
Ensuring Termination in ESFP

Alastair Telford
(The Computing Laboratory, The University,

Canterbury, Kent, CT2 7NF, UK

A.J.Telford@ukc.ac.uk)

David Turner
(The Computing Laboratory, The University,

Canterbury, Kent, CT2 7NF, UK)

Abstract: In previous papers we have proposed an elementary discipline of strong
functional programming (ESFP), in which all computations terminate. A key feature
of the discipline is that we introduce a type distinction between data which is known
to be �nite, and codata which is (potentially) in�nite. To ensure termination, recursion
over data must be well-founded, and corecursion (the de�nition schema for codata)
must be productive, and both of these restrictions must be enforced automatically
by the compiler. In our previous work we used abstract interpretation to establish the
productivity of corecursive de�nitions in an elementary strong functional language. We
show here that similar ideas can be applied in the dual case to check whether recursive
function de�nitions are strongly normalising. We thus exhibit a powerful termination
analysis technique which we demonstrate can be extended to partial functions.
Key Words: Functional programming, termination analysis, abstract interpretation.
Category: D.1.1

1 Introduction

We are interested in the development of an Elementary Strong Functional Pro-
gramming (ESFP) system. That is, we wish to exhibit a language that has the
strong normalization (every program terminates) and Church-Rosser (all reduc-
tion strategies converge) properties whilst avoiding the complexities (such as
dependent types, computationally irrelevant proof objects) of Martin-L�of's type
theory [13]. We would like our language to have a type system straightforwardly
based on that of Hindley-Milner [15] and to be similar in usage to a language
such as Miranda1 [25]. The full case for such a language is set out in [26] but we
recap its main potential bene�ts here:

{ Such a language will allow both direct equational reasoning and simple in-
duction principles | we do not have to worry about unde�ned elements
when verifying properties.

{ There is no dichotomy between lazy and strict evaluation as we shall have
the Church-Rosser property and strong normalisation. This means that we
have evaluation transparency, or what may be termed true referential trans-
parency. We believe that this has the added bene�ts of making program
optimisation, debugging and parallelisation easier to achieve.

{ Since it does not have the complexities of type theory it is suÆciently elemen-
tary to be used for programming at the undergraduate level. Moreover, it is

1 Miranda is a trademark of Research Software Limited.

Journal of Universal Computer Science, vol. 6, no. 4 (2000), 474-488
submitted: 30/4/99, accepted: 28/1/00, appeared: 28/4/00 Springer Pub. Co.

more satisfactory from the pedagogical point of view: typically undergradu-
ates are given step-by-step evaluations to perform which are done strictly in
the recursive case, even in a lazy language such as Haskell (see [19]). Then,
in�nite structures, with the same syntax and types, are evaluated lazily.

In ESFP we make a clear distinction between data (�nite structures | initial
algebras) and codata (in�nite structures | �nal coalgebras). We have described
the characteristics of the latter in [22] and have extended syntactic checks devised
by Coquand [4] in Type Theory, and Gim�enez [11], in the Calculus of (Inductive)
Constructions, to check whether corecursive de�nitions are well-formed.

In this paper we apply the dual ideas to the dual structures, data. This ex-
tends the Gim�enez work [11] in the area of recursion. In particular, our analysis
allows some non-primitive recursive algorithms which has been achieved by for-
mulating a size descent detection algorithm as an abstract interpretation. The
key point of using the abstract interpretation method is that it allows us to
determine the level of destruction of an actual parameter when a function is
applied within a recursive call.

We also extend our analysis to cope with partial functions using a simple
subtyping mechanism. Furthermore, this extension allows a wider class of total
algorithms to be accepted. As an illustration of the power of our analysis, we
show how it can accept Euclid's gcd algorithm, which is unde�ned for two zero
inputs.

Whilst it is naturally undecidable whether a recursive function is well-de�ned,
the extension to guardedness that we present here makes programming more
straightforward in a strongly normalizing functional language.

2 An ESFP Language

We now present the characteristics of types and terms in an ESFP language and
describe the restrictions that we make to ensure strong normalisation.

