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Abstract: This paper is an essay in axiomatic foundations for discrete geometry in-
tended, in principle, to be suitable for digital image processing and (more speculatively)
for spatial reasoning and description as in AI and GIS. Only the geometry of convex-
ity and linearity is treated here. A digital image is considered as a �nite collection
of regions; regions are primitive entities (they are not sets of points). The main re-
sult (Theorem 20) shows that �nite spaces are su�cient. The theory draws on both
\region-based topology" (also known as mereotopology) and abstract convexity theory.
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1 Introduction

Digital topology, as a study of the connectivity properties of digital images and
the spaces in which they lie, is by now a fairly well-developed discipline. The
approach is either graph-theoretic, as in [14], or else topological in the strict
sense, as in [8]. (See also [9] and references given there.)

In our own work in this area, the emphasis has been on an amalgamation
of digital topology with ordinary topology, achieved by working with a single
category in which all the spaces (including the graphs) exist as objects. In this
category (TopGr, for topological graphs) the usual \continuous" spaces arise as
(inverse) limits of the digital spaces [15, 16, 17].

In the present paper we take up the task of extending this approach to
geometry proper. We are not aware of any previous axiomatic theory of digital
geometry, although it has occasionally been proposed that such a theory should
be developed (for example by Zeeman [18]). Most often what is studied is some
version of the \grid" model: in e�ect, Zn taken with some graph (adjacency)
structure, and with n restricted to be 2 or 3.

What we shall undertake here is an axiomatic approach to the geometry of
convexity and linearity: no attempt will be made to deal with parallels and con-
gruence (for the time being). Abstract convexity theory, especially as developed
by W. Prenowitz [12], is our exemplar; the problem is to adapt this material
to \discrete" geometry. (See also Coppel [4] for a recent treatment of abstract
convexity theory.) Both Prenowitz and Coppel provide non-trivial �nite models
of parts of the theory. These, however, like the �nite geometries of combinatorial
theory [5], cannot be said to resemble the spaces traditionally studied (Euclidean
or non-Euclidean), nor to be capable of being viewed as discrete or approximate
versions of these.

In order to obtain discrete spaces that are suitable for digital image process-
ing, we shall adopt the region-based approach of (what is known as) mereotopol-
ogy [2, 6, 13, 7]. Pixels (or voxels) and other simple convex regions are not
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considered as sets of points, but as primitive entities which are subject to a re-
lation of partial order (\part of") and a symmetric binary relation expressing
closeness of two regions (the \connection predicate"). Our theory may thus be
considered as a sort of fusion of mereotopology with abstract convexity theory.

The primitives we adopt are not too far removed from those which have been
adopted in some previous work on spatial reasoning ([3] and references given
there). The main di�erences between what we are attempting here and what was
done in those works are as follows. First, we aim for a mathematically adequate
account of convexity. A simple criterion for this, often adopted in studies of
abstract convexity, is that it permits the derivation of (abstract versions of) three
famous theorems in convexity, namely those of Radon, Helly and Caratheodory;
see for example [1]. The axioms concerning convexity have to be chosen so as to
permit this. A second di�erence is that we are willing to admit (some) points as
regions. We are mainly interested in discrete geometries, and it does not greatly
matter whether the �nitely many points which can be found in a bounded region
of a discrete space are treated as primitive or as (�nite) �lters of regions. (For
the general theory, it would be desirable to resolve this question, however.) A
further important technical di�erence from many region-based theories [13, 10]
is that we do not require our structures to be Boolean algebras; in particular,
there is no operation corresponding to the intersection of regions. Despite these
di�erences, we think it possible that some development of the theory presented
here will prove to be useful for studies in spatial reasoning.

Note: As a reminder, Radon's Theorem for <n says that any set of n+2 (or
more) points can be partitioned into two disjoint subsets whose convex closures
intersect. It is enough to look at the case n = 2 to grasp the meaning of the
theorem; while the case n = 1 is already of interest, as we shall see later. The
Helly and Carath�eodory theorems are closely related to the Radon theorem, but
they will not be considered explicitly here.

