence property. Otherwise stated, one
cannot accept every word without backtracking because the component which is to
become active might be chosen from a set of components that are able to reduce the
current word. However, once a component has been chosen, the reduction can be made
without backtracking till the component is disabled.

In order to keep the general confluence property we restrict our investigation to
leftmost reductions only. Even in this case the next active component may not be
uniquely determined. For overcoming this drawback we add the following condition
called the prefiz condition. An RC-UPAGS I' = (N,T,S, Pi, Ps,...,P,,$), satisfies
the prefix-condition iff

Pref(dom(P;)) Ndom(P;) =0
for all 1 <i # j < n. By Pref(A) we have denoted the set of all prefixes of the words
in A.

The accepting capacity of RC-UPAGSs satisfying the prefix condition seems to be
very large. The system in Example 1 satisfies the prefix condition. A bit more intricate
example is discussed below.

Example 2 Let V' be an alphabet and c be a symbol not in V. We define the RC-
UPAGS
r= ({S’ X7 Y’ F}’ Vv) S7 (Pa)a€V’ (Pt;)aEV7 (Pc:,)aEVa P: $)7

where

P, ={% - $X,ca > X} U{cb > F|beV\{a}},
P,={Xa—-Y}U{Xb—> F|beV\{a}},
P ={YVa— X}U{Yb— F|beV\{a}},

foralla € V, and
P={3XX$ — 5,8YY$ — S} U

| {8XaX$ — $F8$,8Xay'$ — $F8,8Ya XS — F,Yay' — $FS,
a€V
$XXa — $F,8Y Xa — $F,$XYa — $F,8YYa — $F}.

It is easy to notice that I' is a local UPAGS that satisfies the prefiz condition. The
language accepted by T is {xcx |z € VT}.

In what follows, we shall discuss a simple recognition algorithm for the leftmost
reduction in local UPAGSs satisfying the prefix condition. We start with some prelim-
inary notations. For a set of words A we denote by

- PSuf(A), the set of all proper suffixes of the words in A,
- Long(A), the longest word in A.

For a word w we denote by w(;) the ith symbol in w, provided 1 < i < |w|, or &,
otherwise.
Our algorithm has two distinct phases: one in which we find the unique component
which is to become active and the other one in which a ¢-leftmost reduction is per-
formed by this component. The former phase is based on the algorithm proposed in

Martin-Vide C., Mitrana V.: Uniquely Parsable Accepting Grammar Systems 857

[Aho and Corasick 1975] for solving the multiple pattern matching problem. The only
difference is that the searching process is stopped as soon as a matching pattern has
been found in the text. The text is the sentential form while the dictionary of matching
patterns is formed by the words in the lefthand side of all rules of the given UPAGS.

For the latter phase we define reduce(w,,7,y) to be the word obtained by a t-
leftmost reduction of x in the component ¢, where y is the lefthand side of the rule in
P; applicable in the leftmost manner to z at the position j. This function is computed
by the next procedure.

Algorithm 2 Procedure reduce(z,i,j,y);
begin
Q= TT() - TE-NHY) - - Yy - 1)
B =YyDTG+ly) - - - T(|z]), Where y — v € P; for some v;
while 8 # ¢ do
if there exists a rule v — § € P; such that

V(o)) = By;
V1)V(2) - - - V(u|=1) = A(lal—|v]+2) - - - X(Jal)

then o := Q(1)0(2) - - - Q(ja|—|v|+1)5
B:=0Be - Basn;
else a:=af;
_Bi=Be - Busn;
endif
endwhile
reduce := «;
end;

We now define the procedure find_component(z,i,j,y, OK) whose effect is to find
the unique component that is able to reduce the sentential form in the leftmost man-
ner. If such a component exists, the procedure returns the ordinal number ¢ of that
component, the position j in the sentential form where the rule from P; with y in its
lefthand side can be applied in the leftmost way, and true for the boolean variable OK.
Otherwise, it returns false for OK. The procedure is a slight modification of the algo-
rithm proposed in [Aho and Corasick 1975] for solving the multiple pattern matching
problem. The matching patterns are the lefthand side of all rules while the text is the
sentential form.