2.1 Data and codata

Firstly, we make a distinction between data (�nite structures of inductive types)
and codata (in�nite structures of coinductive types). The reason for doing this is
that functions acting upon data should perform a computation whilst recursively
descending through a structure whilst those producing codata will be building a
structure, possibly using some inputs. The semantic issues for in�nite data struc-
tures, in which we explain what it means for codata functions to be productive
and Church-Rosser, are explored further in [23].

2.2 Types

Algebraic data type de�nitions are basically as they appear in Haskell and each
type constructor should occur only once in all the type de�nitions. In our abstract
syntax, each type constructor is labelled Ci, where i is a natural number. There
are the following added restrictions on algebraic type de�nitions:

475Telford A., Turner D.: Ensuring Termination in ESFP

1. Only strictly positive occurrences are allowed in the inductive de�nition of
types. This means that in the de�nition of a type, T , say, T may not occur
within the domain of any function space in the de�nition of T . For example,
the following would not be allowed:

data ilist
def
= C (ilist �! Int)

2. T may not be de�ned via polymorphic type U where T occurs as an instan-
tiation of U . For example, we would not allow rosetrees which can be given
the following de�nition:

data Rosetree a
def
= Leaf a jNode [Rosetree a]

3. T may not be de�ned via a type U which is transitively de�ned using T .

4. T must have a base case i.e. one with no recursive occurrences of T .

We use the standard notion of ground types i.e. types which do not contain in
their de�nition any function types.

2.3 Expressions

The basic typing system for expressions is that of Hindley-Milner [15]. Again, as
in languages such as Miranda and Haskell, the same constructors that appear in
type de�nitions appear in the same form within expressions in the language. We
use T(e) to denote the type of expression e and Unify(e1; e2) to indicate that
the types of expressions e1 and e2 unify.

The abstract syntax and applicative order operational semantics of data
within our language is given in Table 1. The reduction relation, �Env(E), is

a \big-step" one, relative to the environment Env(E) which binds closed expres-
sions to free variables. A script in the language consists of a set of function
de�nitions, for elements, fi (where i is an integer) from the syntactic domain of
function names, F. Each function fi has formal parameters labelled xi;j .

Normal forms within the language are either lambda abstractions or con-
structor expressions of the form Cici;1 : : : ci;r where all the ci;j are in normal
form. The fact that an expression c is in normal form is denoted nf(c).

Note that we have speci�ed an applicative order reduction sequence in which
expressions are reduced to weak normal form [20], which is similar to the re-
duction strategy and notion of normal form used in strict functional languages
such as SML [16]. This does not mean that ESFP programs must be evaluated
strictly: we simply use this reduction strategy for data to demonstrate that our
analysis will ensure termination in this case, hence guaranteeing strong nor-
malisation. The fact that we only reduce as far as weak normal form is also
unproblematical since we assume that lambda abstractions only occur as part of
top-level de�nitions. Since a program may only be accepted if all the top-level
de�nitions are accepted by the analysis, this, as we shall demonstrate, means
that each function must terminate for any inputs i.e. strong normalisation will
be ensured. We use Ar(fi) to denote the arity of function fi. FT(e) is used to
indicate that an expression is of non-ground type.

476 Telford A., Turner D.: Ensuring Termination in ESFP

Syntax

d 2 D fi 2 F
xi;j 2 H ei 2 E

Ci 2 C pi 2 G
vi;r 2 M

d ::= fi
def
= �xi;1 : : : xi;n:ei

e ::= xi;j j fi jCi e1 : : : er j e1e2 j case es of hp1; e1i : : : hpr; eri
p ::= Ci vi;1 : : : vi;r

Operational Semantics

xi;j 2 Dom(Env(E)) Env(E)(xi;j)�Env(E)
c

xi;j �Env(E)
c

(V ars)

8i 2 f1 : : : (j � 1)g:nf(ei) ej �Env(E)
cj (nf(cj))

Cie1 : : : er �Env(E)
Cie1 : : : ej�1cjej+1 : : : er

(Constr)

fi
def
= �xi;1 : : : xi;n:Ei

fi �Env(E)
�xi;1 : : : xi;n:Ei

(Func)
e1 �Env(E)