2 Axiomatics

Our basic structure is a triple (Q,1,�), where Q is a set (of regions), 1 is
a symmetric binary relation (connection), and � is a commutative associative
operation (product), satisfying the following Axioms:

A) 1 is \almost re
exive":

9X:A 1 X ) A 1 A

The e�ect of this will be that a non-null region is connected with itself.
B) (Fusion) For any collection B � Q, there exists a unique region

W
B such

that
X 1

_
B , 9B 2 B:X 1 B:

C) (Distr.) � distributes over
W
.

D) (Extension) For any A;B 2 Q, there exists a region B=A such that

X 1 B=A , AX 1 B

Notice that occurrences of the operator � are generally omitted.
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E) (A 1 C & B 1 D) _ B=A 1 D=C ) AD 1 BC
E�) (A stronger form of Axiom E)

A 1 C & B 1 D ) B=A 1 D=C ) AD 1 BC

Some immediate consequences of these axioms:

Proposition1. The relation �, de�ned on Q by

A � B *) 8X:A 1 X ) B 1 X

is a partial order, with respect to which
W

is the sup operation.

Proof. Trivially, � is a pre-order. It is a partial order since, if 8X:A 1 X ,
B 1 X , then, by uniqueness of fusion, A = B =

W
fAg. It is then a trivial

veri�cation that fusion is the join for this partial order.

Proposition2. Extension distributes over join.

Proof.

X 1
_
A=
_
B , X �

_
B 1

_
A

,
_
B2B

(X �B) 1
_
A

, 9A 2 A;B 2 B:X � B 1 A

, 9A 2 A;B 2 B:X 1 A=B:

There follow some comments on the axioms:

{ Taking Q together with
W

and �, we have a (non-unital) quantale
{ Since we have

W
, we have a complete lattice. However, this is not (required

to be) distributive, and
V

has little signi�cance compared with � and 1.
{ It is easy to see that for any A 2 Q we have the \complement"W

fX j:(X 1 A)g, which satis�es the usual join and meet conditions for
Boolean complement. By the preceding remark, however, we do not thereby
obtain a Boolean algebra. Moreover the complement so de�ned is not in
general an involution (thus it is not an orthocomplement).

{ An immediate consequence of E� (but not of E) is that, if A;B are non-
null regions, then A=B is non-null. A model based on a closed bounded
subset of Euclidean space will fail Axiom E� (see the interpretation (3) to
be given in a moment), but may nevertheless be of interest for discrete
geometry. In the proofs below we have taken care to use E� only when E is
not su�cient. (Prenowitz works with point-based axioms corresponding to
Axiom E�, whereas Bryant & Webster have, in e�ect, only the weaker form
E.)

{ It may sometimes be convenient to drop the uniqueness requirement from
Axiom B. The join is then a speci�ed operation satisfying the property given
in B, and the order (Prop. 1) can only be claimed to be a pre-order. In the
conclusions of one or two of the subsequent Propositions, equality should be
replaced by equivalence.
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{ The main remaining axiom to be considered is an Axiom of Order (see Sec-
tion 5).

We next consider some of the main intended models of the axiom system.

1. (Euclidean) Q is: the subsets of <n. A1 B means: A meets B. The product
is de�ned in the �rst instance for points:

x � y =

�
(x; y) if x 6= y
x if x = y

By distributivity, the de�nition extends to arbitrary regions. Taking x � y as
the set of points strictly between x and y (the open interval), in case x 6= y,
is Prenowitz' preferred interpretation. Notice that if, in apparent conformity
with this, we were to try to take x �x as empty, we should lose associativity
(consider x � x � y). A variant (corresponding to what is usually done in
de�ning \interval convexities") is to de�ne x � y as the closed interval [x; y]
in all cases.

2. More in the spirit of mereotopology would be to take Q as the set of regular
open subsets of <n, and to take A 1 B as meaning that the closures of
A,B meet, with the product de�ned exactly as before (it clearly makes no
di�erence here whether intervals are taken as open or closed). Of course with
this interpretation we would obtain a (complete) Boolean algebra.

