
Performance of RDBMS-WWW Interfaces
under Heavy Workload1

Stathes Hadjiefthymiades
(Department of Informatics, University of Athens, Athens, Greece

shadj@di.uoa.gr)

Ioannis Varouxis
(Department of Informatics, University of Athens, Athens, Greece

varj@rocketmail.com)

Drakoulis Martakos
(Department of Informatics, University of Athens, Athens, Greece

martakos@di.uoa.gr)

Abstract: The WWW is currently considered as the most promising and rapidly evolving soft-
ware platform for the deployment of applications in wide area networks as well as enterprise
intranets. Interfacing legacy systems like RDBMS to the WWW has become a very important
issue to the computing industry. We discuss the efficiency of RDBMS gateways throughout
periods of increased workload. We present a client/server architecture aiming to diminish over-
heads encountered in conventional gateways. The performance gain is assessed through a series
of measurements. Alternative architectures were subject to the same measurements to assess the
performance achieved by technologies like ODBC, JDBC, Dynamic SQL, ISAPI, NSAPI and
CORBA.

Key Words: WWW, RDBMS, gateway, SQL, CGI, Server API, Java, performance
Categories: H.3.3, H.3.4, H.4

1 Introduction

In the second half of the 90s, the WWW has evolved to the dominant software tech-
nology and broke several barriers. Despite the fact that it was initially intended for a
WAN, the WWW, today, enjoys a unprecedented success and penetration even in
corporate environments. Key players in the business software arena, like Oracle and
Microsoft, recognise the success of this open platform and constantly adapt their
products to it. Originally conceived as a tool for the co-operation between physicists,
this network service is nowadays becoming synonymous with the Internet as it is used
vastly by the majority of Internet users even for tasks like e-mail.

The universal acceptance of the WWW stimulated the need to provide access to
the vast legacy of existing heterogeneous information2. Such information ranged from

1 This work was supported by the General Secretariat of Research and Technology (GSRT).
2 The significance of this issue triggered the organization, by W3C, of the workshop on Web
Access to Legacy Data, in parallel to the 4th International WWW Conference, held in Boston,
MA in December 1995.

Journal of Universal Computer Science, vol. 6, no. 6 (2000), 538-559
submitted: 16/11/99, accepted: 12/5/00, appeared: 28/6/00 Springer Pub. Co.

proprietary representation formats to engineering and financial databases, which were,
since the introduction of the WWW technology, accessed through specialised tools
and individually developed applications. The vast majority of the various information
sources were stored in RDBMS, a technology which enjoys wide acceptance in all
kinds of applications and environments. The advent of the Web provided a unique
opportunity for accessing such data repositories, through a common front-end inter-
face, in an easy and inexpensive manner. The importance of the synergy of WWW and
database technologies is also broadened by the constantly increasing management
requirements for Web content (“database systems are often used as high-end Web
servers, as webmasters with a million of pages of content invariably switch to a web
site managed by database technology rather than using file system technology”, extract
from the Asilomar Report on Database Research [4]).

Initial research on the WWW-database framework did not address performance
issues but since this area is becoming more and more important, relevant concern is
beginning to grow. The main topic of this paper, namely the study of the behaviour
exhibited by WWW-enabled information systems under heavy workload, spans a
number of important issues, directly associated with the efficiency of service provi-
sion.
• Gateway specifications (e.g., CGI, ISAPI3) are very important due to their use for

porting existing systems/applications to the WWW.
• The internal architecture of HTTP server software is also an important issue in

such considerations. Older, single-process architectures are significantly slower
than newer multi-threaded schemes. Pre-spawned server processes or threads also
play an important role.

• Apart from the gateway specification used and the server architecture, the archi-
tecture of the interface towards the information repository (i.e., RDBMS) is also
extremely important (even with the same specification quite different architec-
tures may exhibit quite different behaviour in terms of performance).

In this paper we review the issues pertaining to the above listed topics and evalu-
ate different technologies with the purpose of identifying the most efficient combina-
tions.

The rest of the paper is structured as follows. In Section 2 we discuss popular
gateway specifications like CGI and ISAPI. We also discuss how the internal archi-
tecture of a WWW server affects its performance. In Section 3, we initially study the
architecture of database gateways. We discuss issues pertaining to database APIs. We
then study different architectures for database gateways. Some schemes were subject
to performance evaluation. The relevant results are also presented in this Section. We
conclude this paper in Section 4.

3 In this paper, Server APIs (e.g., ISAPI), will also be referred to as Gateway specifications
despite the flexibility they offer for the modification of basic server functionality. Since we are
mostly concerned with interfaces to RDBMSs, such feature of server APIs will not be consid-
ered.

539Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

2 Gateway Specifications and Server Architectures

In the following paragraphs, we provide a brief overview of major gateway specifica-
tions (e.g., CGI, NSAPI, ISAPI, WAI). We also discuss how the performance of serv-
ers is affected by their internal architecture.

2.1 Common Gateway Interface

The Common Gateway Interface (CGI) is a relatively simple interface mechanism for
running external programs in the context of a WWW server in a platform independent
way. The mechanism has been in use since 1993. The CGI specification is currently in
the Internet Draft status [10]. Practically, CGI specifies a protocol for information
exchange between the server and external programs as well as a method for their invo-
cation by the server. Data are supplied to the program by the server through environ-
ment variables or the standard input file descriptor. CGI is a language independent
specification. Owing to its simplicity, support for CGI is provided in almost all con-
temporary servers. A very important issue associated with the deployment of CGI is
the execution strategy followed by the server. CGI-based programs run as short-lived
processes separately to the server. As such, they are not capable of modifying basic
server functionality or share resources with each other and the server. Additionally,
they impose considerable resource waste and time overhead due to their one proc-
ess/request scheme. During the evolution of WWW software, key commercial players
like Netscape and Microsoft introduced their own, proprietary interfaces for extending
basic server functionality. Such mechanisms are discussed below.