�x:E; e�
Env(E)

c (nf(c))

e1e2 �Env(E)
E[c=x]

(Appl)

(91i:es �Env(E)
Ciei;1 : : : ei;n) (pi � Civi;1 : : : vi;n);

8j:ei;j �Env(E)
ci;j (nf(ci;j))

case es of hp1; e1i : : : hpr; eri�Env(E)
ei[ci;1=vi;1 : : : ci;n=vi;n]

(Case)

Table 1: The Syntax and Semantics of Data in ESFP

Pattern matching over an input to a function will be taken to mean the
application of a case expression to an input. Furthermore, nested patterns will
be unsugared as nested case expressions. In order to help ensure termination,
we stipulate that case expressions must be exhaustive over the patterns of the
type:

De�nition 1. A case expression, of the form, case s of hp1; e1i : : : hpr; eni is
exhaustive over the patterns (of the type of s) i� for every constructor of the
type of s occurs within at the head of the patterns, pi. Furthermore, patterns
nested within a pattern must themselves be representable as exhaustive case

expressions upon a simple variable.

We also assume that super-combinator abstraction has been applied to the orig-
inal program so that we simply have a set of top-level de�nitions and that there
are no de�nitions by partial application.

3 A Termination Condition

We now exhibit a termination condition based upon abstracting the sizes of
terms in the language. The termination condition is based upon a semantic, un-
decidable property of actual parameter expressions. The property is, basically,
that there is some well-founded descent upon some lexicographical ordering of

477Telford A., Turner D.: Ensuring Termination in ESFP

the arguments for any recursive call of the function. We shall call this the mono-
tonic descent property. The termination analysis that we shall develop in later
sections will be a safe approximation to this condition. The theory here is closely
based on that given in [2].

3.1 The Monotonic Descent Property

De�nition 2. The recursive sub-components of a closed algebraic expres-

sion e, is de�ned as Rec(e)
4
= fej je� Ci e1 : : : er ^T(e) � T(ej)g

De�nition 3. The size of a closed expression2, e, is de�ned as follows:

{ If e is not an algebraic type or if e does not have a normal form then jej = !.

{ If e is of algebraic type and normalises then,

jej
4
=

�
0 if Rec(e) = fg
1 +

P
e02Rec(e) je

0j otherwise

In producing a condition for strong normalisation, we need to distinguish be-
tween each call of a function in the program text and, in addition, each call
within the evaluation of a function upon some arguments.

De�nition 4. Let P be a program i.e. a set of function de�nitions. Within P
there are �nitely many calls of each function, f , which we can label with positive
integers to get labelled calls of the form fk. We call k a static label.

Similarly, there are countably many recursive calls of each fk that occur in the
reduction path of some initial expression, f t1 : : : tn. We label these, fk;1; fk;2 : : :

The arguments of each fk;i will be labelled ek;i1 : : : ek;in .

The above labelling enables us to give a characterisation of the distinct (in terms
of points in the program text) recursive calls of a function that are encountered
during an evaluation.

De�nition 5. Let Calls(f t1 : : : tn) be the set of static label-distinct calls of f
that are redexes within an applicative-order reduction of f t1 : : : tn where t1 : : : tn
are closed terms.

De�nition 6. The jth argument of a function f is termed monotonic de-
scending for F � Calls(f t1 : : : tn), written MonDesc(f; j; F), i�

(8k:8i:jek;ij j � jtj j) ^ (9fm 2 F:8i:jem;i
j j < jtj j)

De�nition 7. Let f be a function de�ned on n arguments and let
F � Calls(f t1 : : : tn) (where t1 : : : tn are closed terms that are well-typed but
otherwise arbitrary).