3. The �rst interpretation may be generalized by starting with an arbitrary
convex subset C of the Euclidean n-space (while de�ning 1 and � exactly
as before). It is easily seen that, if C is open, all the axioms are satis�ed. If
C is not open, then we do not (in general) have E�, but only the weak form
Axiom E. This is because, if x is an extreme point of C, x=y may be empty
(assuming Prenowitz' interpretation of �). In any case, let us denote by G(C)
the geometry de�ned in this way. Suppose next that S is a �nite subset of
C. Then we may consider the geometry \generated" by S: the collection of
all the regions that may be obtained from S by repeatedly taking products
and extensions (and union), with 1 de�ned as in G(C). From the point of
view of discrete geometry, the question that is now of interest is, whether
the geometry so obtained is itself �nite (that is, whether only �nitely many
distinct regions arise in the construction). We shall return to this later (for
the case C = <n).

We may remark that, implicit in the third interpretation just given, is the
notion of a subgeometry. Given two geometries (Q;1; �), (Q0;10; �0), the �rst
is said to be a subgeometry of the second if Q � Q0 and the connection, product,
extension and join (fusion) of Q coincide with the restrictions of those of Q0 to
Q. Thus, if C is a proper (convex) subset of <n, then G(C) is not a subgeometry
of G(<n), since the extension operation di�ers. On the other hand, the question
just raised is a question as to whether a certain �nitely generated subgeometry
of G(C) is �nite.

Note that the subgeometry construction is one which can lead to geome-
tries lacking uniqueness of fusion (\pre-ordered geometries"), since there may
be too few elements remaining to make (via 1 and Axiom B) all the distinc-
tions between regions which hold in the larger geometry. See comments following
Theorem 20.
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3 Development of geometry I

In developing geometry on the basis of an axiomatization of the above type, a
key role is played by a series of basic lemmas, �rst developed by Prenowitz [12].
(A similar development is given by Coppel [4].) With their aid, much geometric
reasoning is reduced to simple algebraic manipulations (though in a completely
di�erent fashion from the way in which this happens in ordinary analytic geome-
try). The lemmas (as will be seen) resemble the formulas found in the elementary
calculus of fractions, though with equality usually replaced by inequality (�).
The development of these lemmas given by the authors just cited is, of course,
entirely point-based (regions are assumed to be sets of points). We have to ensure
that, by adopting a region-based approach, we have not lost anything essential.

Lemma3. (A=B)=C = A=BC

Proof. For any region X

X 1 (A=B)=C , XC 1 A=B

, XCB 1 A

, X 1 A=BC

(all by the Extension axiom). Due to the Fusion axiom, this proves the result.

Lemma4. Assume A 6= 0. Then
a) B � A(B=A)
b) B � AB=A
c) B � A=(A=B)

Proof. Suppose that X 1 B. Then X=A1 B=A, AX 1 AB, and A=X 1 A=B
(all by Axiom E�). Invoking Extension, we immediately obtain a),b),c) respec-
tively.

Lemma5. A(B=C) � AB=C

Proof. Suppose X 1 A(B=C). Then
X=A 1 B=C (Extension)
XC 1 AB (Axiom E)
X 1 AB=C

Lemma6. (A=B)(C=D) � AC=BD

Proof. (A=B)(C=D) � (A=B)C=D (Lemma 5)
� (CA=B)=D (Lemma 5, monotonicity)
� AC=BD (Lemma 3).

The monotonicity of � and =, which we have not troubled to spell out, is of
course a consequence of the distributivity of

W
over these operators.

The following lemma is proved similarly to the preceding one:
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Lemma7. (A=B)=(C=D) � AD=BC

The pattern of these proofs should be clear. Where, in point-based work,
an inclusion A � B is proved via the assumption \x 2 A", the region-based
argument will yield A � B, via the assumption \X 1 A".