Algorithm 3 Procedure find_component(z,i,j,s,OK);

begin
si=¢g;7:=1;
find := false;

while j < |z| and not find do
while sz ;) ¢ Pref(Ui_;dom(P;)) do
s := Long(PSuf(z) N Pref(Ul_;dom(P;)));
endwhile
S 1= ST (),
if s € dom(P;) for somel <i<n
then find := true;
endif
endwhile
if j > |z| then OK := false
else OK :=true
endif
end

858 Martin-Vide C., Mitrana V.: Uniquely Parsable Accepting Grammar Systems

The algorithm runs as follows: one computes the procedure find_component and
once the component, the rule, and the position have been found, the algorithm com-
putes the function reduce. Then, this process is resumed. When no reduction is possible
anymore, the condition end_recognition is satisfied and the algorithm ends. We check
whether the sentential form is $S58; in the affirmative case the word is accepted, oth-
erwise it is rejected.

On the other hand, the aforementioned process might enter an infinite cycle in
which only renamings of nonterminals are performed. In this case, the word is not
accepted, but one needs a criterion to detect infinite loops in the derivation process.
To this aim, whenever a new component is to be activated, we store the numbers of
nonterminal and terminal occurrences in the sentential form, respectively, and check
whether or not at least one of these two numbers has been modified in the reduction

process performed by the function reduce.

2
If none of them has been modified for at least % applications of the function

reduce, then we infer that the word is not accepted. Let us argue that this number
of applications suffices for our decision. To this aim, let us denote by m and t the
numbers of nonterminal and terminal occurrences in the sentential form, respectively,
and by ¢ the number of nonterminals that occur in the sentential form just before
entering the program segment in which m and ¢ will remain unchanged for a number
of applications of reduce. Due to the working strategy of the system, it is easy to infer
that if the function reduce has been applied for more than g(card(N) — q) + Q(q—z_l)
times without modifying m or ¢, then the sentential form would not lead to S forever.

The main algorithm is listed bellow. Let us assume that we have been given a
UPAGST =(N,T, S, Pi, P», ..., Py, $) and the word z € T*. The algorithm outputs
YES or NO if and only if z belongs or not to Acc(I, le ft), respectively.

Algorithm 4 begin

k:=1;
end_recognition := false;
repeat

m:=|z|n; t = |z|r;

find_component(x,i, j, s, OK);
if OK then z:=reduce(z,i,j,s)
else end_recognition := true

endif

if m=|z|y and t = |z|r then inc(k)
else k:=1

endif

2
until end_recognition or k = w

if end_recognition and z = 5 then output YES
else output NO

endif

end.

The correctness of the algorithm follows immediately from Proposition 4, the prefix
condition, and the considerations from above. We shall briefly discuss the complexity
of this algorithm.

Procedure find_component preprocesses the pattern dictionary, only once, in time
O(d logc) and searches the sentential form in time O(n logc), where d is the total size
of the lefthand side of all rules of the system, n is the length of the current sentential
form, and ¢ is the number of symbols that occur in patterns, namely the cardinality of

Martin-Vide C., Mitrana V.: Uniquely Parsable Accepting Grammar Systems 859

N UT. Let

r = max ﬂ a " . S
) | ”i@fu € (NU{S) T Iu {1},

g=min{la| -1|a—= [€ UPi,a € (NU{SH™,|al >2}.

i=1

2
It is not hard to observe that the repeat...until loop is performed O(|z|- % -+

%) times provided reduce computes O(1) reductions per application.

5 Final remarks

We have discussed the effect of UP-conditions applied to cooperating distributed gram-
mar systems working in the t-mode. As it was expected, the accepting capacity of global
UPAGS is the same as the computational power of RC-uniquely parsable grammars
that is the class of deterministic context-free languages.