Then f has the monotonic descent property (written MDP(f; F)) i�

F � fg_(9j:MonDesc(f; j; F)^MDP(f; F 0)). Here, F 0 � FnFdesc
j and Fdesc

j

4
=

ffk j fk 2 F ^ 8i:jek;ij j < jtj jg

2 We can also give the size of an open expression, when evaluating with respect to an
environment Env(E), and denote this jej

Env(E)

478 Telford A., Turner D.: Ensuring Termination in ESFP

Ai;j [[x]]�;�
4
=

8<
:

0 if x � xi;j
�! if x � xi;k
Ai;j [[t]]�;� � 1 if �(x) = ftg ^ Unify(x; t)
! otherwise

(1)

Ai;j [[fk]]�;�
4
=
n
fak;0 fg if Ar(fk) = 0 ^ j = 0
�! otherwise

(2)

Ai;j [[Ct a1 : : : ar]]�;�
4
= cs(Rec(E); i; j; �; �) (3)

Ai;j [[case sof hpr; eri]]�;�
4
=

k=r
max
k=1

Ai;j [[ek]]�;�k (4)

Ai;j [[F a]]�;�
4
= max fapa(f; i; j;a; �; �) j (f;a) 2 C [[F]]�;� haig (5)

In (4),

�k =
Sl=jpkj

l=1
B(pk;l; s; �) and B(pk;l; s; �) =

n
�fpk;l := fsgg if Unify(pk;l; s)
� otherwise

Table 2: The de�nition of Ai;j [[E]]�;�

The above says that there must be some argument, j, of f which is both de-
scending at some recursive call point in the program and, moreover, must not
be ascending at any other recursive call point. Furthermore, f must have the
monotonic descent property at all recursive call points where j is not descending.

Theorem8. Suppose the following about the de�nition of a function f :

{ Apart from recursive calls of f (which may indirectly occur in functions called
by f), the de�nition of f comprises only strongly normalising constants and
functions.

{ The typing rules of ESFP are followed.

{ case expressions are exhaustive.

{ f has the monotonic descent property.

Then f is strongly normalising (SN) on all inputs, t1 : : : tAr(f).

Proof. By induction on the size of F | see [24]. 2

4 Termination Analysis By Abstract Interpretation

In this section we de�ne an abstract interpretation3 to detect whether a recur-
sive function de�nition has the monotonic descent property. Here, due to space
considerations, we only give the main de�nitions in our methodology and omit
proofs of soundness and a demonstration of how the abstract interpretation can
be constructed via successive approximations. Full details appear in [24].

3 See [5] for an overview of abstract interpretation.

479Telford A., Turner D.: Ensuring Termination in ESFP

Gi[j] [[x]]�;�
4
= hi (6)

Gi[j] [[fk]]�;�
4
=

(
fg
k[j]

fg if Ar(fk) = 0 ^ k 6= j

h
i if Ar(fk) = 0 ^ k = j
hi otherwise

(7)

Gi[j] [[Ct a1 : : : ar]]�;�
4
=

k=r]
k=1

Gi[j] [[ak]]�;� (8)

Gi[j] [[case s of hpr; eri]]�;�
4
=
]

(Gi[j] [[s]]�;�; (

k=r]
k=1

(Gi[j] [[ek]]�;�k))) (9)

Gi[j] [[F a]]
�;�

4
=
]

(f ;a)2

C [[F]]
�;�

hai

(apg(f ; i; j;a; �; �)
]

(

i=jaj]
i=1

Gi[j] [[ai]]�;�)) (10)

In (9), �k is as for A.

Table 3: The de�nition of Gi[j] [[E]]�;�

4.1 Static semantics

Starting from our basic, operational semantics we wish to obtain a series of
abstract approximations to the idea of size of an expression and its size relative to
a given parameter. Each successive approximation will be an abstract semantics
of the preceding concrete semantics. Following the Cousots' approach [7], we wish
to obtain an adjoint relationship between each abstract and concrete semantics.
The maps, are abstraction, denoted �, which maps from a concrete to an abstract
semantics, and concretisation, denoted , mapping in the opposite direction. To
do so, we need to de�ne a static semantics based upon our operational semantics.
This will form our initial concrete semantics.

De�nition 9. The static semantics of basic ESFP expressions is de�ned as

follows: O [[e]]
4
= f�Env(E):

�
c if (e�Env(E) c) ^ nf(c)
? otherwise

g

4.2 Relative size semantics

We require that the sizes of expressions are in fact relative to some given input.