4 Convex and Linear Regions

A region A should be considered convex if, whenever U ,V � A, U �V � A. This
simpli�es to:

De�nition 8. Region A is convex if AA � A.

Theorem9. The collection of all convex regions is closed under arbitrary meets
and directed joins.

Proof. Let X be the meet of an arbitrary collection A of convex regions. Then
XX � AA, for every A 2 A. Hence XX �

V
A2AAA � X . Next, let Y be the

join of a directed collection B of convex regions. By (Distr.), Y Y =
W
B;C2BBC.

Since B is directed, Y Y �
W
D2BDD � Y .

This means that convex closure (or hull) can be de�ned, with the usual
general properties, including (Scott-)continuity.

As for the other operators, it is immediate that the product of (�nitely many)
convex regions is convex. Only a little less trivial is:

Proposition10. A,B convex) A=B convex.

Proof. AA � A and BB � B. Hence by Lemma 6,

(A=B)(A=B) � AA=BB � A=B:

A linear region should contain, with any parts U ,V , not only what lies be-
tween them, but also what lies in the extension V=U . On simplifying, we get:

De�nition 11. Region A is linear(ly closed) provided that A is convex and
A=A � A.

In deference to analytic geometry, it might be preferable to dub these re-
gions a�ne rather than linear. (Prenowitz, and also Bryant and Webster, have
\linear", Coppel has \a�ne".) We have the same general properties for linear-
ity, including the existence of the linear hull of any region, as indicated above
for convexity. For the special operators, however, matters are a little di�erent.
Evidently, the product of two linear regions need not be linear. For the exten-
sion, we have a positive result, corresponding to Theorem 6.5 of Prenowitz [12].
Prenowitz' proof (including the proof of his Lemma 6.5) cannot be adapted to
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our setting, as it depends essentially on the use of points, and speci�cally on the
assumption that, if two regions are connected, they have a point in common. So
we provide the region-based proof here in detail:

Lemma12. Let A,L be regions such that A 1 L. If L is convex, then L � L=A.
If L is linear, then also L � A=L.

Proof. Suppose that L is convex, and X 1 L. Then (Axiom E) XA1 LL � L.
So (Extension) X 1 L=A. This shows that L � L=A. Next, assume L linear,
and suppose that X 1 L. Then (Axiom E�) A=X 1 L=L � L. Hence A1 XL,
and so X 1 A=L.

Theorem13. Suppose that A,B are linear, and A 1 B. Then A=B is linear.

Proof.

(A=B)=(A=B) � (A=B)=(B=A)=(A=B)(Lemma 12)

� (A=B)=(BB=AA) (Lemma 7)

� (A=B)=(B=A)

� A=B (Lemma 7)

This shows that A=B is linear.

An easy application of Lemma 7 also yields:

Proposition14. If A is convex, then A=A is linear.

Proposition15. The linear hull of a �nite set fA1,...,Ang of convex regions is
given by R=R, where R = A1 � ::: �An.

Proof. The region R/R is linear by the preceding Proposition, and is evidently
contained in any linear region which contains all the Ai. It remains only to show
that Ai � R=R for each i. Wlg, let us show this for i = 1. Suppose X 1 A1.
Then for any P (in particular, for P = A2 � ::: � An), XA1P 1 A1A1P . Since
A1A1 � A1, XA1P � A1P . Hence X 1 A1P/A1P = R/R .

A simple result which will be useful in Section 6 is:

Proposition16. If A is a convex region, and B;C are any regions, then (A=B)�
(A=C) � A=BC and (B=A) � (C=A) � BC=A.