2.2 Netscape Server API

The NSAPI specification enables the development of server plug-ins (also called
Service Application Functions or SAFs) in C or C++ that are loaded and invoked
during different stages of the HTTP request processing. Since server plug-ins run
within the Netscape server’s process (such plug-ins are initialised and loaded when the
server starts up), the plug-in functions can be invoked with little cost (no separate pro-
cess needs to be spawned as in the case of CGI). Also, NSAPI exposes the server’s
internal procedure for processing a request. It is, therefore, feasible to develop a
server plug-in that is invoked during any of the steps in this procedure. Such steps, in
brief, are authorisation translation, name translation, path checking, object typing,
respond to request4 and transaction logging.

4 This is the only step addressed by the CGI specification.

540 Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

2.3 Web Application Interface

WAI [32] is one of the programming interfaces, provided in the latest Netscape serv-
ers, that allows the extension of their functionality. WAI is a CORBA-based pro-
gramming interface that defines object interfaces to the HTTP request/response data
as well as server information. WAI compliant applications can be developed in C,
C++, or Java. WAI applications accept HTTP requests from clients, process them,
and, lastly generate the appropriate responses. Server plug-ins may also be developed
using WAI. Netscape claims that WAI outperforms CGI. Since WAI-compliant mod-
ules (or WAI services) are persistent, response times are reduced thus, improving per-
formance. Additionally, WAI modules are multi-threaded so the creation of additional
processes is unnecessary.

2.4 Internet Server API

ISAPI [29], [31] is an interface to WWW servers that allows the efficient extension of
their basic functionality. ISAPI compliant modules run in Windows 9x/NT environ-
ments as dynamic link libraries (DLL). ISAPI DLLs can be loaded and called by a
WWW server and provide similar functionality to CGI applications (such ISAPI
DLLs are called extensions). The competitive advantage of ISAPI over CGI is that
ISAPI code runs in the same address space as the server and has access to all its re-
sources (thus, the danger of a server crash due to error-prone code is not negligible).
Additionally, ISAPI extensions, due to their multi-threaded orientation, have lower
overhead than CGI as they do not require the creation of additional processes upon
reception of new requests and do not involve communications across process bounda-
ries. Filters are another type of ISAPI modules. Filters are loaded once, upon server’s
boot, and invoked for each incoming request. ISAPI Filters allow the customisation of
the flow of data within the server. ISAPI is used by several Web servers including
Microsoft, Process Software, and Spyglass.

2.5 FastCGI

FastCGI [6] is basically an effort to provide a “new implementation of CGI” [7] that
enjoys the portability of its predecessor while overcoming its performance handicap.
FastCGI processes are persistent in the sense that after dispatching some request, they
remain memory resident (and, do not exit, as conventional CGI) awaiting for another
request to arrive. Instead of using environment variables, standard input and output,
FastCGI communicates with the server process through a full duplex Socket connec-
tion. Basing the interface on Sockets allows the execution of the gateway instance on a
machine different from that of the WWW server. The information transferred over this
full-duplex connection is identical to the one exchanged in the CGI case. Thus, migra-
tion from classical CGI programs to FastCGI is fairly simple. FastCGI supports the
language independence of its predecessor. FastCGI applications can be programmed
either single-threaded or multi-threaded. The FastCGI framework supports a perform-

541Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

ance enhancement technique called “session affinity”. Session affinity allows the
server to route incoming requests to specific memory resident copies of FastCGI proc-
esses based on information conveyed within requests (e.g., username/password of the
authentication scheme). The performance benefit comes from the caching that appli-
cations are allowed to perform on user-related data. A side effect of this technique is
that it facilitates session management in the WWW environment.

2.6 Servlet Java API

Servlets are protocol- and platform-independent server side components written in
Java. Servlets execute within Java based web servers (e.g., Java Web Server) or within
external “Servlet engines” interfaced to other types of web servers like Netscape and
Apache (such technique will be discussed below). They are to the server side what
applets are to the client side. Servlets can be used in many ways but generally re-
garded as a replacement to CGI. Servlets allow the realisation of 3-tier schemes where
access to a legacy database or another system is accomplished through some technol-
ogy like Java Database Connectivity (JDBC) or Internet Inter-ORB Protocol (IIOP).
Unlike CGI, the Servlet code stays resident after the dispatch of an incoming request.
To handle simultaneous requests new threads are spawned instead of processes.

2.7 Comparison between CGI and Server APIs

Gateway specifications are compared in terms of characteristics (qualitative) or the
performance (quantitative) they can achieve. A detailed comparative analysis of the
characteristics of CGI and server APIs can be found in [12] and [37]. Specifically,
CGI is the most widely deployed mechanism for integrating WWW servers with leg-
acy systems. However, its design does not match the performance requirements of
contemporary applications: CGI applications do not run within the server process. In
addition to the performance overhead (new process per request), this implies that CGI
applications can't modify the behaviour of the server's internal operations, such as
logging and authorisation (see Section 2.2). Finally, CGI is viewed as a security issue,
due to its connection to a user-level shell.

Server APIs can be considered as an efficient alternative to CGI. This is mainly
attributed to the fact that server APIs entail a considerable performance increase and
load decrease as gateway applications run in or as part of the server processes (practi-
cally the invocation of the gateway module is equivalent to a regular function call5)
instead of starting a completely new process for each new request, as the CGI specifi-
cation dictates. Furthermore, through the APIs, the operation of the server process can
be customised to the individual needs of each site. The disadvantages of the API solu-
tion include the limited portability of the gateway code which is attributed to the ab-
sence of standardisation (completely different syntax and command sets) and strong
dependence to internal server architecture. The choice for the programming language

5 Differences arise from the start-up strategies followed: some schemes involve that gateway
instances/modules are pre-loaded to the server while others follow the on-demand invocation.

542 Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

in API configurations is extremely restricted if compared to CGI (C or C++ Vs C,
C++, Perl, Tcl/Tk, Rexx, Python and a wide range of other languages). As API-based
programs are allowed to modify the basic functionality offered by the web server,
there is always the concern of buggy code that may lead to crashes.

The two scenarios involve quite different resource requirements (e.g., memory) as
discussed in [37]. In the CGI case, the resource needs are proportional to the number
of clients that are simultaneously served. In the API case, resource needs are substan-
tially lower due to the function-call like implementation of gateways and multi-
threaded server architecture.

In terms of performance, many evaluation reports have been published during the
past years. Such reports clearly show the advantages of server APIs over CGI or other
similar mechanisms but also discuss performance differences between various com-
mercial products.