De�nition 10. The relative size domain, R, is the complete lattice,Z[f!;�!g
(where > = ! and ? = !), with lub operator max and the following additive
and multiplicative operations:

! + s = s+ ! = ! �! � s = s � �! = �!
�! + s = s+ (�!) = s s1 � s2 = s1 + s2 (s1; s2 2 Rnf�!g)
s1 + s2 = s1 +Zs2 (s1; s2 2 Z) s1 � s2 = s1 + (�s2)

De�nition 11. The relative size semantics of an expression, e, with respect

to a parameter x, is de�ned as: R [[e]]x
4
=maxf�Env(E):jejEnv(E)�jEnv(E)(x)jg

480 Telford A., Turner D.: Ensuring Termination in ESFP

4.3 Abstract interpretation of relative size

Before we present our abstract interpretation that approximates the idea of
relative size, we mention an auxiliary analysis that allows us to abstract higher-
order applications. This closure analysis, which is based on that given in [12]
for Scheme, takes an application, F a and produces a set of pairs of the form
fi;a, where fi is a function label and a is an actual parameter sequence and
Ar(fi) � jaj, where jaj is the length of a. This set can be shown to be a sound
approximation of the closures that may result from F a. The top of the abstract
sub-domain of possible functions which may be applied is denoted >F and is
used in the case where an indeterminate function is being applied, which occurs
as the closure analysis cannot be complete. The bottom of the sub-domain, fg,
is used when a variable is applied but there is no corresponding binding within
�. Full details of this closure analysis semantic operator, C [[e]]�;� a, are in [24].

4.3.1 Development of the abstract interpretation

We require an abstraction that can be used to compute an approximation of the
relative size semantics of an expression. To do this, we calculate the contribution
to the size of an expression made by each formal parameter in the current scope.
For example, in the expression, 1 + x, the parameter x makes a contribution to
the size of the result. In addition, there is a constant factor, due to literal parts
of expressions. In the previous example, there is a constant size factor of 1 as a
consequence of the literal 1.

De�nition 12. The A operator is de�ned over the structure of expressions in
Table 2. In the de�nition, � is an environment binding function type expressions
to variables, whilst � is an environment binding pattern matching variables of
algebraic types to expressions. i is a function index whilst 0 � j � Ar(fi). The
above requires the auxiliary de�nitions given below (Defns 13{15).

The key clause in the de�nition is (1).There the size result depends upon whether
a match is made with the parameter with respect to which we are analysing. In
the case of pattern matching variables then if the variable is in � it must be a
recursive sub-component of the value that it is bound to. Otherwise, its relative
size cannot be determined and so this must be approximated by !.

De�nition 13. We de�ne the constructor abstract size function, cs, which
appears in (3) in Table 2, as follows:

cs(fg; i; 0; �; �)
4
= 0

cs(fg; i; j; �; �)
4
= �!

cs(R; i; 0; �; �)
4
= 1 + sv

cs(R; i; j; �; �)
4
=

8<
:

! if 9sk1 ; sk2 2 S:
(k1 6= k2) ^ (sk1 > �!) ^ (sk2 > �!)

�! if sv = �!
1 + sv otherwise

In the above,

S
4
= Map (Ai;j [[�]]�;�)R

481Telford A., Turner D.: Ensuring Termination in ESFP

sv
4
=

X
sk2S

sk

Here Map is the mapping functor, de�ned in the standard way, over sequences.

De�nition 14. We de�ne the abstract applicator for size analysis, apa,
which is used in (5) in Table 2, as follows.

apa(>F; i; j;a; �; �)
4
= !

apa(fg; i; j;a; �; �)
4
= !

apa(ffkg; i; j;a; �; �)
4
= (fak � a

a) + vj

In the above, fa
k

4
=[fak;1 �

0 : : : fa
k;Ar(fk)

�0] and aa
4
=[Ai;j [[a1]]�;� : : :Ai;j [[ajaj]]�;�].

vj
4
=

�
fak;0 �

0 if j = 0
�! otherwise

If xi are the formal parameters of fi,

�0 = f(xi;j 7! aj [�]) j j 2 f1 : : :Ar(fi)g;FT(ai)g where aj [�] is the simultaneous
substitution, aj [�(x)=x]x2FV(aj)^x2Dom(�).

