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1 Introduction

Standard algebraic speci�cation methods are a well{understood and exten-
sively investigated formal technique for modelling and reasoning about comput-
ing systems (see for example [Ehrig and Mahr, 1985] and [Loeckx et al, 1996]).
Second{order algebraic methods extend the standard techniques by providing ex-
plicit support for second{order functions. Second{order algebras provide a very
natural way of modelling computing systems based on streams (see [Meinke and
Steggles, 1994]) and turn out to be substantially more expressive than their �rst{
order counter parts (see [Kosiuczenko and Meinke, 1995] and [Meinke, 1997]).
Second{order algebraic speci�cations bene�t from retaining a simple initial al-
gebra semantics and a simple proof theory based on equational reasoning which
is straightforward to automate using rewriting techniques (see [Meinke, 1996a]).

The theory of second{order algebra and their generalisation to higher{order
algebras has been developed in a number of papers including: [Maibaum and
Lucena, 1980], [Poign�e, 1986], [Broy, 1987], [M�oller, 1987], and [Qian, 1993]. In
this paper we use the �nite type theory for second{order algebra developed in
[Meinke, 1992]. Despite increasing interest in second{order algebraic methods
there is still relatively few case studies to be found in the literature: see [Meinke
and Steggles, 1994], [Meinke and Steggles, 1996] and [Steggles, 1995] where a
range of dataow and systolic algorithms are veri�ed correct.

In this paper we consider applying second{order algebraic methods to the
formal design of real{time systems. We model the behaviour of entities in time
using timed streams, that is elements of the function space [N ! A], where N
represents discrete time (natural numbers) and A is the set of possible values or
states of the entity in question. Thus, for any a 2 [N! A], and any t 2 N, we
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have that eval(a; t) represents the value of entity a at time t (where eval : [N!
A]�N! A is the standard evaluation operation). We can view components of
a real{time system as simply stream transformers (i.e. second{order functions)
of the form comp : [N! A]n ! [N! A] which take n timed input streams and
produce a timed stream of outputs. Thus a real{time system can be naturally
modelled as a second{order algebra

(N; A; [N! A]; eval : [N! A]! A; comp : [N! A]n ! [N! A]):

We present a detailed case study of the speci�cation and veri�cation of a
benchmark real{time system. The so called railroad crossing controller problem
has been widely considered: see for example [Heitmeyer et al, 1993] and [Heit-
meyer and Lynch, 1994]. Following a simple re�nement methodology we model
the safety and utility requirements of the system abstractly making use of a
second{order equational encoding of �rst{order universal quanti�cation. In par-
ticular, we identify the environment information for the system which is needed
when verifying the systems correctness. We then specify a simple implemen-
tation of the crossing controller and verify its correctness against the abstract
requirement speci�cation using second{order equational reasoning.

The structure of this paper is as follows. In Section 2 we introduce the ba-
sic de�nitions and theoretical results of second{order algebra. In Section 3 we
consider a detailed case study of the benchmark railroad crossing controller.
This case study demonstrates our proposed approach to modelling and reason-
ing about real{time systems and in particular, illustrates the expressive power
of second{order equations. Finally in Section 4 we conclude with some general
remarks about the ideas introduced in this paper.

2 Second{Order Algebraic Methods

In this section we introduce the notion of a second{order signature, algebra
and speci�cation, and then consider what it means to correctly specify a second{
order algebra. For a detailed introduction to second{order algebraic methods we
refer the interested reader to [Meinke, 1992] and [Meinke, 1996a]; for examples
of their use see [Meinke and Steggles, 1994], [Meinke and Steggles, 1996] and
[Steggles, 1995]. In the sequel we assume that the reader is familiar with basic
universal algebraic constructions and results (see [Meinke and Tucker, 1993] and
[Loeckx et al, 1996]).

The theory of second{order universal algebra can be developed within the
framework of many{sorted �rst{order universal algebra.