The qualitative and quantitative comparison of the discussed schemes is shown in
Table 1. Performance considerations are based on a series of published reports like
[8], [9], [14], [19].

CGI ISAPI NSAPI WAI Servlet API FastCGI
Performance - + + + + + + +
Language
Independence

+ + - - + + - + +

Portability + + - - + + + +
Popularity + + - - - +6 +
Low level server
programming

- + + + + + + + -

+ + : Good, + : Medium, - : Poor

Table 1: Qualitative/quantitative comparison

2.8 Web Server Architectures

The architecture of HTTP demons (or WWW servers) has been a very important issue
since the advent of the WWW. The concern of the WWW community about the im-
plications of WWW server architecture on performance is clear in works like [28] and
[24]. The very first servers were designed to fork a new process for each incoming
request. Newer architectures adopt the, so-called, pre-forking (or pool of processes)
approach. The pre-forking approach involves the provisional generation, by the master
process, of a set of slave processes. Such processes are waiting idle until an HTTP
request reaches the master process. Then, the master process accepts the connection
and passes the file descriptor to one of the pre-spawned clients. If the number of si-
multaneous requests at the server exceeds the number of pre-spawned clients, then the
master process starts forking new instances. Measurements reported in [28] show that
this technique practically doubles the performance of the WWW server.

6 Servlet Engines are also taken into account.

543Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

Newer server architectures were designed in the more efficient, multi-threaded
paradigm. Notable examples are Netscape’s servers. In those architectures, upon
WWW subsystem’s boot, only one server process is spawned. Within this server proc-
ess the pool of available instances principle is still followed but on the thread level. In
other words, a number of threads are pre-spawned and left idle, awaiting incoming
requests to serve. If the threads in the thread pool are all in use, the server can create
additional threads within the same process/address space to handle pending connec-
tions. Servers are optimised on the thread model supported by the underlying OS (e.g.
in the HP-UX case where not native threading is supported a user-level package is
provided).

Server Process

thread_1 thread_2 thread_3 thread_n

......

SAF
code

SAF
code

Figure 1: Multi-threaded Netscape Server architecture

As discussed in Section 2.2, gateways can be built in Netscape servers using the
NSAPI specification. Taking into account the server’s multi-threaded architecture, the
performance benefit is two-fold: (a) SAF/plug-in code is pre-loaded in the memory
space of the server process and (b) the server spawns autonomous threads instead of
forking processes for each incoming request (Figure 1). Microsoft servers exhibit
quite similar behaviour.

3 Architectures of RDBMS Gateways

One of the most important applications of the WWW platform refers to the integration
of database management systems and RDBMS in particular. Many issues are associ-
ated with this particular type of WWW applications, namely the generic architecture,
the stateful operation and performance, which is of prime concern in this paper. The
first WWW interfaces for relational management systems appeared in the ‘93-94 pe-
riod. The first products begun to come into sight on ‘95 with WebDBC [33] from
Nomad (later StormCloud), Cold Fusion [1] from Allaire and dbWeb [26] from As-
pect Software Engineering. The importance of such middleware triggered a very rapid
pace in the development of this kind of software. Such interfacing tools have become
crucial and indispensable components to the Internet as well as enterprise intranets.

544 Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

The first generation of WWW-RDBMS interfacing products was mainly intended for
the Windows NT platform and capitalised on ODBC to gain access to databases.

Throughout the deployment of WWW gateways for RDBMSs it can be easily ob-
served that, during users’ queries for information, a considerable amount of time was
spent for the establishment of connections towards the relational system. Irrespec-
tively of the efficiency of the adopted gateway mechanism (i.e., the “slow” CGI
Vs a “fast” server API), establishing a new connection (per request) to the rela-
tional system is a time- and resource - consuming task which should be limited
and, if possible, avoided.

In [15], the scheme of permanent connections towards the database management
system was adopted [37]. Permanent connections are established by one or more de-
mon processes that reside within the serving host and execute queries on the behalf of
specific clients (and gateway instances). Demons, prevent the inefficient establishment
of a large number of database connections and the relevant resource waste; the associ-
ated cost is incurred by the demon processes (prior to actual hit dispatch - query exe-
cution) and not by the gateway instances (e.g., CGI script, ISAPI thread) upon hit dis-
patch. Thus, no additional time overhead is perceived by the interacting user in his
queries. The discussed scheme is shown in Figure 2.

3.1 Generic DBMS Interfaces

A very important issue in the demon-based architecture shown in Figure 2 is the inter-
face towards the DBMS (interface D) as well as the communication mechanism be-
tween the gateway instance (interface C in Figure 2). The demon process should be
able to dispatch any kind of SQL statements irrespective of database, table and field
structures. This requirement discourages the adoption of a static interface technique
like the embedding of SQL statements in typical 3GLs (i.e., the Embedded SQL API -
ISO SQL-92 standard). Instead, a generic interface towards the database should be
used.

Contemporary RDBMS offer, as part of the Embedded SQL framework, the Dy-
namic SQL capability [20], [30], [35] which allows the execution of any type of
statement without prior knowledge of the relevant database schema, table and field
structures (unlike Static SQL). Dynamic SQL statements can be built at runtime and
placed in a string host variable. Subsequently, they are sent to the RDBMS for proc-
essing. As the RDBMS needs to generate an access plan at runtime for dynamic SQL
statements, dynamic SQL is slower than its static counterpart. This last statement de-
serves some more discussion: if a generic interface towards a DBMS is pursued, then
the execution efficiency of the system could be undermined. Embedded SQL scripts
with hard-coded statements execute faster than CGI scripts with dynamic SQL capa-
bilities. The real benefit, in this architecture, comes from the de-coupling of the dy-
namic SQL part (database demon) from the actual gateway instance (Figure 2).

545Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

W3 Client

W3 Server
(httpd)

Gateway Instance

Database Demon

HTTP
communication (interface A)

Proprietary
protocol (interface C)

Any gateway
specification (interface B)

Same or separate
processes

DBMS

Any generic
database API
(interface D)

Figure 2: Optimised WWW-DBMS interface

A second option for generic access to a DBMS is the SQL Call-Level Interface
(CLI). The SQL CLI was originally defined by the SQL Access Group (SAG) to pro-
vide a unified standard for remote data access. The CLI requires the use of intelligent
database drivers that accept a call and translate it into the native database server’s ac-
cess language. The CLI is used by front-end tools to access the RDBMS; the latter
should incorporate the appropriate driver. The CLI requires a driver for every data-
base to which it connects. Each driver must be written for a specific server using the
server’s access methods and network transport stack. The SAG API is based on Dy-
namic SQL (statements need to be Prepared7 - Executed). On 1994, the SAG CLI be-
came X/Open specification (currently it is also referred to as X/Open CLI [27]) and
later on an ISO international standard (ISO 9075-3 [21]). Practically, the X/Open CLI
is a SQL wrapper (a procedural interface to the language); a library of DBMS func-
tions - based on SQL - which can be invoked by an application.

Microsoft’s Open DataBase Connectivity (ODBC) API is based on the X/Open
CLI. The 1.0 version of the specification and the relevant Software Development Kit
(SDK), launched by Microsoft in 1992, have been criticised for poor performance.
Initially, ODBC was confined to the Windows platform, but was later ported to plat-
forms like Solaris. The ODBC 2.0 (1994) has been considerably improved over its
predecessor. 32-bit support contributed to the efficiency of the new generation of
ODBC drivers. In 1996, Microsoft announced ODBC 3.0. Nowadays, most database
vendors support ODBC in addition to their native SQL APIs.

7 It is requested by the RDBMS to parse, validate, and optimise the involved statement and,
subsequently, generate an execution plan for it.

546 Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

Since the advent of the Java programming language, a new SQL CLI has
emerged. It is named JDBC (Java DataBase Connectivity) and was jointly developed
by Javasoft, Sybase, Informix, IBM and other vendors. JDBC is a portable, object-
oriented CLI, written entirely in Java but very similar to ODBC [36]. It allows the
development of DBMS independent Java code which is, at the same time, independent
of the executing platform. JDBC’s architecture, similarly to ODBC, introduces a
driver manager (JDBC driver manager) for controlling individual DBMS drivers. Ap-
plications share a common interface with the driver manager. A classification of
JDBC drivers suggests that they are either direct or ODBC-bridged. Specifically, there
are four types of JDBC drivers [23]:
• Type 1 refers to the ODBC-bridged architecture and involves the introduction of a

translation interface between the JDBC and the ODBC driver. ODBC binary code,
and the required database client code must be present in the communicating party.

• Type 2 drivers are based on the native protocols of individual DBMS (i.e., vendor-
specific) and were developed using both Java and native code (Java methods in-
voke C or C++ functions provided by the database vendor).

• Type 3 drivers are exclusively Java based. They use a vendor-neutral protocol to
transmit (over TCP/IP sockets) SQL statements to the DBMS thus, necessitating
the presence of a conversion interface (middleware) on the side of the DBMS.

• Type 4 drivers are also exclusively based on Java (pure Java driver) but, in con-
trast to Type 3, use a DBMS specific protocol (native) to deliver SQL statements
to the DBMS.
In the some of the experiments documented in this paper (Section 3.3) both Type

2 and Type 4 JDBC drivers have been employed.

3.2 Protocols and Inter-process Communication Mechanisms

Another very important issue in the architecture shown in Figure 2 is the C interface
(i.e., the interface between gateway instances and the database demon). The definition
of interface C involves the adoption of a protocol between the two co-operating enti-
ties as well as the selection of the proper IPC (Inter-Process Communication) mecha-
nism for its implementation [15].

In [15] a simplistic, request/response, client/server protocol for the realisation of
the interface was proposed. The gateway instance transmits to the database demon a
ClientRequest message and the database demon responds with a ServerResponse. The
ClientRequest message indicates the database to be accessed, the SQL statement to be
executed, an identifier of the transmitting entity/instance as well as the layout of the
anticipated results (results are returned merged with HTML tags). The Backus-Naur
Form (BNF) of ClientRequest is:

ClientRequest = DatabaseName SQLStatement
 [ClientIdentifier] ResultsLayout

DatabaseName = *OCTET
SQLStatement = *OCTET
ClientIdentifier = *DIGIT ; UNIX PID
ResultsLayout = "TABLE" | "PRE" | "OPTION"

547Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

ClientIdentifier is the process/thread identifier of the gateway instance that gener-
ated the request. This field is optional, depending on the IPC mechanism used and
could be avoided in a connection-oriented communication (e.g., Sockets). *OCTET
denotes a sequence of printable characters and thus, represents a text field. Results are
communicated back to the client processes by means of the ServerResponse message.
The BNF of ServerResponse is:

ServerResponse = ResponseFragment ContinueFlow
ResponseFragmet = *OCTET
ContinueFlow = "YES" | "NO"

The ResponseFragment (text) field contains the actual information that was re-
trieved by the demon process from the designated database. As mentioned, such in-
formation is returned to the client, embedded within HTML code. The type of tags
used is the one specified in the ResultsLayout field of ClientRequest. The Continue-
Flow field is used for optimising, in certain IPC scenarios (e.g., Message Queues), the
transmission of results back to the gateway instance.

The ClientRequest-ServerResponse protocol is very simplistic, and shifts proc-
essing from the gateway instance (client) to the database demon (a “thin” client
scheme). More advanced protocols (i.e., RDA/DRDA) may be used over the C inter-
face to allow more complicated processing at the side of the gateway instance. The
widely established XML standard [39] also provides a flexible platform for the ex-
change of structured, relational data [40], [41], [42]. Should the XML be used for the
implementation of the ClientRequest-ServerResponse protocol, additional processing
is required on the side of the gateway instance for parsing [39] the transmitted Re-
sponseFragments. XML can be used in Microsoft server architectures for the flow of
database information from MTS (Microsoft Transaction Server) objects to Active
Server Pages (ASP) where XSL transformations are invoked for generation of the ap-
propriate HTML code.

