
Functional Reading of Logic Programs

Silvija Seres
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD, U.K.
Silvija.Seres@comlab.ox.ac.uk

Michael Spivey
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD, U.K.
Mike.Spivey@comlab.ox.ac.uk

Abstract: We propose an embedding of logic programming into lazy functional
programming in which each predicate in a Prolog program becomes a Haskell function,
in such a way that both the declarative and the procedural reading of the Prolog
predicate are preserved.

The embedding computes by means of operations on lazy lists. The state of each step
in computation is passed on as a stream of answer substitutions, and all the logic
operators of Prolog are implemented by explicit Haskell operators on these streams.
The search strategy can be changed by altering the basic types of the embedding and
the implementation of these operators. This model results in a perspicuous semantics
for logic programs, and serves as a good example of modularisation in functional
programming.

Keywords: logic programming, functional embedding, program transformation, al-
gebraic methods.

Category: D.1

1 Introduction

Many researchers have sought a way of combining the virtues of functional and
logic programming within a single programming system or language. In this
paper, we follow a suggestion of Tony Hoare's [7] and consider a simple and
direct embedding of the constructs of Prolog in a lazy functional language. In
some ways, this embedding gives a programming language similar to LogLisp

[18, 17], since both approaches attempt to give an embedding within the host
language. The base language is not extended; the run-time system for both
embeddings consists of a set of functions designed to support uni�cation, res-
olution and search. The di�erence in our approach is that the power of lazy
functional programming o�ers a simpler and a more natural way to implement
the primitive functions of the embedding and to handle in�nite sets of answers.

Journal of Universal Computer Science, vol. 6, no. 4 (2000), 433-446
submitted: 30/4/99, accepted: 28/1/00, appeared: 28/4/00  Springer Pub. Co.

Indeed, the higher-order operators on streams and the use of types result in a
set of embedding functions that describe the operational semantics of pure logic
programs in a strikingly concise way.

There has been a considerable amount of research on combining features of func-
tional and logic programming in a single language. The integrated languages
that result embody both rewriting and resolution and thereby result in a func-
tional language with the capability to solve arbitrary constraints for the values
of variables. The mainstream approaches use narrowing as the operational se-
mantics for the amalgamated language [15]. The list of such functional logic

languages that have been proposed in an attempt to incorporate the expres-
sive power of both paradigms is long and impressive [5], but we do not aim to
compete with them. These projects aspire to build an eÆcient language that
can o�er programmers the most useful features of both worlds; to achieve this
they have to adopt somewhat complicated semantics. We wish to show how the
pure part of logic languages can be embedded into lazy functional ones with a
strikingly simple implementation, and use this as an example of the expressive
power and elegance of the lazy functional paradigm.

The primitive functions of our embedding use only stream operators like map

and concat linked by functional composition; this gives us a whole suite of
algebraic properties for the primitive functions. A combination of these can
serve as a partial algebraic speci�cation of the embedded logic program. The
algebraic laws of the primitives can also be used to transform the embedded
logic programs by equational reasoning.

In this paper we use Prolog and Haskell as our languages of choice, but the
principles presented are general. Prolog is chosen because it is the dominant
logic language, although we only implement the pure declarative features of it,
i.e., we ignore the impure but practically much used features like cut, assert
and retract. Haskell is chosen because it is a lazy functional language with
types and lambda-abstractions, but any other language with these properties
could be used.

In the remainder of the paper we proceed to describe the syntax of the embed-
ding and the implementation of the primitives in sections 2 and 3. In section
4 we list some of the algebraic properties of the operators and in section 5
we study the necessary changes to the system to accommodate di�erent search
strategies. We conclude the paper with section 6 where we discuss related work
and propose some further work in this setting.

2 Syntax

Prolog o�ers the facility of de�ning a predicate in many clauses and it allows
the applicability of each clause to be tested by pattern matching on the formal
parameter list. In our implementation of Prolog, we have to withdraw these
notational licences, and require the full logical meaning of the predicate to be

434 Seres S., Spivey M.: Functional Reading of Logic Programs

de�ned in a single equation, with the uni�cations made explicit on the right
hand side, together with the implicit existential quanti�cation over the fresh
variables.