2.1 De�nition Let B be any non{empty set, the members of which will be
termed basic types, the set B being termed a type basis. A type structure S over
a type basis B is a set

S � B [ f (� ! �) j �; � 2 B g;

which is closed under subtypes, i.e. for any type (� ! �) 2 S we have both � 2 S
and � 2 S. Each element (� ! �) 2 S is termed a second-order or function type.
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Given a type structure S, an S{typed signature � is an S{sorted signature
such that for each function type (� ! �) 2 S it includes a distinguished evalua-
tion operation symbol eval(�!�) : (� ! �) � ! �: 2

Note for brevity we often assume that the evaluation function symbol exists
for each function type in a second{order signature without explicitly de�ning
them. Next we consider the intended interpretations of a second{order signature
�.

2.2 De�nition Let A be an S{sorted � algebra. We say that A is an S{
typed � algebra if, and only if, for each function type (� ! �) 2 S we have (i)
A(�!�) � [A� ! A� ], i.e. A(�!�) is a subset of the set of all (total) functions

from A� to A� ; and (ii) eval
(�!�)
A :A(�!�) � A� ! A� is the evaluation opera-

tion on the function space A(�!�) de�ned by eval
(�!�)
A (a; n) = a(n); for each

a 2 A(�!�) and n 2 A� . 2

For brevity given a second{order algebraA we let a(n) denote eval
(�!�)
A (a; n),

for each function type (� ! �) 2 S, a 2 A(�!�) and n 2 A� .
Second-order algebras are substantially more expressive than their �rst{order

counter parts and have been shown to be adequate for modelling any algebra of
arithmetic complexity, i.e. up to �1

1 (see [Kosiuczenko and Meinke, 1995] and
[Meinke, 1995]). This is due to the fact that �rst{order quanti�cation can be
modelled using second{order equations (see [Kosiuczenko and Meinke, 1995])
and we demonstrate this in the case study that follows.

The above de�nition can be easily extended to allow algebras of arbitrary
order, so called higher{order algebras (see [Meinke, 1992]). However, in this paper
we restrict our attention to second{order algebras since they provide a natural
model of stream algebras. It also turns out that increasing the order of algebras
above second{order does not increase their expressive power (see [Meinke, 1997]).

The structure of second{order algebras can be characterised by a set of �rst{
order extensionality sentences Ext = Ext� over �:

8x8y
�
8z
�
eval(�!�)(x; z) = eval(�!�)(y; z)

�
) x = y

�
;

for each (� ! �) 2 S, where x; y 2 X(�!�), z 2 X� . A � algebra A is extensional
if, and only if, A j= Ext . We let AlgExt(�) denote the class of all extensional �
algebras. Recall that a � algebra A is minimal if, and only if, A has no proper
subalgebra. We let MinExt(�) denote the class of all minimal, extensional �
algebras. Let S2 be a type structure such that S2 � S, and let �2 be an S2{
typed signature such that �2 � �. Given an S-typed � algebra A we say A is
�2 minimal if, and only if, Aj�2 (the �2 reduct of A) is minimal.

We are interested in specifying classes of second{order algebras by means of
second{order (conditional) equations, i.e. many-sorted �rst{order (conditional)
equations over a second{order signature �. We let Eqn(�;X) denote the set
of all second{order equations over � and X . Given any � algebra A, we have
the usual validity relation j= on an (conditional) equation or set of (conditional)
equations. Let E � Eqn(�;X) be any set of (second{order) equations over �
and X , referred to as a (second{order) equational theory. By a basic result of
second{order universal algebra (see [Meinke, 1992]), the extensional equational
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class MinExt(�; E) of all minimal, extensional � algebras which are models of
E, admits an initial algebra, denoted IExt(�; E). We refer to IExt(�; E) as the
second{order initial model.

Second{order initial models can be concretely constructed from syntax using
a second{order equational calculus. This calculus extends the many{sorted �rst{
order equational calculus with additional inference rules for second{order types.

2.3 De�nition Second{order equational logic extends the reexivity, symme-
try, transitivity and substitution rules of �rst{order equational logic (see [Meinke
and Tucker, 1993]) with the following additional inference rules:

(1) Evaluation rule. For each function type (� ! �) 2 S, any terms t0; t1 2
T (�;X)(�!�) and any variable symbol x 2 X� not occurring in t0 or t1,

eval(�!�)(t0; x) = eval(�!�)(t1; x)

t0 = t1:

(2) !{evaluation rule. For each type (� ! �) 2 S and any t0; t1 2 T (�;X)(�!�),

heval(�!�)(t0; t) = eval(�!�)(t1; t) j t 2 T (�)�i

t0 = t1:

2

The above evaluation rules encode the extensionality axioms on function
types. We let E !̀ e denote the inference relation between equational theories
E and equations e with respect to (in�nitary) second{order equational logic.
We note that �nitary second{order equational logic in which only the (�nitary)
evaluation rule (1) above is allowed can be shown to be complete with respect
to extensional models (see [Meinke, 1992]). The in�nitary !{evaluation rule is
needed to construct the second{order initial model as follows. De�ne the exten-
sional congruence �E;! on T (�) by t �E;!