Protocols pertaining to the C interface are deployed using either some IPC
mechanism like Message Queues [15], [17] or Sockets [18] or some kind of middle-
ware like CORBA/IIOP. Message Queues [38] are a quite efficient, message oriented,
IPC mechanism that allows the simultaneous realisation of more than one dialogues
(i.e., various messages, addressed to different entities, can be multiplexed in one
queue). BSD Sockets are ideal for implementation scenarios where the web server
(and, consequently, the gateway instances) and the database demon execute on differ-
ent hosts. The advent of the WinSock library for the Microsoft Windows environ-
ments rendered Sockets a universal, platform independent IPC scheme. Message
Queues are faster than Sockets but restrict the communication in a single host since
they are maintained at the kernel. In some recent tests, which are also presented in this
paper, for the realisation of a scheme similar to the one shown in Figure 2, we have
employed Named Pipes in the Windows NT environment. A Named Pipe is a one-way
or two-way communication mechanism between a server process and one or more
client processes executing on the same or different nodes (networked IPC).

A type of middleware, used extensively nowadays in many application domains, is
CORBA [34]. CORBA simplifies the development of distributed applications with

548 Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

components that collaborate reliably, transparently and in a scaleable way. The effi-
ciency of CORBA for building interfaces between Java applications is discussed in
[36]. It is reported that CORBA performs similarly (and, in some cases better) to
Socket based implementations while, only buffering entails a substantial improvement
in Socket communications. Another comparison between several implementations of
CORBA (e.g., Orbix, ORBeline) and other types of middleware like Sockets can be
found in [13]. In particular, low level implementations such as Socket-based C mod-
ules and C++ wrappers for Sockets significantly outperformed their CORBA or RPC
competitors. Differences in performance ranged from 20 to 70% depending on the
data types transferred through the middleware (transmission of structures with binary
fields has proved considerably “heavier” than scalar data types).

3.3 Experiments and Measurements

In this section, we present two series of experiments which allow the quantification of
the time overheads imposed by conventional gateway architectures and the benefits
that can be obtained by evolved schemes (such as the one shown in Figure 2).

Firstly, we examined the behaviour of a web server setup encompassing a Net-
scape FastTrack server and Informix Online Dynamic Server (ver.7.2), both running
on a SUN Ultra 30 workstation (processor: SUN Ultra 250 MHz, OS: Solaris 2.6)
with 256 MB of RAM. In this testing platform we have evaluated the demon-based
architecture of Figure 2 and the ClientRequest/ServerResponse protocol of Section
3.2, using, on the B interface, the CGI and NSAPI specifications (all tested scenarios
are shown in Figure 3) [17]. The IPC mechanism that we have adopted was Message
Queues. Quite similar experiments were also performed with BSD Sockets [18] but
not reported in this section. Both types of gateway instances (i.e., CGI or NSAPI) as
well as the server demon were programmed in the C language. The server demon, for
the D interface, used the Dynamic SQL option of Embedded SQL (Informix E/SQL).
Only one database demon existed in the setup. Its internal operation is shown in
Figure 4, by means of a flowchart. It is obvious, from Figure 4, that the database de-
mon operates in a generic and iterative way, accessing any of the databases handled by
the DBMS and executing any kind of SQL statement. If the, until recently, used
DBMS connection (e.g., to a database or specific user account) is the same with the
connection needed by the current gateway request then, that connection is being used.
The JDBC 2.0 specification [43] adopts a very similar technique named Connection
Pooling. When some application closes a database connection, that connection is re-
cycled rather than being released. According to Javasoft, “reusing connections can
improve performance dramatically by cutting down the number of new connec-
tions that need to be created”.

549Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

FastTrack
Web Server

NSAPI
SAF

CGI

CGI Informix

D
at

ab
as

e
D

em
on

1

2

3

• Scenario 1:
CGI - RDBMS
• Scenario 2:
CGI - demon - RDBMS
• Scenario 3:
NSAPI-demon-RDBMS

Figure 3: Database access scenarios (1)

db demon
START

NoInitialise
demon
process

Receive new
request from

gateway

Same con-
nection?

Execute SQL
statement

Release old
connection -

establish new

Yes

Pass results
to gateway

Figure 4: Flowchart for Database Demon operation

As shown in Figure 3, we compared the conventional (monolithic) CGI-based In-
formix gateway (C and Embedded SQL - Static SQL option) against the CGI ↔ Data-
base Demon ↔ Informix scheme (Scenario 2) and the NSAPI SAF ↔ Database De-
mon ↔ Informix combined architecture (Scenario 3). In all three cases, the designated
database access involved the execution of a complicated query over a sufficiently
populated Informix table (around 50,000 rows). The table contained the access log
accumulated in a web server over a period of six months. The layout of the table fol-
lowed the Common Log Format found in all web servers and the row size was 196
bytes. The executed query was the following: Select the IP address and total size of
transmitted bytes (grouping by the IP address) from the access log table where the
HTTP status code equals 200 (i.e., Document follows). The size of the HTML page
produced was 5.605 KB in all scenarios (a realistic page size, taking into account the
published WWW statistics [3], [5]). The tuples extracted by the database were em-
bedded in an HTML table (ResultsLayout = "TABLE").

550 Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

4 8 12 16
No of HTTP clients

4000

8000

12000

16000

20000

24000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Scenario 1: CGI-RDBMS

Scenario 2: CGI-DB demon

Scenario 3: NSAPI-DB demon

Figure 5: Response Time Vs Number of Clients

The above-described experiments were realised by means of an HTTP pinger, a
simple form of benchmarking software. The pinger program was configured to emu-
late the traffic caused by up to 16 HTTP clients. In each workload level (i.e., number
of simultaneous HTTP clients), 100 repetitions of the same request were directed, by
the same thread of the benchmark software, to the WWW server. The recorded statis-
tics included:
• Connect Time (ms): the time required for establishing a connection to the server.
• Response Time (ms): the time required to complete the data transfer once the con-

nection has been established.
• Connect rate (connections/sec): the average sustained throughput of the server.
• Total duration (sec): total duration of the experiment.

The pinger program executed on a MS-Windows NT Server (version 4) hosted by
a Pentium II 300 MHz machine with 256 MB of RAM and a PCI Ethernet adapter.
Both machines (i.e., the pinger workstation as well as the web/database server) were
interconnected by a 10Mbps LAN and were isolated by any other computer to avoid
additional traffic that could endanger the reliability of the experiments. From the gath-
ered statistics, we plot, in Figure 5, the Average Response Time per request. The
scatter plot of Figure 5 is also enriched with polynomial fits.