In the proposed embedding of Prolog into a functional language, we aim to
give rules that allow any pure Prolog predicate to be translated into a Haskell
function with the same meaning. To this end, we introduce two data types,
Term and Predicate , into our functional language, together with the following
four operations:

(&); (k) : Predicate �! Predicate �! Predicate;

(
:
=) : Term �! Term �! Predicate;

exists : (Term �! Predicate) �! Predicate:

The intention is that the operators & and k denote conjunction and disjunction
of predicates,

:
= forms a predicate expressing the equality of two terms, and

the operation exists expresses existential quanti�cation. We shall abbreviate
the expression exists (�x ! p x) by the form 9x ! p x in this paper, although
the longer form shows how the expression can be written in any lazy func-
tional language that has �-expressions. We shall also write 9x ; y ! p(x ; y) for
9x ! (9y ! p(x ; y)).

These four operations suÆce to translate any pure Prolog program, provided
we are prepared to exchange pattern matching for explicit equations, to bind
local variables with explicit quanti�ers, and to gather all the clauses de�ning a
predicate into a single equation. These steps can be carried out systematically,
and could easily be automated. As an example, we take the well-known program
for append:

append([]; Y s; Y s) : �:

append([X jXs]; Y s; [X jZs]) : �append(Xs; Y s; Zs):

As a �rst step, we remove any patterns and repeated variables from the head
of each clause, replacing them by explicit equations written at the start of the
body. These equations are computed by uni�cation in Prolog.

append(Ps; Qs; Rs) : �

Ps = []; Qs = Rs:

append(Ps; Qs; Rs) : �

Ps = [XjXs]; Rs = [XjYs]; append(Xs; Qs; Ys):

The head of each clause now contains only a list of distinct variables, and by
renaming if necessary we can ensure that the list of variables is the same in
each clause. We complete the translation by joining the clause bodies with
the k operation, the literals in a clause with the & operation, and existentially
quantifying any variables that appear in the body but not in the head of a

435Seres S., Spivey M.: Functional Reading of Logic Programs

clause:

append(Ps ;Qs ;Rs) =

(Ps
:
= nil &Qs

:
= Rs) k

(9X ;Xs ;Ys ! Ps
:
= cons(X ;Xs)& Rs

:
= cons(X ;Ys)&

append(Xs ;Qs ;Ys)):

Here nil is used for the value of type Term that represents the empty list, and
cons is written for the function on terms that corresponds to the Prolog list
constructor [|]. We assume the following order of precedence on the operators,
from highest to lowest:

:
=;&; k; 9.

The function append de�ned by this recursive equation has the following type:

append :: (Term;Term;Term) �! Predicate:

The Haskell function append is constructed by making the declarative reading
of the Prolog predicate explicit. However, the relationship between the Haskell
function and the Prolog predicate extends beyond their declarative semantics.
The next section shows that the procedural reading of the Prolog predicate is also
preserved through the implementation of the functions & and k. The embedding
essentially allows the mapping of the computation of the Prolog program into

lazy lists by embedding the structure of a SLD-tree of a Prolog program into a
Haskell stream.

3 Implementation

The translation described above depends on the four operations &, k,
:
= and

exists. We now give de�nitions to the type of predicates and to these four
operations that correspond to the depth-�rst search of Prolog. Later, we shall
be able to give alternative de�nitions that correspond to breadth-�rst search,
or other search strategies based on the search tree of the program.

The key idea is that each predicate is a function that takes an `answer', rep-
resenting the state of knowledge about the values of variables at the time the
predicate is solved, and produces a lazy stream of answers, each corresponding
to a solution of the predicate that is consistent with the input. This approach is
similar to that taken by Wadler [22]. An unsatis�able query results in an empty
stream, and a query with in�nitely many answers results in an in�nite stream.1

type Predicate = Answer �! Stream Answer :

An answer is (in principle) just a substitution, but we augment the substitution
with a counter that tracks the number of variables that have been used so far, so

1For clarity, we use the type constructor Stream to denote in�nite streams, and List to
denote �nite lists. In a lazy functional language, these two concepts share the same imple-
mentation.