Proof. By two uses of Lemma 5 and one use of Lemma 3:

A

B
�
A

C
�

(A=B) �A

C
�

AA=B

C
�

A

BC

The other part is similar.
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As already mentioned, we do not at present see how to eliminate points alto-
gether from the development. In particular, we seem to need them for formulating
the Axiom of Order (to be considered shortly), and thus for establishing the key
theorems which depend on it. It is also true that, in describing some of the ge-
ometries in which we are mainly interested in this paper, namely grid models
for digital image processng, we �nd it convenient to admit, besides the pixels,
also the edges and vertices of pixels as primitive regions. We shall regard points
as linear regions which are as \small as possible" (without being null). There
are (at least) two notions of smallness which suggest themselves here. The �rst
is complete primality: if a point is covered by a collection of regions, it must
be contained in one (or more) of those regions. The second is that, if a point is
connected with a region, it must be contained in that region. Fortunately, these
are equivalent:

Proposition17. A region A is a complete prime if and only if it satis�es:

8X:A 1 X ) A � X (1)

Proof. ONLY IF: Suppose A �
W
B ) 9B 2 B. A � B and A1 X . Take

B as
fXg [ fY jY 1 A & :(Y 1 X)g

Clearly, A �
W
B. But X is the only member of B which can contain A .

IF: Assume (1). Then

A �
_
B ) 9B 2 B:A 1 B

) 9B 2 B:A � B

De�nition 18. A point is a non-null completely prime linear region.

Proposition19. If P is a point, then PP = P=P = P .

5 Development of geometry II

This section on further development of geometry could of course be rather exten-
sive, but will on the contrary be very brief. This is because we shall have recourse
to points, after which we need do little more than show how the development in
[12] or [4] may be imitated.

The Axiom of Order, as usually formulated, concerns the order of points on a
line (\Given any three distinct collinear points, exactly one of them lies between
the other two", say). This is problematic for us in a number of ways. Ignore, for
the moment, scruples about the emphasis on points. A line is presumably to be
de�ned as the linear hull of two distinct points. Now, it may very well happen,
in a non-trivial model of our theory, that lines - even, all lines - have only two
points. In that case,the Axiom of Order as formulated above would be vacuous.
We can try to reformulate the Axiom so that it refers to a \linear arrangement"
of regions that need not be points; but this seems hard to do, in a way that
preserves the power of the axiom in point-based work.
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A partial solution may be found by switching attention from lines to rays.
A ray is a half-line. Mention of lines, however, is inessential in treating rays. If
p,q are any two points,the ray from p in the direction of q may be expressed
as p � q=p. (Notice that the case p = q is not excluded. If p = q, we get the
\degenerate" ray p � p=p = p.) In the expression for a ray, the point q may with
advantage be replaced by an arbitrary region A. The point p may be replaced,
for reasons which we cannot go into here, by an arbitrary linear region, yielding
the notion of a generalized ray (or cone) as a region of the form MA/M , where
M is linear. The beautiful theory of rays and spherical geometries of Prenowitz
[11, 12] can now, if desired, be adapted to the region-based style. But here we
have introduced rays only in order to address the Axiom of Order.

One of several principles shown by Prenowitz to be equivalent (in point-based
theory) to the Axiom of Order is the following: for any point P and region (for
Prenowitz: set of points) R,

PR=P = PR _ R _ R=P

(In words: the ray PR/P consists of what lies between P and R, R itself, and the
extension of R away from P .) Notice that the point P cannot be replaced even
by a general linear region. (Taking P as a line, the resulting statement would be
false already in Euclidean geometry.) This \ray principle" is taken as the basic
form of the Order Axiom by Bryant & Webster [1], and this is what we shall do
too. But whereas for these authors the ray version is simply a variant of the line
version, for us it is essentially stronger: in a region geometry, the ray principle
may very well be non-vacuous even when every line contains only two points.

We shall proceed by giving an indication (little more than a hint) of how
the Order Axiom, in its ray version, underlies powerful theorems on convexity.
Notice that in the equation embodying the ray principle, the \quotient" on the
left has the factor P occurring in both numerator and denominator, whereas
no such repeated factor occurs on the right hand side. Indeed, in the geometric
calculus, the principle functions mainly as an aid in eliminating repetitions of
factors of this kind. An important application is in connection with the formula
for linear hull (Proposition 15). In case the Ai are points, repeated use of the
principle enables an expansion of the linear hull formulas to be given, in which
no repeated factors occur. For the details of this, we refer to [12, 1]. Here we just
consider the case n=2. It is an easy exercise to show, using the ray principle,
that, if A1,A2 are points, we have :