De�nition 15. The abstract size function of a function, fi
def
= �xi;1 : : : xi;n:ei,

relative to parameter j is de�ned for a given environment of non-ground

expressions �, fai;j �
4
=Ai;j [[ei]]fg;�

Performing the abstract interpretation with j = 0 gives the constant size factor
of the expression. Each expression thus has Ar(fi) + 1 interpretations under the
A operator.

De�nition 16. The abstract size vector of an expression e, with respect to
environments � and �, is de�ned as follows:

s(e; i; �; �)
4
=

2
64

Ai;1 [[e]]�;�
...

Ai;Ar(fi) [[e]]�;�

3
75

We need to aggregate the elements of an abstract size vector so that the result
is greater or equal to the size of the expression relative to one particular pa-
rameter. To do this we note that we cannot, of course, determine the value of
jEnv(E)(xi;j)j � jEnv(E)(xi;k)j for j 6= k in general. Consequently, if Ai;j [[e]]�;�
is not �! for j 6= k then R [[e]]xi;k is unknown in general. In such a situation

we can must safely approximate with the ! value, which leads to the following
de�nitions.

De�nition 17. The jth weighting vector is a vector with a 0 in the j position
and ! in all other positions.

De�nition 18. The abstract interpretation of relative sizes over expressions is
de�ned by the component size semantics of an expression, e, with respect to a

parameter, xi;j , is de�ned: R
[[e]]i;j

4
=�Env(E):(wjs(e; i; �(Env(E)); fg)) where

�(Env(E)) is the subset of Env(E) of non-ground bindings and juxtaposition
indicates vector product.

482 Telford A., Turner D.: Ensuring Termination in ESFP

4.3.2 Determining least �xpoints

We form abstract size functions which may be recursive. These recursive equa-
tions may be solved by calculating the ascending Kleene chain, F (�!)i, for 0 � i,
of the corresponding functional F . Since the abstract domain is in�nite, however,
convergence is not guaranteed within a �nite number of steps. The simple chain
structure of our domain however ensures the following, which is proved in [24]:

Lemma19. Let F be a functional corresponding to an abstract recursion equa-
tion formed from our abstract interpretation of relative sizes. Then either lfpF =
F (�!)2 or lfpF = !.

Consequently, we can modify our least �xed point iteration method so that if
the second iteration is not a �xpoint then ! is given as the result. This is an
example of a widening process [8].

4.4 Detecting recursive calls

For a function, fi, we need to perform an analysis of the de�nition of fi which
produces a representation of all potential recursive calls. Each recursive call will
be represented by an component size transformation.

De�nition 20. The constant factors vector and the variable factors ma-
trix for a sequence of expressions, e, and with respect to the parameters of
function fi and environments, � and �, are denoted k(i; e; �; �) and V(i; e; �; �),
respectively, and de�ned as follows:

k(i; e; �; �)
4
=

2
64
Ai;0 [[e1]]�;�

...
Ai;0 [[ejej]]�;�

3
75V(i; e; �; �)

4
=

2
64
Ai;1 [[e1]]�;� : : :Ai;Ar(fi) [[e1]]�;�

...
...

Ai;1 [[en]]�;�: : :Ai;Ar(fi) [[en]]�;�

3
75

De�nition 21. The component size transformation (CST) and for a se-
quence of expressions, e, and with respect to the parameters of function fi and

environments, � and �, is de�ned: T(i; e; �; �)
4
= (V(i; e; �; �);k(i; e; �; �)). The

top of the domain of CSTs,
, consists of a transformation with all ! compo-
nents.

If (V1;k1); (V2;k2) are CSTs then (V1;k1)?(V2;k2)
4
=(V1V2; (V1k2+k1))

if the relevant matrix multiplications are de�ned.