436 Seres S., Spivey M.: Functional Reading of Logic Programs

that a fresh variable can be generated at any stage by incrementing the counter:

type Answer = (Subst ; Int):

We can now give de�nitions for the four operators. The operators & and k act
as predicate combinators; they slightly resemble the notion of tacticals [14], but
in our case they combine the computed streams of answers, rather that partially
proved statements.

The k operator simply concatenates the streams of answers returned by its two
operands:

(k) :: Predicate �! Predicate �! Predicate

(p k q) x = p x ++ q x :

This de�nition implies that the answers are returned in a left-to-right order as
in Prolog. If the left-hand argument of k is unsuccessful and returns an empty
answer stream, it corresponds to an unsuccessful branch of the search tree in
Prolog and backtracking is simulated by evaluating the right-hand argument.

For the & operator, we start with applying the �rst argument to the incoming
answer; this produces a stream of answers, to each of which we apply the second
argument of &. Finally, we concatenate the resulting stream of streams into a
single stream:

(&) :: Predicate �! Predicate �! Predicate

p & q = concat �map q � p:

Because of Haskell's lazy evaluation, the function p returns answers only when
they are needed by the function q . This corresponds nicely with the backtracking
behaviour of Prolog, where the predicate p & q is implemented by enumerating
the answers of p one at a time and �ltering them with the predicate q . In�nite
list of answers in Prolog are again modelled gracefully with in�nite streams.

We can also de�ne primitive predicates true and false , one corresponding to
immediate success and the other to immediate failure:

true :: Predicate false :: Predicate

true x = [x]: false x = []:

The pattern matching of Prolog is implemented by the operator
:
=. It is de�ned

in terms of a function unify which performs uni�cation of two terms relative to
a given input substitution. The type of unify is thus:

unify :: Subst �! (Term;Term) �! List Subst :

More precisely, the result of unify s (t ; u) is either [s . r], where r is a most
general uni�er of t [s] and u[s], or [] if these two terms have no uni�er.2Thus

2We use s . r to denote composition of substitutions s and r , and t[s] to denote the instance
of term t under substitution s. We use s v s0 to denote the preorder on substitutions that
holds i� s0 = s . r for some substitution r .

437Seres S., Spivey M.: Functional Reading of Logic Programs

if unify s (t ; u) = [s 0], then s 0 is the most general substitution such that s v s 0

and t [s 0] = u[s 0].

The
:
= operator is just a wrapper around unify that passes on the counter for

fresh variables:

(
:
=) :: (Term;Term) �! Predicate

(t
:
= u) (s ;n) = [(s 0;n) j s 0 unify s (t ; u)]

Finally, the operator exists is responsible for allocating fresh names for all the
local (or existentially quanti�ed) variables in the predicates. This is necessary
in order to guarantee that the computed answer is the most general result. The
function exists takes a �-expression as its �rst argument and the usual input as
its second argument. The bound variable in the �-expression becomes one of
the quanti�ed variables in the predicate. So we have:

exists :: (Term �! Predicate) �! Predicate

exists p (s ;n) = p (makevar n) (s ;n + 1);

where makevar n is a term representing the n'th generated variable. The
slightly convoluted
ow of information here may be clari�ed by a small ex-
ample. The argument p of exists will be a function that expects a variable, such
as (�X ! append(t ;X ; u)). We apply this function to a newly-invented vari-
able v = makevar n to obtain the predicate append(t ; v ; u), and �nally apply
this predicate to the answer (s ;n + 1), in which all variables up to the n'th are
marked as having been used.

The function solve evaluates the main query. It simply applies its argument,
the predicate of the query, to an answer with an empty substitution and a zero
variable counter, and converts the resulting stream of answers to a stream of
strings.

solve :: Predicate �! Stream String

solve p = map print (p ([]; 0)):

We do not provide proofs of the soundness and completeness (relative to Prolog)
of the embedding, since they follow directly from the way the embedding is
constructed. The encoding we have described is about the simplest possible
mechanised formal de�nition of Prolog.

4 Algebraic Laws

The operators & and k enjoy many algebraic properties as a consequence of
their simple de�nitions in terms of streams.