Figure 5 shows that the CGI ↔ demon architecture (Scenario 2) performs system-
atically better than the monolithic CGI gateway (Scenario 1) and worst than the
NSAPI ↔ Demon configuration (Scenario 3), irrespective of the number of HTTP

551Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

clients (i.e., threads of the pinger program). The performance gap of the three solu-
tions increases proportionally to the number of clients. Figure 5 also suggests that for
relatively small/medium workload (i.e., 16 simultaneous users) the serialisation of
ClientRequests in Scenarios 2 and 3 (i.e., each ClientRequest incurs a queuing delay
due to the iterative nature of the single database demon) does not undermine the per-
formance of the technical option.

A number of additional tests were performed in order to cover even more specifi-
cations and gateway architectures. Such tests were performed in the Oracle RDBMS
(ver. 7.3.4) running on a Windows NT Server operating system (version 4). The web
server setup included Microsoft’s Internet Information Server (IIS) as well as Net-
scape’s Fasttrack Server (not operating simultaneously). Both the web servers and
RDBMS were hosted by a Pentium 133 HP machine with 64MB of RAM. In this
setup we employed, on the B interface (Figure 2), the CGI, NSAPI, ISAPI and Servlet
specifications, already discussed in previous paragraphs. On the D interface we made
use of Embedded SQL (both Static and Dynamic options), ODBC and JDBC. Apart
from conventional, monolithic solutions, we have also evaluated the enhanced, demon
- based architecture of Figure 2. All the access scenarios that were subject to evalua-
tion are shown in Figure 6.

&*,
(PEHGGHG
64/��6�

&*, 2'%&����

,6$3,
(PEHGGHG
64/��6�

6HUYOHW
$3,

-'%&����

16$3,
(PEHGGHG
64/��6�

:$,
(PEHGGHG
64/��6�

&*,
'DWDEDVH
GHPRQ

(PEHGGHG
64/��'�

6FHQDULR���

6FHQDULR���

6FHQDULR���

6FHQDULR���

6FHQDULR���

6FHQDULR���

6FHQDULR���

6HUYOHW
$3,

-'%&���� 6FHQDULR���

Figure 6: Database access scenarios (2)

The IPC mechanism that we adopted for the demon - based architecture (Scenario
7 - Figure 6) was Named Pipes. All modules were programmed in the C language
(MS-Visual C). Similarly to the previous set of experiments, only one database demon
(Dynamic SQL) existed in this setup. The flowchart of its internal operation is identi-
cal to the one provided in Figure 4. The database schema as well as the executed
query were also identical to the previous series of experiments.

In this second family of experiments we employed the same HTTP pinger appli-
cation with the previously discussed trials. It executed on the same workstation host-
ing the two web servers as well as the RDBMS. The pinger was configured to emulate
the traffic caused by a single HTTP user. Each experiment consisted of 10 repetitions
of the same request transmitted towards the web server over the TCP loop-back inter-
face. As in the previous case, Connect Time, Response Time, Connect Rate and Total
Duration were the statistics recorded. Apart from those statistics, the breakdown of the
execution time of each gateway instance was also logged. This was accomplished by
enriching the code of gateway instances with invocations of the C clock() function

552 Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

which returns the CPU time consumed by the calling process. Thus, we were able to
quantify the time needed for establishing a connection to the RDBMS (to be referred
to as Tcon) as well as the time needed to retrieve the query results (to be referred to as
Tret). Such logging of CPU times was performed in scenarios:
• 1 (CGI/Embedded SQL),
• 2 (CGI/ODBC),
• 4 (Servlet/JDBC – Type 2) 8,
• 7 (CGI ↔ Database Demon/Dynamic SQL), and,
• 8 (Servlet/JDBC – Type 4)

We restricted the time breakdown logging in those scenarios since they involve
different database access technologies. Figure 7 plots the Average Response Time for
each scenario.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1 2 3 4 5 6 7 8

Scenario

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
s)

Figure 7: Response Times for Scenarios 1-8

Figure 7 shows that the CGI ↔ Demon architecture accomplishes quite similar
times to those of the NSAPI and ISAPI gateways. In the multi-threaded gateway speci-
fications (i.e., NSAPI, ISAPI and WAI), connections towards the RDBMS are estab-
lished by the executing thread (hence, the associated cost is taken into account). Con-
nections by multi-threaded applications are only possible if mechanisms like Oracle’s
Runtime Contexts [35] or Informix’s dormant connections [20] are used. Other multi-
threaded configurations are also feasible: a database connection (and the associated
runtime context) could be pre-established (e.g., by the DLL or the WAI application)
and shared among the various threads, but such configurations necessitate the use of
synchronisation objects like mutexes. In such scenarios a better performance is

8 Gefion’s WAICoolRunner was used as a Servlet engine in this scenario.

553Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

achieved at the expense of the generality of the gateway instance (i.e., only the ini-
tially opened connection may be re-used).

In Scenario 2, ODBC Connection Pooling was performed by the ODBC Driver
Manager (ODBC 3.0) thus, reducing the time overhead associated with connection
establishments after the initial request. In Scenarios 4 and 8, the JDBC drivers shipped
with Oracle 7.3.4 were used. Specifically, we employed Type 2 and Type 4 drivers
(see Section 3.1) in Scenarios 4 and 8 respectively. In Figure 8 we show where the
factors Tcon and Tret range.

Figure 8: Time breakdown for Scenarios 1, 2, 4, 7 and 8

As shown in Figure 8, in the ODBC and JDBC/Type2 scenarios (i.e., Scenarios 2
and 4) a very important percentage of the execution time of the gateway is consumed
for the establishment of connections towards the DBMS. The Embedded SQL sce-
nario (i.e., Scenario 1) achieves the lowest Tcon. The highest Tret is incurred in Sce-
nario 7 where query execution is fully dynamic (see Section 3.1 for the Dynamic SQL
option of Embedded SQL). A marginally lower Tret is incurred in Scenario 8. Tcon is
not plotted in Figure 8 for Scenario 7, as this cost is only incurred once by the data-
base demon.