� t0 , E !̀ t = t0 for type � 2 S and
any t; t0 2 T (�)� . We let [t] denote the congruence class of any term t 2 T (�)�
with respect to �E;!. Then we have the following result (see [Meinke, 1992]):

2.4 Theorem Let E be an equational theory over an S{typed signature �.
Then we have T (�)= �E;!�= IExt(�; E): Thus T (�)= �E;! is initial in the class
MinExt(�; E). 2

A second{order algebraic speci�cation Spec = (�(Spec); E(Spec)) is simply a
pair consisting of a second{order signature �(Spec) and an equational (or con-
ditional equational) theory E(Spec). The second{order initial algebra semantics
of Spec is given by the class Iso(IExt (Spec)) of second{order algebras which are
isomorphic to the second{order initial model. Let A be an extensional �(Spec)
algebra. We say that Spec correctly speci�es A under second{order initial alge-
bra semantics if, and only if, A 2 Iso(IExt (Spec)). By Theorem 2.4, to establish
that a second{order equational speci�cation Spec is correct under second{order
initial algebra semantics for an extensional � algebra A, it su�ces to show that
T (�(Spec))= �E(Spec); !�= A.

It should be clear from the de�nition introduced so far that algebras of
streams are simply second{order algebras. In order to specify a full stream space,
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such as [N ! D], for some data set D, we normally add a stream constant
â : (nat ! data) for each actual stream a : N ! D. This simple approach
based on the method of diagrams can be avoided by using topological methods
[Meinke, 1996b] or parameterised second{order speci�cations [Steggles, 1997].

3 Case Study: Railroad Crossing Controller

In this section we demonstrate the use of second{order algebraic methods
for specifying and verifying real{time systems by considering a case study of the
benchmark railroad crossing controller. The railroad crossing problem is a simple
real-time problem concerned with the control of a gate at a railroad crossing.
The problem was proposed as a benchmark real-time example in [Heitmeyer et
al, 1993]; for a detailed explanation see [Heitmeyer and Lynch, 1994].

Simply stated the problem is to design a control system to operate a gate
at a railroad crossing, see �gure 1. The crossing consists of three components:

Gate

Approaching Crossing At Crossing

Track

Figure 1: The Railroad Crossing.

Track We abstractly model the track as being in one of three possible states:
apprch when a train is approaching the crossing; atCross when the train is at
the crossing; and other when the track approaching and at the crossing is empty.
Trains are assumed to have a maximum speed and this allows us to ensure that
it takes a minimum amount of time �app for a train to reach the crossing once it
has been detected to be approaching.

Gate The gate is a simple barrier that prevents vehicles crossing the track when
a train is at (or very near) the crossing. The gate takes commands (either open
or close) and then (after a one unit time delay) changes its state accordingly.
We assume we know the maximum time to open �op and close �cl the gate.

Controller The controllers job is to process the track information and send
signals to control the operation of the gate. It has to ensure the following two
important properties:
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(1) Safety Property: the gate is closed whenever a train is at the crossing;
(2) Utility Property: the gate is open as much as possible.

3.1 Requirement Speci�cation Phase

In this phase we construct a second{order equational speci�cation to ab-
stractly specify the safety and utility requirements of the railroad crossing con-
troller. We begin by constructing a statement signature which declares the com-
ponents we are interested in designing (i.e. in this case the gate controller).

3.1.1 De�nition (Statement Signature) Let B = fTime;Com ;TrStateg and
let S(Stat) � H(B) be the second-order type structure de�ned by

S(Stat) = B [ f(Time ! TrState); (Time ! Com)g:

Then we de�ne the statement speci�cation Stat = (�(Stat); ;); where �(Stat)
is an S(Stat){typed signature de�ned to contain the single function symbol:

control : (Time ! TrState)! (Time ! Com): 2

The symbol control represents the controller which takes a timed stream rep-
resenting the state of the track and returns a stream of gate commands. Next
we consider the environment in which the controller will operate.