The & operator is associative with unit element true. This is a consequence of
the fact that map, concat and true form a structure that Category Theory calls

438 Seres S., Spivey M.: Functional Reading of Logic Programs

a monad, and the composition operator & is obtained from this by a standard
construction called Kleisli composition.

All the algebraic properties we quote can be proved with simple equational
reasoning, using only the standard laws (see [2]) for concat , map and functional
composition. We omit most of the elementary proofs here, but will revisit these
properties later when we examine other implementations of our fundamental
operations. As an example, given:

map f � concat = concat �map (map f); (1)

concat � concat = concat �map concat ; (2)

map (f � g) = (map f) � (map g): (3)

we can prove the associativity of & by the following rewriting:

(p & q) & r

= concat �map r � concat �map q � p by defn. of &

= concat � concat �map (map r) �map q � p by (1)

= concat �map concat �map (map r) �map q � p by (2)

= concat �map (concat �map r � q) � p by (3)

= p & (q & r): by defn. of &

The predicate false is a left zero for &, but this operator is strict in its left
argument, so false is not a right zero. This corresponds to the feature of Prolog
that false & q has that same behaviour as false , but p & false may fail in�nitely
if p does. Owing to the properties of concat and [], the k operator is associative
and has false as a left and right identity.

Other identities that are satis�ed by the connectives of propositional logic are
not shared by our operators because in our stream-based implementation, an-
swers are produced in a de�nite order and with de�nite multiplicity. This be-
haviour mirrors the operational behaviour of Prolog. For example, the k oper-
ator is not idempotent, because true k true produces its input answer twice as
an output, but true itself produces only one answer. The & operator also fails
to be idempotent, because the predicate

(true k true)& (true k true)

produces the same answer four times rather than just twice.

We might also expect

p & (q k r) = (p & q) k (p & r);

that is, for & to distribute over k, but this is not the case. For a counterex-
ample, take for p the predicate X

:
= a k X

:
= b, for q the predicate Y

:
= c, and

for r the predicate Y
:
= d . Then the left-hand side of the above equation pro-

duces the four answers [X=a;Y=c]; [X=a;Y=d]; [X=b;Y=c]; [X=b;Y=d]

439Seres S., Spivey M.: Functional Reading of Logic Programs

in that order, but the right-hand side produces the same answers in the order
[X=a;Y=c]; [X=b;Y=c]; [X=a;Y=d]; [X=b;Y=d].

However, the other distributive law,

(p k q) & r = (p & r) k (q & r);

does hold, and it is vitally important to the unfolding steps of program trans-
formation. The simple proof depends on the fact that both map r and concat

are homomorphisms with respect to ++:

((p k q) & r) x

= concat (map r (p x ++ q x)) by defn. of k, &

= concat (map r (p x) ++map r (q x)) map

= concat (map r (p x)) ++ concat (map r (q x)) concat

= ((p & r) k (q & r)) x : by defn. of &

The declarative reading of logic programs suggests that also the following prop-
erties of

:
= and 9 ought to hold, where p x and q x are predicates and u is a

term not containing x :

(9x ! p x k q x) = (9x ! p x) k (9x ! q x);

(9x ! x
:
= u & p x) = p u;

(9x ! (9y ! p (x ; y))) = (9y ! (9x ! p(x ; y))):

These properties are important in program transformations that manipulate
quanti�ers and equations, since they allow local variables to be introduced and
eliminated, and allow equals to be substituted for equals in arbitrary formulas.

However, these properties of
:
= and 9 depend on properties of predicates p and q

that are not shared by all functions of this type, but are shared by all predicates
that are de�ned purely in terms of our operators. In future work, we plan to
formulate precisely the `healthiness' properties of de�nable predicates on which
these transformation laws depend, such as monotonicity and substitutivity.

It might be seen as a weakness of our approach based on a `shallow' embedding
of Prolog in Haskell that these properties must be expressed in terms of the
weak notion of a predicate de�nable in terms of our operators, when a `deep'
embedding (i.e., an interpreter for Prolog written in Haskell) would allow us
to formulate and prove them as an inductive property of program texts. We
believe that this is a price well worth paying for the simplicity and directness
of our marriage between functional and logic programming.