We again use an abstract interpretation process to discover all the component
size transformations that correspond to the actual parameters of a recursive call
of function fj within function fi.

De�nition 22. G is the abstract calls operator and is de�ned over the struc-
ture of expressions in Table 3. G produces a sequence of CSTs. In the de�nition,U
, denotes the concatenation of sequences of CSTs and other auxiliary de�ni-

tions follow below. We also have, for each function, a family of abstract calls
functions which give the CSTs for the recursive calls of function fj within the

de�nition of function fi: f
g

i[j] �
4
= Gi[j] [[ei]]�;�

483Telford A., Turner D.: Ensuring Termination in ESFP

In the de�nition of G, the signi�cant clause is (10). There a test for a recur-
sive call is made. Note also that mutual recursion is dealt with by composing
CSTs produced by the recursive call and the actual parameters. There is also a
widening process that is in correspondence with that for size analysis.

De�nition 23. We de�ne the abstract applicator for calls analysis, apg

which is used in (10) in Table 3, as follows

apg(>F; i; j;a; �; �)
4
= h
i

apg(fg; i; j;a; �; �)
4
= hi

apg(ffkg; i; j;a; �; �)
4
=

8<
:
hi if jaj < Ar(fk)
hT(i;a; �; �)i if fk � fjU
T02fg

k[j]
�0(Map (?T(i;a; �; �))T0) if fk 6� fj

In the above, Map is the standard mapping functor from the category of sets
to that of sequences and (?T(i;a; �; �)) denotes right transformation multipli-
cation. �0 is as that given in Defn 14.

De�nition 24. The abstract calls matrix of recursive calls of function fi is
de�ned thus:

ACM(i)
4
= fr j (v; c) 2 fg

i[i] fgg

where, if xi;j is an algebraic argument, rj
4
=wjvj + cj , wj is the jth weighting

vector and vj is the jth column of v. If xi;j is non-algebraic then rj
4
= !.

Analogously to the monotonic descent property, de�ned over Calls(fi t1 : : : tn)
we may de�ne the abstract descent property over ACM(i), written
ADP(fi;ACM(i)), and, as we show in [24]:

Theorem25. ADP(fi;ACM(i))) MDP(fi;Calls(fi t1 : : : tn)) for any well-
typed closed terms, t1 : : : tn.

5 Adding Subtyping

The above analysis is powerful enough to show that, for example, quicksort
terminates. However, the class of functions admitted is still inadequate for the
purposes of ESFP since we cannot, for example, make de�nitions via a head
of list function (or any similar projection) since such a function is only partial.
Moreover, the operational behaviour of certain total functions depends upon the
form of the input e.g. whether the input is greater than zero. We would like to
have a method of extending the analysis to partial functions (which may have
error expressions for some clauses of case expressions) so that there is a well-
de�ned sub-domain over which they are total and so that they are only ever
applied over expressions within this sub-domain.

To do this we use a simple notion of subtyping, using sets of constructors of
an algebraic type. That is, constructor Ci is within the subtype of a if and only
if a� Ci e1 : : : eAr(Ci) for some expressions ej .

Note that we do not have any notion of subtyping of functions: this is because
we are restricting attention to expressions of algebraic type.

We sketch how the analysis is modi�ed, with full details given in [24].

484 Telford A., Turner D.: Ensuring Termination in ESFP

{ Each of the abstract semantic operator (and correspondingly each abstract
function) has extra parameters, representing environments binding subtype
sets to variables of algebraic types. Thus the modi�ed operators are,

A1
i;j [[i]]

�
�;�e and G

1
i[j;�j]

[[i]]��;�e. In each case, � is an environment of subtypes,

whilst in the latter case, �j is the environment of subtypes that fj was called
with i.e. we no longer match simply on the function label but the subtyping
environments must match too.

{ The analyses will also need to determine whether functions that may be
called have the abstract descent property for the subtyping environment
implied by the actual parameters of the call. If this is not the case then the
top of the relevant abstract domain (! for size analysis,
 for calls analysis)
must result.