3.1.2 De�nition Let B = fTime ;Bool ;Com ;TrState;GStateg be a type basis
and let S(Env) � H(B) be the type structure de�ned by

S(Env) = B [ S(Stat) [ f(Time ! Bool ); (Time ! GState)g:

De�ne the S(Env){typed signature �(Env) to contain the following: �rst we
have symbols needed for modelling discrete time and the Booleans:

0 : Time ; tk : Time ! Time ; true; false : Bool ;

or ; and : Bool Bool ! Bool ; less : Time Time ! Bool ;

then we have stream constants to represent the function spaces: for each function
type (� ! �) 2 S(Env), each a 2 EN(�!�) (see De�nition 3.1.3 below), we have
â : (� ! �); next we have symbols to represent the track and gate:

MAXop;MAXcl ;MINapp : Time ; open ; close : Com ;

other ; apprch ; atCross : TrState; TRUE : (Time ! Bool );

tail : (Time ! Bool )! (Time ! Bool ); eq : TrState TrState ! Bool ;

interval : Time Time TrState (Time ! TrState)! Bool ;

caseV : TrState Time (Time ! TrState)! Bool ;

valid : (Time ! TrState)! (Time ! Bool); fold : (Time ! Bool )! Bool ;

normal : (Time ! TrState)! Bool ; down ; up : Time ! GState;

caseG : Com GState ! GState;

gate : (Time ! Com)! (Time ! GState): 2
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We now introduce a concrete model of the signature �(Env) which repre-
sents out intuitive interpretation of the environment signature.

3.1.3 De�nition Let EN be the S(Env){typed �(Env) algebra de�ned as
follows. De�ne the carrier sets

ENTime =N; ENBool = B; ENCom = fop; clg;

ENTrState = fA;C;Og; ENGState = fu(i) j i 2 Ng [ fd(i) j i 2 Ng;

and for each function type (Time ! �) 2 S(Env) de�ne EN(Time!�) = [N !
EN� ]: We now have to de�ne how each function symbol is interpreted in EN . In
fact this is straightforward to do and for brevity we present only the de�nition
of the main gate function symbol gateEN : [N ! ENCom ] ! [N ! ENGState ]
on any command stream cs 2 [N! ENCom ] and t 2 N by

gateEN (cs)(t) =

�
u(0); if t = 0;
caseGEN (cs(t� 1); gateEN (cs)(t� 1)); otherwise.

2

In the sequel it is useful to have a term representation for the data elements
in EN . For this reason we de�ne the following mapping.

3.1.4 De�nition De�ne the term mapping : : EN ! T (�(Env)) by

n = tkn(0); b =
n
true; if b = tt ;
false ; otherwise,

c =
n
open ; if c = op;
close ; otherwise,

tr =

(
other ; if tr = O;
apprch ; if tr = A;
atCross ; otherwise,

g =

�
up(i); if g = u(i);
down(i); if g = d(i);

a = â;

for n 2 N, b 2 B, c 2 ENCom , tr 2 ENTrState , and g 2 ENGState , for each
(� ! �) 2 S(Env) and a 2 EN(�!�). 2

We now specify the environment by constructing a second{order equational
speci�cation which we will prove correctly speci�es our standard model EN .

3.1.5 De�nition (Environment Speci�cation) De�ne the second{order equa-
tional speci�cation Env by

Env = (�(Env); E(Env ));

where �(Env) is the S(Env){typed signature de�ned in De�nition 3.1.2 and
E(Env ) is the second{order equational theory de�ned over �(Env) and an
S(Env){indexed family X of sets of variables as follows.