A1A2=A1A2 = A1=A2 _ A1 _ A1A2 _ A2 _ A2=A1

This clearly implies the following : if A3 is any third point on the line through
A1,A2, then one of the three points lies between the other two. This shows the
connection with the line version of the Order Axiom. More interesting in the
present context, however, is that it shows that the ray principle, applied to the
linear hull formula for two points, yields what is essentially the 1-dimensional
Radon theorem. In a similar way, the expansion for n points enables the full
Radon theorem to be obtained. With a little more work, general versions of
the Helly and Caratheodory theorems may be obtained as well: see [12], or the
extremely concise [1], for details.
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6 Finite Models

It might be asked: why do we not admit intersection (of regions) as a primitive
operation, enabling the whole development to be simpli�ed? The answer is that
we would thereby lose the (possibilty of) �nite models of the kind in which we
are interested.

Suppose that we construct a geometry on a �nite grid (1 x 3 su�ces), with
unit squares. Let A,B,C1,D1 be the points (0,0), (3,0), (0,1), (3,1) respectively.
The segments AD1, BC1 meet the ordinates through (0,1), (0,2) at, say, U ,V .
The line through U ,V meets AC1, BD1 at points which we shall call C2,D2.
Taking C2,D2 in place of C1, D1, and repeating the construction, we obtain
sequences of distinct points (Ci),(Di), which we are forced to admit into the
geometry if intersections of regions are accepted as regions.

Now, it must be observed that, in certain circumstances, the extension op-
erator is capable of generating in�nite sequences in a similar way. To see this,
let us start with the 2 x 3 grid, and let the points A,B,C1,D,U ,V be the points
(0,1), (3,1),(3,1.5), (0,0), (1,1),(2,1) respectively. The point (region) C1 does not
belong to the model, but the region R1=V BC1 does, as it is V /ADV . It is easily
seen that the region R2=V /U/R1 is V BC2, where C2 lies strictly between B
and C1. Continuing in this manner, we obtain a strictly decreasing sequence of
regions Ri.

In terms of the discussion in Section 2 (third interpretation), what this argu-
ment has shown is that, if K is the rectangle with vertices (0,0),(3,0),(3,2),(0,2),
then the subgeometry of G(K) generated by the (unit) grid points of K is in�-
nite.

To approach the construction of �nite models, we begin by considering a
property enjoyed by some, but not all, geometries:

(F ) A=BC � (A=B) � (A=C) & BC=A � (B=A) � (C=A)

It is easy to see that (F) is satis�ed by the geometry G(<n) (it su�ces to verify
the property in the case that A,B,C are points). By Proposition 16, we know
that, in case A is convex, the inequalities in property (F) may be replaced by
equalities. The signi�cance of this is that any term built up, using * and /, from
constants A1,...,An representing convex regions can be reduced to a product of
terms in A1,...,An built using / alone.

The preceding reduction drives occurrences of / inwards. A further reduction
will drive them to the left. Indeed, we have

(A=B)=C = A=BC (Lemma3) = (A=B) � (A=C) (F )

this being a product of terms of the form A/X , each having fewer occurrences of /
than (A/B)/C. Let an expression A1/A2/.../An be understood as
A1/(A2/(.../An)...) (association to right). Then by an easy ordinal induction
based on the above reductions, we have:

Theorem20 (Normal form). Let T be any term built, using * and /, from
constants representing convex regions. Then, assuming that Property (F) holds,
T can be expressed as a product of terms of the form A1/A2/.../An (A1,...,An

constants)
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We can now obtain our main result, namely the existence of �nite geometries
which may be considered to approximate <n.

Theorem21. Let S be a �nite set of points in <n. Then the subgeometry of
G(<n) generated by S is �nite.