5 Di�erent Search Strategies

Our implementation of k, together with the laziness of Haskell, causes the
search for answers to behave like depth-�rst search in Prolog: when computing

440 Seres S., Spivey M.: Functional Reading of Logic Programs

p x ++ q x all the answers corresponding to the p x part of the search tree are
returned before the other part is explored. A fair search strategy would share
the computation e�ort more evenly between the two parts. Similarly, our im-
plementation of & results in a left-to-right selection of the literals of a clause.
A fair selection rule would allow one to chose the literals in a di�erent order.

One possible solution (inspired by [11]) is to interleave the streams of answers,
taking one answer from each stream in turn. A function twiddle that interleaves
two lists can be de�ned as:

twiddle :: [a] �! [a] �! [a]

twiddle [] ys = ys

twiddle (x : xs) ys = x : (twiddle ys xs):

The operators k and & can be rede�ned by replacing ++ with twiddle and
recalling that concat = foldr (++) []:

(p k q) x = twiddle (p x) (q x)

(p & q) x = foldr (twiddle) [] (map q (p x)):

This implementation of & is fairer, producing in a �nite time solutions of q
that are based on later solutions returned by p, even if the �rst such solution
produces an in�nite stream of answers from q . The original implementation of
& produces all solutions of q that are based on the �rst solution produced by p

before producing any that are based on the second solution from p.

Note that this implementation of operators does not give breadth-�rst search
of the search tree; it deals with in�nite success but not with in�nite failure.
Even in the interleaved implementation, the �rst element of the answer list is
produced before all the others; if this takes an in�nite number of steps the other
branch or literals will not be reached.

To implement breadth-�rst search in the embedding, the Predicate data-type
needs to be changed. It is no longer adequate to return a single,
at stream
of answers; this model is not re�ned enough to take into account the number
of computation steps needed to produce a single answer. The key idea is to
let Predicate return a stream of lists of answers, where each list represents the
answers reached at the same depth, or level, of the search tree. These lists of
answers with the same cost are always �nite since there is only a �nite number
of nodes at each level of the search tree. The new type of Predicate is thus:

Predicate :: Answer �! Stream (List Answer):

Intuitively, each successive list of answers in the stream contains the answers
with the same computational \cost". The cost of an answer increases with
every resolution step in its computation. This can be captured by adding a new
function step in the de�nition of predicates. For example, append should be

441Seres S., Spivey M.: Functional Reading of Logic Programs

coded as:

append(Ps ;Qs ;Rs) =

step((Ps
:
= nil &Qs

:
= Rs) k

(9X ;Xs ;Ys ! Ps
:
= cons(X ;Xs)& Rs

:
= cons(X ;Ys)&

append(Xs ;Qs ;Ys))):

In the depth-�rst model, step is the identity function on predicates, but in the
breadth-�rst model it is de�ned as follows:

step :: Predicate �! Predicate

step p x = [] : (p x):

Thus, in the stream returned by step p, there are no answers of cost 0, and for
each n, the answers of step p with cost n + 1 are the same as the answers of p
that have cost n.

The implementations of the Predicate combinators k and & need to be changed
so that they no longer operate on lists but on streams of lists. They must
preserve the cost information that is embedded in the input lists. Since the cost
corresponds to the level of the answer in the search tree, only resolution steps
are charged for, while the applications of k, & and equals are cost-free. The
k operator simply zips the two streams into a single one, by concatenating all
the sublists of answers with the same cost. If the two streams are of di�erent
lengths, the zipping must not stop when it reaches the end of the shorter stream.
We give the name mergewith to a specialized version of zipwith that has this
property:

(p k q) x = mergewith (++) (p x) (q x)