MAXop = tk �op(0); MAXcl = tk �cl(0); MINapp = tk�app(0); (1a; b; c)

TRUE (t) = true; â(n) = a(n); (2; 3)
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for each (� ! �) 2 S(Env), a 2 EN(�!�) and n 2 EN�;

interval(t; 0; s; tr) = true; (4a)

interval (t; tk(t0); s; tr) = (interval(tk(t); t0; s; tr) and eq(s; tr(t))); (4b)

caseV (other ; t; tr) =

(eq(tr(tk (t)); other ) or interval(tk(t);MINapp ; apprch ; tr)) (5a)

caseV (apprch ; t; tr) = (eq(tr(tk (t)); apprch) or eq(tr(tk (t)); atCross)) (5b)

caseV (atCross ; t; tr) = (eq(tr(tk (t)); atCross) or eq(tr(tk (t)); other )) (5c)

valid (tr)(0) = eq(tr(0); other ); valid (tr)(tk (t)) = caseV (tr(t); t; tr); (6a; b)

tail(bst)(t) = bst(tk(t)); normal (tr) = fold (valid (tr)); (7; 8)

fold (bst) = (bst(0) and fold (tail (bst))); fold (TRUE ) = true; (9a; b)

caseG(open ; up(0)) = up(0); caseG(open ; down(t)) = up(MAXop); (10a; b)

caseG(open ; up(tk(t))) = up(t); caseG(close ; down(0)) = down(0); (10c; d)

caseG(close ; down(tk(t))) = down(t); (10e)

caseG(close ; up(t)) = down(MAXcl); (10f)

gate(c)(0) = up(0); gate(c)(tk(t)) = caseG(c(t); gate(c)(t)); (11a; b)

less(MAXop ;MINapp) = true: (12)

where t; t0 2 XTime , b; b1; b2 2 XBool , s 2 XTrState , tr 2 X(Time!TrState),
x 2 XGState , bst 2 X(Time!Bool), and c 2 X(Time!Com). Note for brevity we
have omitted the standard equations for or, and, less and the equality function
eq . 2

The function valid is used to axiomatise the correct behaviour of a rail track.
Note that normal(tr) is used to model a universally quanti�ed sentence: 8t :
Time : valid (tr)(t) = true. This is an example of the power of second{order
equations; using the auxiliary operation fold we have been able to axiomatise
�rst{order universal quanti�cation using second{order equations. For a detailed
discussion of this point see [Kosuiczenko and Meinke, 1995].

We now need to ensure that the speci�cation Env is consistent. We do this
by proving that EN is a model of the speci�cation Env .

3.1.6 Proposition (Consistent) EN j= E(Env). 2

We now show that Env correctly speci�es the environment information as
de�ned by EN .

3.1.7 Theorem (Correctness) The second{order equational speci�cation Env
correctly speci�es the standard model EN under second{order initial algebra
semantics, i.e. EN �= IExt (Env):

Proof. Since we can easily show that IExt (Env ) and EN are both minimal
extensional �(Env), E(Env) algebras and since IExt (Env) is initial in the class
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of all minimal �(Env), E(Env ) algebras it su�ces to show there exists an ho-
momorphism � : EN ! IExt (Env ). De�ne the family of mappings

� = h � : EN� ! IExt (Env)� j � 2 S(Env) i;

by �� (a) = [a]; for each � 2 S(Env) and each a 2 EN� . Then it is straightfor-
ward to show that � is a homomorphism. As an example consider the function
symbol gate : (Time ! Com) ! (Time ! GState). We have to show that
�(gateEN (a)) = gateIExt (Env)(�(a)); for any a 2 Env (Time!Com). Since it can be
easily shown that each term of type Time is provably equivalent to a term of
form tk i(0), for some i 2 N, it su�ces to prove that for any n 2 N

�(gateEN (a))([tk
n(0)]) = gateIExt(Env)(�(a))([tk

n(0)]); (I)

and then apply the in�nitary !{evaluation rule. It is straightforward to show
that (I) holds using induction on n 2 N. 2

We are now in a position to de�ne the abstract requirement speci�cation for
the gate controller using the statement and environment speci�cations.