3.4 State Management Issues

In general, stateful web applications impose considerable additional overhead. Extra
information is carried across the network to help identify individual sessions and logi-
cally correlate user interactions. The IETF RFC for the Cookies mechanism [25]
specifies additional fields in the HTTP headers to accommodate state information.
Complicated applications, though, may require a large volume of Cookie information
to be transmitted to and from the browser. At the server’s side, additional processing -
handling is required in order to perform state management. In [16] a framework for
the adaptation of stateful applications to the stateless Web has been proposed. This

����

������

�������

�������

�������

�������

�������

� � � � �

6FHQDULR

7
LP
H
��
P
V
�

7FRQ

7UHW

554 Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

framework involved the placement of an extra software layer in the browser-database
chain. Such additional, server-side, tier would associate incoming Cookie values with
the appropriate threads of a multi-threaded database application, pass execution in-
formation, relay results and assign new Cookie values to the browser in order to pre-
serve a correct sequence of operations. An additional entity responsible for handling
state information (conveyed as extra information in URLs) is also required in the ar-
chitecture presented in [22]. Considerations concerning the overheads introduced by
state management techniques are also discussed in [37]. Another technique that facili-
tates state management is the already discussed “session affinity” scheme introduced
in the FastCGI platform.

The need for state management imposes enhancements to the protocol of the C
interface (not included in the lightweight ClientRequest - ServerResponse protocol).
The protocol changes largely depend on the requirements for state management intro-
duced by the application [16]. Additionally, layers/tiers placed between the legacy
application or the DBMS and the WWW server considerably increase response times
(Figure 9).

3URYLVLRQV�3URYLVLRQV�
IRU�VWDWHIRU�VWDWH

PDQDJHPHQWPDQDJHPHQW

,QFUHDVHG�&RPSOH[LW\,QFUHDVHG�&RPSOH[LW\

,QFUHDVHG�5HVSRQVH�7LPHV,QFUHDVHG�5HVSRQVH�7LPHV

3URJUDPPLQJ�)OH[LELOLW\3URJUDPPLQJ�)OH[LELOLW\

Figure 9: Implications of state management

3.5 Persistent Vs Non-persistent Connections to Databases

The database connection persistence problem is discussed in [37]. A conventional
scheme, with monolithic CGIs establishing connections directly towards the RDBMS,
could exhaust the available licenses due to the sporadic nature of WWW requests [3],
[11]. Additionally, as previously discussed, a substantial time overhead is to be in-
curred in this scheme. Maintaining a database connection per active session (e.g.,
through a server API or FastCGI) may not be a sound strategy as the maximum li-
censes limit may also be easily reached while extensive periods of client inactivity
cause a waste in resources. In these two scenarios, uncontrolled connection establish-
ment with the RDBMS is, surely, a problem. Persistent database connections may,
however, be beneficial for response times, as state management is simplified [16]. A
demon based architecture, on the other hand, restricts the number of connections si-
multaneously established towards the RDBMS (controlled rate of connection estab-
lishment). Multiple demons may be established to serve incoming requests in a more
efficient way (so as to reduce potential queuing delays caused by the availability of a
single dispatching entity). In such scenario a regulating entity will be needed to route
requests to idle demons (similarly to the load balancing techniques discussed in [2]).

555Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

3.6 Template - based Middleware

Software tools intended for building database-powered WWW sites usually follow a
template approach. A generic engine interprets pre-programmed templates and per-
forms database interactions as needed (run-time binding of re-usable code, eg. some
ODBC front-end interface, with a template). Templates practically are the combina-
tion of HTML with a proprietary tag set (dealing with query specification, transac-
tions, result set handling, flow control, etc.). An indicative example of a template-
based middleware is Allaire’s Cold Fusion with its Cold Fusion Markup Language
(CFML). Surely, the interpreter-like approach, dictated by the adoption of templates,
causes a slow-down in the dispatch of queries. On the other hand, such tools are ex-
tremely efficient programming tools that drastically reduced the time required to de-
velop database gateways in the old-fashioned way using techniques such as Embedded
SQL.

4 Conclusions - Future Work

Database connectivity is surely one of the most important issues in the constantly pro-
gressing area of WWW software. More and more organisations are using the WWW
platform for exposing their legacy data to the Internet. On the other hand, the amazing
growth of WWW content forces the adoption of technologies like RDBMS for the
systematic storage and retrieval of such information. Efficiency in the mechanisms
intended for bridging the WWW and RDBMS is a very crucial topic. Its importance
stems from the stateless character of the WWW computing paradigm that necessitates
a high frequency of short-lived connections towards the database systems. In this pa-
per, we have addressed a series of issues associated with the considered area of
WWW technology. We have evaluated different schemes for database gateways (in-
volving different gateway specifications and different types of database middleware).
Although aspects like generality, compliance to standards, state management and port-
ability are extremely important their pursuit may compromise the performance of the
database gateway. The accumulated experience from the use and development of da-
tabase gateways over the last 5-6 years suggests the use of architectures like the data-
base demon scheme, which try to meet all the above mentioned requirements to a cer-
tain extend but also exhibit performance close to server APIs.

In the near future it is our intention to assess the performance of the considered
architecture in configurations involving more than one database demons. An appropri-
ate load balancing software module is currently under design / development. We are
also planning to develop a variation of the presented architecture using the CORBA
middleware technology and taking provisions for state management.

556 Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

References

[1] “COLD FUSION User's Guide Ver. 1.5”, Allaire Corp. 1996.
[2] V. Cardellini, M. Colajanni, and P.S. Yu, “Dynamic Load Balancing on Web-

Server Systems,” IEEE Internet Computing, Vol. 3, No. 3, 1999.
[3] P. Barford, and M. Crovella, “Generating Representative Web Workloads for

Network and Server Performance Evaluation”, proceedings of ACM SIG-
METRICS, International Conference on Measurement and Modeling of Com-
puter Systems, July, 1998.

[4] P. Bernstein et al., “The Asilomar Report on Database Research”, ACM SIG-
MOD Record, Vol. 27, No. 4, Dec. 1998.

[5] T. Bray, “Measuring the Web”, Computer Networks and ISDN Systems, Vol.
28, No. 7-11, 1996.

[6] M. Brown, “FastCGI Specification”, Open Market Inc.,
http://fastcgi.idle.com/kit/doc/fcgi-spec.html, April 1996.