Local UPAGS can express several natural language phenomena, while staying com-
putationally tractable. More precisely, by the two examples, global UPAGS are able
to capture some features of natural languages as multiple agreements [see Example 1],
marked duplication [see Example 2] as well as cross-serial dependencies (the language
{a"b™c"d™ | n,m > 1} can be accepted by a local UPAGS). By the recognition algo-
rithm these mechanisms are polynomially parsable. We do not know whether all the
languages accepted by local UPAGS are semiliniar. All these properties seem to advo-
cate that local UPAGS might well have a good level of formal power needed in natural
language processing, being inside the mildly contert sensitive formalisms [Joshi 1985].

A natural direction of further work may consider these formalisms as a syntactic
backbone upon which other formalisms of semantical structure can be grafted.

Acknowledgements

The work of the second author was supported by the Direccién General de Ensefianza
Superior e Investigacién Cientifica, SB 97-00110508.

References

[Aho and Corasick 1975] Aho, A. V., Corasick, M. J.: “Efficient string matching: an
aid to bibliographic search”; Commun. ACM 18 (1975), 333-340.

[Atanasiu and Mitrana 1989] Atanasiu, A., Mitrana, V.: “The modular grammars”;
Internat. J. Comp. Math. 30 (1989), 17-35

[Baker 1974] Baker, B. S.: “Non-context-free grammars generating context-free lan-
guages”; Inform. Control 24 (1974), 231-246.

[Csuhaj-Varju and Dassow 1990] Csuhaj-Varju, E., Dassow, J.: “On cooperating dis-
tributed grammar systems”; J. Inform. Process. Cybern., EIK, 26 (1990), 49 —
63.

[Csuhaj-Varju et al. 1994] Csuhaj-Varju, E., Dassow, J., Kelemen, J., Pdun, Gh.:
“Grammar Systems”; Gordon and Breach (1993).

[Dassow and Mitrana 1999] Dassow, J., Mitrana, V.: “Stack cooperation in multi-stack
pushdown automata”; J. Comput. System Sci. 58 (1999), 611-621.

[Dassow et al. 1997] Dassow, J., Piun, Gh., Rozenberg, G.: “Grammar Systems”;
[Rozenberg and Salomaa 1997] 155-213.

860 Martin-Vide C., Mitrana V.: Uniquely Parsable Accepting Grammar Systems

[Fernau et al. 1996] Fernau, H., Holzer, M., Bordihn, H.: “Accepting multi-agent sys-
tems: the case of cooperating grammar systems”; Computers and Artificial Intel-
ligence 15, 2-3 (1996), 123-139.

[Fernau and Holzer 1996] Fernau, H., Holzer, M.: “Accepting multi-agent systems II”;
Acta Cybernetica 12 (1996), 361-379.

[Harrison 1978] Harrison, M.: “Introduction to Formal Language Theory”; Addison-
Wesley Publ. Co. (1978)

[Joshi 1985] Joshi, A.: “How much context-sensitivity is necessary for characterizing
structural descriptions - Tree Adjoining Grammars”; Natural Language Processing
- Theoretical Computational and Psychological Perspective, Cambridge University
Press, New York (1985).

[Meersman and Rozenberg 1978] Meersman, R., Rozenberg, G.: “Cooperating gram-
mar systems”; Proc. MFCS ’78 Symp., LNCS 64, Springer-Verlag (1978) 364 —
374.

[Mihalache and Mitrana 1997] Mihalache, V., Mitrana, V.: “Deterministic cooperat-
ing distributed grammar systems”; New Trends in Formal Languages. Control,
Cooperation, Combinatorics. LNCS 1218, Springer-Verlag (1997), 137-149.

[Morita et al. 1997] Morita, K., Nishihara, N., Yamamoto, Y., Zhang, Z.: “A hierarchy
of uniquely parsable grammars and deterministic acceptors”; Acta Informatica 34
(1997), 389-410.

[Nii 1989] Nii, P. H.: “Blackboard systems”; The Handbook of AI, vol. 4, Addison-
Wesley (1989).

[Rozenberg and Salomaa 1997] Rozenberg, G., Salomaa A.(eds.): “Handbook of For-
mal Languages”; Springer-Verlag, 3 vol. (1997).