3.1.8 De�nition (Requirement Speci�cation) De�ne the requirement speci-
�cation

Req = (�(Req); E(Req));

as follows. Let S(Req) = S(Env) and de�ne �(Req) = �(Stat) [ �(Env). Let
the second{order equational theory E(Req) consist of the equations in E(Env )
(see De�nition 3.1.5 above) and the following second{order conditional equa-
tions: �rst a second{order conditional equation representing the safety property:

(normal(tr) and eq(tr(t); atCross)) = true =)

gate(control(tr))(t) = down(0); (13)

�nally a second{order conditional equation representing the utility property:

(normal (tr) and interval (t; tk(MAXop); other ; tr)) = true =)

gate(control(tr))(tk �op+1(t)) = up(0); (14)

where t 2 XTime and tr 2 X(Time!TrState). 2

3.2 Design Speci�cation Phase

We now consider a simple design for the railroad gate controller and construct
a second{order equational speci�cation Des (extending the statement specifca-
tion) which speci�es this design.

3.2.1 De�nition Let S(Des) be the type structure de�ned in De�nition 3.1.1,
i.e. S(Des) = S(Stat). De�ne the S(Des){typed signature �(Des) to extend the
signature �(Stat) with the following constant and function symbols

0 : Time ; tk : Time ! Time ; open; close : Com ;
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other ; apprch ; atCross : TrState; caseC : TrState ! Com ;

for each function type (� ! �) 2 S(Des), each a 2 DC (�!�) (see De�nition
3.2.2 below), we have the stream constant â : (� ! �): 2

Next we de�ne a second{order model which represents our standard inter-
pretation of the above design components.

3.2.2 De�nition Let DC be the S(Stat){typed �(Des) algebra de�ned as
follows. De�ne the carrier sets

DCTime = N; DCCom = fop; clg; DCTrState = fA;C;Og;

DC (Time!TrState) = [N! DCTrState ]; DC (Time!Com) = [N! DCCom ]:

De�ne the constants and functions of type Time and (� ! �) 2 S(Des) in
the standard way and de�ne

caseCDC (s) =
n
op; if s = O;
cl; otherwise;

controlDC (tr)(n) = caseCDC (tr(n)):

for any s 2 DCTrState , tr 2 DC (Time!TrState) and n 2 N. 2

We now formulate a second{order equational speci�cation which we will show
correctly speci�es the standard model DC of the crossing controller.

3.2.3 De�nition (Design Speci�cation) De�ne the second{order equational
speci�cation Des by

Des = (�(Des); E(Des));

where �(Des) is de�ned in De�nition 3.2.1 and E(Des) is the second{order
equational theory de�ned over �(Des) and X as follows.

For each (� ! �) 2 S(Des), each a 2 DC (�!�) and each n 2 DC � , we have

â(n) = a(n); caseC (other ) = open; caseC (apprch) = close ; (1; 2a; b)

caseC (atCross) = close ; control(tr)(t) = caseC (tr(t)); (2c; 3)

where t 2 XTime and tr 2 X(Time!TrState). 2

Again, to ensure that the equational speci�cation Des is consistent we need
to show that DC is a model of the speci�cation Des .

3.2.4 Proposition (Consistent) DC j= E(Des). 2

We now show that Des correctly speci�es the design model DC as follows.

3.2.5 Theorem (Correctness) DC �= IExt (Des):

Proof. Follows along similar lines to the proof of Theorem 3.1.7. 2
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3.3 Veri�cation Phase

In the preceeding sections we have formulated an abstract requirement spec-
i�cation for the railroad gate controller and its environment, and a design spec-
i�cation for a proposed railroad crossing controller. It remains to verify that the
design speci�cation is a correct functional re�nement of the requirement spec-
i�cation. We begin by constructing the veri�cation speci�cation which extends
the design speci�cation with the environment information.

3.3.1 De�nition Let Ver be the second{order equational speci�cation

Ver = (�(Ver); E(Ver));

where �(Ver) = �(Env) [�(Des) and E(Ver) = E(Env) [ E(Des). 2

We need to show that this new veri�cation speci�cation satis�es the so called
consistency, preservation and re�nement conditions (see [Steggles and Wirsing,
1995]).

3.3.2 Proposition (Consistent) E(Ver) is a consistent equational theory.

Proof.We construct a non{unit S(Ver){typed �(Ver) algebra A by combining
the standard model EN (De�nition 3.1.3) and DC (De�nition 3.2.2). This is
possible since we can see that EN j� = DC j� , for � = �(Env) \�(Des). It is
then straightforward to show A j= E(Ver). 2

In order to be able to reason about the veri�cation speci�cation it is useful
to identify its constructors. Let S(Cons) = S(Ver) and A be de�ned as in
Proposition 3.3.2. De�ne the S(Cons){sorted signature �(Cons) by

0 : Time ; tk : Time ! Time ; true; false : Bool ; open ; close : Com ;

other ; apprch ; atCross : TrState; down ; up : Time ! GState; â : (� ! �);

for each (� ! �) 2 S(Ver), a 2 A(�!�).
We can show that the initial algebra semantics of the veri�cation speci�ca-

tion is generated by the above constructor signature.