[7] M. Brown, “FastCGI: A High Performance Gateway Interface”, Position paper
for the workshop “Programming the Web - a search for APIs”, 5th International
WWW Conference, Paris, France, 1996.

[8] “Performance Benchmark Tests of Microsoft and NetScape Web Servers”,
Haynes & Company - Shiloh Consulting,
http://www.tedhaynes.com/haynes1/infoserv/haynes1.htm, February 1996.

[9] P.I. Chang, “Inside the Java Web Server: An Overview of Java Web Server
1.0, Java Servlets, and the JavaServer Architecture”,
http://java.sun.com/features/1997/aug/jws1.htm, 1997.

[10] K. Coar, and D. Robinson, “The WWW Common Gateway Interface - Version
1.2”, Internet Draft, February, 1998.

[11] M. Crovella, M. Taqqu, and A. Bestavros, “Heavy-Tailed Probability Distri-
butions in the World Wide Web”, in “A Practical Guide to Heavy Tails - Sta-
tistical Techniques and Applications”, R. Adler, R. Feldman, and M. Taqqu
(ed.), BIRKHAUSER, 1998.

[12] P. Everitt, “The ILU Requested: Object Services in HTTP Servers”, W3C In-
formational Draft, March, 1996.

[13] A. Gokhale and D. C. Schmidt, “Measuring the Performance of Communica-
tion Middleware on High Speed Networks”, proc. ACM SIGCOMM Confer-
ence, 1996.

[14] C. Karish, and M. Blakeley, “Performance Benchmark Test of the Netscape
FastTrack Beta 3 Web Server”, Mindcraft Inc.,
http://www.mindcraft.com/services/web/ns01-fasttrack-nt.html, 1996.

[15] S. Hadjiefthymiades, and D. Martakos, “Improving the Performance of CGI
compliant Database Gateways”, Computer Networks and ISDN Systems, Vol.
29, No. 8-13, 1997.

[16] S. Hadjiefthymiades, D. Martakos, and C.Petrou, “State Management in
WWW Database Applications”, proceedings of IEEE Compsac ’98, Vienna,
Aug. 1998.

557Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

[17] S. Hadjiefthymiades, D. Martakos, and I. Varouxis, “Bridging the gap between
CGI and server APIs in WWW database gateways”, Technical Report TR99-
0003, University of Athens, 1999.

[18] S. Hadjiefthymiades, S. Papayiannis, D. Martakos, and Ch. Metaxaki-
Kossionides, “Linking the WWW and Relational Databases through Server
APIs: a Distributed Approach”, proceedings of AACE WebNet ‘99, Hawaii,
October 1999.

[19] “Performance Benchmark Tests of Unix Web Servers using APIs and CGIs”,
Haynes & Company - Shiloh Consulting,
http://www.tedhaynes.com/haynes1/bench.html, November 1995.

[20] “Informix-ESQL/C Programmer’s Manual”, Informix Software Inc., 1996.
[21] IS 9075-3, “International Standard for Database Language SQL - Part 3: Call

Level Interface”, ISO/IEC 9075-3:1995.
[22] A. Iyengar, “Dynamic Argument Embedding: Preserving State on the World

Wide Web”, IEEE Internet Computing, March-April 1997.
[23] “JDBC Guide: Getting Started”, Sun Microsystems Inc., 1997.
[24] N. Yeager, and R. McGrath, “Web Server Technology - The Advanced Guide

for World Wide Web Information Provides”, Morgan Kaufmann Publishers,
1996.

[25] D.Kristol, and L.Montuli, “HTTP State Management Mechanism”, RFC 2109,
Network Working Group, 1997.

[26] J. Laurel, “dbWeb White Paper”, Aspect Software Engineering Inc., August,
1995.

[27] “Data Management: SQL Call-Level Interface (CLI)”, X/Open CAE Specifi-
cation, 1994.

[28] R. McGrath, “Performance of Several HTTP Demons on an HP 735 Worksta-
tion”,
http://www.ncsa.uiuc.edu/InformationServers/Performance/V1.4/report.html,
April, 1995.

[29] “Internet Server API (ISAPI) Extensions”, MSDN Library, MS-Visual Studio
’97, Microsoft Corporation, 1997.

[30] “ODBC 3.0 Programmer’s Reference”, Microsoft Corporation, 1997.
[31] M. Tracy, “Professional Visual C++ ISAPI Programming”, Wrox Press, 1996.
[32] “Writing Web Applications with WAI - Netscape Enterprise Server/FastTrack

Server”, Netscape Communications Co., 1997.
[33] “User's Guide, WebDBC Version 1.0 for Windows NT”, Nomad Development

Co., 1995.
[34] “CORBA: Architecture and Specification”, Object Management Group, 1997.
[35] “Programmer’s Guide to the Oracle Pro*C/C++ Precompiler”, Oracle Co.,

February 1996.
[36] R. Orfali and D. Harkey, “Client/Server Programming with JAVA and

CORBA”, Wiley, 1998.
[37] P. Ju, and Pencom Web Works, “Databases on the Web - Designing and Pro-

gramming for Network Access”, M&T Books, 1997.
[38] W.R. Stevens, “UNIX Network Programming”, Prentice Hall, 1990.

558 Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

[39] M. Leventhal, D. Lewis, and M. Fuchs, “Designing XML Internet Applica-
tions”, Prentice Hall, 1998.

[40] C. Petrou, S. Hadjiefthymiades, and D. Martakos, “An XML-based, 3-tier
scheme for integrating heterogeneous information sources to the WWW,” pro-
ceedings of the Internet Data Management workshop (IDM '99), DEXA'99, It-
aly, 1999.

[41] D. Box, G. Kakivaya, A. Layman, S. Thatte, and D. Winer, “SOAP: Simple
Object Access Protocol”, Internet Draft, <draft-box-http-soap-01.txt>, Novem-
ber 1999.

[42] V. Turau, “The DB2XML user manual (Version 1.1)”, Technical Report TR-
01-99, FH Wiesbaden, May 1999.

[43] M. Fisher, “The JDBC 2.0 Optional Package”,
http://java.sun.com/products/jdbc/articles/package2.html, January 2000.

559Hadjiefthymiades S., Varouxis I., Martakos D.: Performance of RDBMS-WWW Interfaces ...