The implementation of & is harder. The cost of each of the answers to (p & q)
is a sum of the costs of the computation of p and the computation of q . The
idea is �rst to compute all the answers, and then to
atten the resulting stream
of lists of streams of lists of answers to a stream of lists of answers according
to the cost. This
attening is done by the shu�e function which is explained
below. The &-operator is thus:

p & q = shu�e �map (map q) � p

We write S for streams and L for �nite lists for sake of brevity. The result of
map (map q) � p is of type SLSL. It can be visualised as a matrix of matrices,
where each element of the outer matrix corresponds to a single answer of p.
Each such answer is used as an input to q and consequently gives rise to a
new stream of lists of answers, which are represented by the elements of the
inner matrices. The rows of both the main matrix and the sub-matrices are
�nite, while the columns of both can be in�nite. For example, the answers of
map (map q) � p with cost 2 are marked in the drawing below:

442 Seres S., Spivey M.: Functional Reading of Logic Programs

The function shu�e collects all the answers marked in the drawing into a single
list, the third in the resulting stream of lists of answers. It is given an SLSL of
answers, and it returns an SL. Two auxiliary functions are required to do this:
diag and transpose . A stream of streams is converted to a stream of lists by
diag , and a list of streams can be converted to a stream of lists by transpose .

diag :: Stream (Stream a) �! Stream (List a)

diag xss = [[(xss ! i) ! (n � i) j i [0 ::n]] j n [0 ::]]

transpose :: List (Stream a) �! Stream (List a)

transpose xss = map hd xss : transpose (map tl xss)

Given diag and transpose, the function shu�e can be implemented as follows.
The input to shu�e is of type SLSL. The application of map transpose swaps
the middle SL to a LS , and gives SSLL. Then the application of diag converts
the outermost SS to SL and returns SLLL. This can now be used as input to
map (concat � concat) which
attens the three innermost levels of lists into a
single list, and returns SL.

shu�e = map (concat � concat) � diag �map transpose

In this model the & operator is not quite associative, but it is associative modulo
the permutation of �nite lists of answers. Some other algebraic properties of
the operators also need to be re-interpreted as holding modulo permutation.

It is interesting how concise the de�nitions of k and & remain in the two models.
To recapitulate the de�nitions of & in the depth-�rst model and breadth-�rst
model, respectively:

p & q = concat �map q � p

p & q = shu�e �map (map q) � p

These closely parallel de�nitions hint at a deeper algebraic structure, and in
fact the de�nitions are all instances of the so-called Kleisli construction from
category theory. We give a more detailed study of this topic in [19] and [21].

443Seres S., Spivey M.: Functional Reading of Logic Programs

6 Related and Further Work

There has been a long e�ort to combine the two important paradigms of declar-
ative programming, functional and logic programming (some good surveys are
[1, 3, 5, 10, 16]) and that e�ort is still ongoing. The two primary goals of the
research in this area of paradigm integration are to make tools that exploit the
most powerful concepts from both paradigms and to gain a better understanding
of declarative computing. It is a fruitful combination; functional programming
contributes higher-order functions and eÆcient operational behaviour whereas
logic programming contributes function inversion, partial data structures and
logical variables.

It is hoped that this integration can reduce the duplication of research and the
fragmentation in the �eld of declarative programming. The integration has been
approached through the implementation of languages that combine concepts
from logic and functional programming. Some recently developed languages
that combine the two paradigms are Babel [13], Kernel-LEAF [4], Escher [9] and
Curry [6]. This approach provides programmers with eÆcient hybrid tools for
declarative programming, but most of those implementations lack the semantical
clarity that our embedding possesses.

LogLisp [18, 17] and a few other languages embed logic programming in Lisp.
The embedding is at the same level of abstraction as ours (this is raised as the
main point in [8]), but they do not have an equally expressive base language,
since Lisp is eager and untyped. By using lazy streams of answers we get a
natural model for backtracking and the possibly in�nite search space of Prolog.
By using types to describe the predicates and their answers, we can easily alter
the base answer type and thereby replace the default depth-�rst search strategy
with others.

The work presented in this paper has not addressed the question of an eÆcient
implementation of these ideas, although a language implementation based on
our embedding is conceivable. Rather, this work is directed towards producing
and using a theoretical tool (with a simple implementation) for the analysis of
di�erent aspects of logic programs. The simplicity is the key idea and the main
strength of our embedding, and it has served well in opening several directions
for further research.