3.3.3 Proposition IExt (Ver) is �(Cons) minimal.

Proof. Straightforward using induction on the construction of �(Ver) terms. 2

It turns out that this is a very useful fact which is used extensively in the
veri�cation results that follow. Next we show that the semantics of the veri�ca-
tion speci�cation preserves the semantics of the design speci�cation.

3.3.4 Proposition (Preservation) IExt(Des) �= IExt (Ver)j�(Des).

Proof. By Proposition 3.3.3 it follows that IExt (Ver)j�(Des) 2 MinExt (Des).
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Since IExt(Des) is initial in the class MinExt(Des) it su�ces to show there ex-
ists a homomorphism � : IExt (Ver)j�(Des) ! IExt (Des): De�ne the family of
mappings

� = h �� : (IExt (Ver)j�(Des))� ! IExt (Des)� j � 2 S(Des) i;

by �� ([t]) = [t], for each � 2 S(Des) and each t 2 T (�(Cons))� . Clearly, �
satis�es the homomorphism condition. It remains to show that � is well{de�ned,
i.e. for any � 2 S(Ver) and any terms t; t0 2 T (�(Cons))� ,

E(Ver) !̀ t = t0 =) E(Des) !̀ t = t0: (�)

Since we can show that IExt (Des) is �(Cons) minimal and since both speci�ca-
tions are consistent it is straightforward to show that (�) must hold. 2

Finally, we need to show that Ver is a correct functional re�nement of Req .

3.3.5 Theorem (Re�nement) IExt (Ver) j= E(Req)�E(Env ).

Proof. We have to show that the safety (axiom 3.1.8.(13)) and utility (axiom
3.1.8.(14)) axioms hold in IExt (Ver).

(1) Safety. It su�ces by �(Cons){minimality (Proposition 3.3.3) to prove that
for each stream constant a 2 [N! fO;A;Cg] and each n 2 N we have

E(Ver) !̀ (normal (â) and eq(â(n); atCross)) = true =)

gate(control(â))(n) = down(0):

By assumption, �(Cons){minimality and equational reasoning we can show
using a proof by contradiction that there must exist a k 2 N, 0 < k < n
such that E(Ver) !̀ eq(â(n� k); apprch) = true; and for i = 0; : : : ; k � 1,
E(Ver) !̀ eq(â(n� i); atCross) = true: We can now prove that the result holds
using induction on k 2 N, k > 0.

(2) Utility. We have to prove that for each a 2 [N! fO;A;Cg], n 2 N,

E(Ver) !̀ (normal(â) and interval(n; tk(MAXop); other ; â)) = true =)

gate(control(tr))(n + �op + 1) = up(0):

By �(Cons){minimality, assumption and equations for interval we have that
E(Ver) !̀ â(n+ i) = other ; for i = 0; : : : ; �op. We can then prove by induction
on n 2 N that the result holds. 2
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4 Conclusions

In this paper we have considered using second{order algebraic methods for
formally developing correct real{time systems. In particular, we have presented a
detailed case study of applying second{order algebraic methods to the speci�ca-
tion and veri�cation of the benchmark railroad crossing controller problem. This
case study illustrates that second{order techniques provide a natural framework
for modelling and reasoning about real{time systems based on timed streams. It
also illustrated the substantial expressive power of second{order equations and
we saw an example of how we can capture the notion of �rst{order quanti�cation
within a second{order equational environment.

In future work we intend to consider automating veri�cation proofs in second{
order equational logic and aim to construct a range of new tools based on ad-
vanced term rewriting systems such as Elan (see [Borovansk�y et al, 1998]).

We would like to acknowledge the helpful advice and comments provided by
Dr K. Meinke during the preparation of this paper. We are also very grateful for
the �nancial assistance provided by the British Council and DAAD.
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