Proof. In view of the Normal Form Theorem, we have only to show that there are
no more than �nitely many distinct regions A1/A2/.../An, where A1,...,An 2 S.
We adopt the following notation: Ai(jk) is the ray with end-point Ai in the di-

rection
���!
AjAk (in case Aj = Ak, Ai(jk) is the degenerate ray Ai). In particular,

Ak(jk) is Ak/Aj . We claim that A1/A2/.../An is equal to a product of rays
Ai(jk), where i,j,k 2 1; :::; n. This is trivial in case n = 1. For an induction step,
notice that Al/Ai(jk) = Al(il)*Al(kj), so that if Z is a product of rays Ai(jk) ,
then so is Al/Z. Since there are only �nitely many such rays, it follows that the
(sub)geometry generated by S is �nite.

In particular, if S is a �nite grid in <n, then it generates a �nite geometry
which has the (convex) polytopes with vertices in S among its regions. Strictly
speaking, we have to take into account the possibility that the subgeometry is
only pre-ordered (Section 2). Actually, this is the case with the set-up as we
have it as present. Consider, for example, the cell with vertices a = (0; 0); b =
(0; 1); c = (1; 1); d = (1; 0), with an integer planar grid of points. Then the regions
abcd (open square) and abc _ abd have to be considered as equivalent, as they
cannot be distinguished via the connection predicate. Although not necessarily
disastrous, this is somewhat anomalous. In future work we shall consider how
best to remove the anomaly.

If it is desired to have a (�nite) model which does not include points among
the regions, this is now easily obtained:

Corollary 22. Let S be a �nite grid in <n, and S0 the set of (open) voxels of
the grid. Then S0 generates a �nite subgeometry of G(<n).

Proof. Each voxel is a product of points of S. Hence the voxels generate a ge-
ometry which is contained in that generated by S.

7 Conclusion

The work reported here represents only the �rst steps towards a system of dis-
crete geometry that could be adequate for image processing. It is possible that
it is a little closer to adequacy in relation to \qualitative spatial reasoning", as
in AI and GIS (Geographic Information Systems).

Our focus has been on showing that it is possible to have geometric models
which support notions of convexity and linearity, which \resemble" Euclidean
space, and yet which have only a �nite ontology. It is interesting to compare this
�nding with the recent results of Pratt & Lemon [10] on ontologies for the theory
of polygons in mereotopology. Their main result is, roughly speaking, that any
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model for the theory of polygons in the plane (based on a quite minimal set
of mereotopological primitives) must contain the rational polygons. We did not
here explicitly develop the theory of polygons, but there would be no di�culty
in doing so (as indeed the theory of polytopes generally), following Prenowitz
[12]. Yet we have �nite models for our region-based theory. The explanation is
that, although the Pratt & Lemon polygonal theory is certainly parsimonious in
relation to what is usually assumed in such studies, it does include the assump-
tion that the polygonal regions form a Boolean algebra. As we have emphasized,
this assumption is lacking in our framework; moreover the meet of regions does
not, in the intended discrete models, represent the intersection of geometric loci.

Our theory is designed to capture (features of) the topology and geometry of
a space at a given level of resolution. The question of multiresolution analysis,
and of the approximation of \ideal" spaces by spaces of �nite resolution, has
received much attention in our previous topological work (mentioned in the
Introduction), but has yet to be addressed in the present context. Any such
analysis would involve the use of suitable approximation mappings; mappings
(morphisms) of geometries are, however, conspicuously lacking in the outline
given above.

Our eventual introduction of points as regions is something of a stopgap. We
intend, in due course, to take up the construction of points out of non-pointlike
regions, as is customary in point-free versions of topology. What is also involved
here -which makes this task rather demanding - is the construction of segments,
lines, and other entities of lower dimension than the ambient space, and which
are indispensable for geometric work.

A surprising amount can be done with a primitive for convexity as the sole
geometric primitive, as Prenowitz and other writers on abstract convexity theory
have shown. We have tried to indicate how such work can be accommodated in a
region-based approach suitable for discrete geometric modelling. In subsequent
work we shall endeavour to accommodate notions that take us beyond convexity
theory (parallels, congruence, metrics).
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