We are presently working on two applications of the embedding. One is a study
of program transformation by equational reasoning, using the algebraic laws of
the embedding. The other is a categorical study of a model in which trees are
used as the data-structure for the answers, and we show that there exists a
morphism of monads between the new tree model and the stream model that is
presented in this paper. This line of research is inspired by [23, 12, 20].

Among other questions that we plan to address soon are also the implementation
of higher-order functions and the implementation of nested functions in the
embedded predicates. Constraint logic programming also has a simple model

444 Seres S., Spivey M.: Functional Reading of Logic Programs

in our embedding: one only has to pass equations (instead of substitutions) as
parts of answers. These equations are evaluated when they become suÆciently
instantiated. An eÆcient language implementation is also a challenging goal in
this setting.

References

[1] M. Bellia and G. Levi. The relation between logic and functional languages: a
survey. Journal of Logic Programming, 3(3):317{236, 1986.

[2] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall,
1988.

[3] J. Darlington, Y. Guo, and H. Pull. A new perspective on integrating functional
and logic languages. In Proceedings of FGCS, pages 682{693, 1992.

[4] E. Giovanetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel-LEAF: A logic plus
functional language. Journal of Computer and System Sciences, 42(2), 1991.

[5] M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19(20):583{628, 1994.

[6] M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. Curry: A truly functional logic
language. In Proc. ILPS'95 Workshop on Visions for the Future of Logic Pro-

gramming, pages 95{107, 1995.

[7] C.A.R. Hoare and H. Jifeng. Unifying Theories of Programming. Prentice Hall,
1998.

[8] H.J. Komorowski. Qlog { the programming environment for Prolog in Lisp. In
K. Clark and Tarnlund S.A., editors, Logic Programming. Academic, New York,
1982.

[9] J.W. Lloyd. Declarative programming in Escher. Technical Report CSTR-95-013,
Department of Computer Science, University of Bristol, June 1995.

[10] J.W. Lloyd. Programming in an integrated functional and logic language. The

Journal of Functional and Logic Programming, 1998. to appear.

[11] R. McPhee and O. de Moor. Compositional logic programming. In Proceedings

of the JICSLP'96 post-conference workshop: Multi-paradigm logic programming,
Report 96-28. Technische Universit�at Berlin, 1996.

[12] E. Moggi. Computational lambda-calculus and monads. In Symposium on Logic

in Computer Science. IEEE, June 1989.

[13] J. Moreno-Navarro and M. Roderiguez-Artalejo. Logic programming with func-
tions and predicates: The language Babel. Journal of Logic Programming,
12(3):191{223, 1992.

[14] L.C. Paulson. Lessons learned from LCF: a survey of natural deduction proofs.
Computer Journal, (28), 1985.

[15] U.S. Reddy. Narrowing as the operational semantics of functional languages. In
Symposium on Logic Programming, Boston, 1985. IEEE.

[16] U.S. Reddy. Functional logic languages part I. In Proceedings of a Workshop on

Graph Reduction. Springer LNCS 279, 1987.

445Seres S., Spivey M.: Functional Reading of Logic Programs

[17] J.A. Robinson. Beyond LogLisp: combining functional and relational program-
ming in a reduction setting. Machine intelligence, 11, 1988.

[18] J.A. Robinson and E.E. Sibert. LogLisp: An alternative to Prolog. Machine

Intelligence, 10, 1982.

[19] S. Seres, J.M. Spivey, and C.A.R. Hoare. Algrebra of logic programming. In
Proceedings of ICLP'99, Las Cruces, USA, 1999.

[20] J.M. Spivey. A categorical approach to the theory of lists. In Mathematics of

Program Construction. Springer LNCS 375, 1989.

[21] J.M. Spivey and S. Seres. The algebra of searching. In Festschritf in hounour of

C.A.R. Hoare, 1999.

[22] P. Wadler. How to replace failure by a list of successes. In 2'nd International

Conference on Functional Programming Languages and Computer Architecture,
Nancy, France, September 1985. Springer-Verlag.

[23] P. Wadler. Comprehending monads. Mathematical Structures in Computer Sci-

ence, 2:461{493, 1992.

446 Seres S., Spivey M.: Functional Reading of Logic Programs