{ The main change, and the point of this method, is at case expressions:
instead of analysing all possible expressions that may result we only analyse
those that match the subtype of the switch expression s. For example,

G1i[j;�j] [[case s of hpi; eii]]
�

�;�

def
=
]

(G1i[j;�j] [[s]]
�

�;� ; (

k=r]
k=1

Gk))

where Gk =

�
G1
i[j;�j]

[[ek]]
�k
�k;�

if H(pk) 2 S [[s]]
�k
�;�

fg otherwise
. Here, H(pk) is the

leading constructor of the pattern pk and S [[s]]
�k
�;�, which is also de�ned by

abstract interpretation, gives an approximation to the subtype of the switch,
s. �k is formed by adding the possible subtypes of the pattern matching vari-
ables to the environment, �.

{ Subtype environments need to be partitioned into the possible combina-
tions of singleton sets when a function is encountered. For example, sup-
pose we have the environment fm := f0; Sg; n := fSgg (where 0 and S are
the constructors for the naturals) then this gives rise to two environments,
fm := f0g; n := fSgg and fm := fSg; n := fSgg.

{ The weighting vectors can also be re�ned since, for a base case constructor,
the size of the expression must be 0. Thus, if xj has a base constructor
subtype then it represents size descent from an inductive case constructor.

6 Example

An ESFP encoding of Euclid's gcd algorithm, which is not de�ned for two zero
inputs, is as follows

gcd mn
def
=

casemof
0! error ; (Succ n0) ! n
(Succm0)!

case compare mn of
EQ ! m;
LT ! gcd m (n�m);
GT ! gcd (m� n)n

0 - b
def
=0; (Succ a') - 0

def
=(Succ a'); (Succ a') - (Succ b')

def
=a' - b'

485Telford A., Turner D.: Ensuring Termination in ESFP

The analysis of the function, showing that gcd terminates for two non-zero
inputs, proceeds as follows for � = fm := fSg; n := fSgg:

G1
gcd[gcd;�] [[Egcd]]

fg

�;fg
= G1

gcd[gcd;�] [[case comparemn of E0]]
�

�0;fg

�0 = �fm0 := f0; Sg; n0 := f0; Sgg; � = fm0 :=m;n0 := ng

= fg [G1
gcd[gcd;�] [[gcd (m� n)n]]�

�0;fg [G1
gcd[gcd;�] [[gcd m (n�m)]]�

�0;fg

G1
gcd[gcd;�] [[gcd (m� n)n]]�

�0;fg =n
gcd g1[gcd;fm:=f0g;n:=fSgg] fg;��

A1
gcd ;m [[m� n]]��0;fg A1

gcd ;n [[m� n]]��0;fg
A1

gcd ;m [[n]]�
�0;fg A1

gcd;n [[n]]
�

�0;fg

�
;

�
A1

gcd;0 [[m� n]]��0;fg
A1

gcd ;0 [[n]]
�

�0;fg

���

�a1
1 fa := fSg; b := fSgg fg = �a1

1 fa := f0; Sg; b := f0; Sgg fg � �1

�a1
1 fa := f0; Sg; b := f0; Sgg fg = max(�!; 0;�a1

1 fa := f0; Sg; b := f0; Sgg fg)

The least �xpoint of the above is 0 and thus,

�a1
1 fa := fSg; b := fSgg fg = �1

�a1
2 fa := fSg; b := fSgg fg = �a1

2 fa := f0; Sg; b := f0; Sgg fg � 0

�a1
2 fa := f0; Sg; b := f0; Sgg fg = max(�!;�!;�a1

2 fa := f0; Sg; b := f0; Sgg fg)

Thus, �a1
1 fa := fSg; b := fSgg fg = �! and

G1
gcd[gcd;�] [[gcd (m� n)n]]��0;fg =

n�h
0 �1
�! �!

i
;
h
�!
0

i�o
Thus the ACM gcd with the subtyping environment � is:

h
�1 0
0 �1

i
Hence, gcd has the abstract descent property for inputs with subtypes of the

form indicated by �.

7 Related Work

The general area of term rewriting has covered many aspects of general termi-
nation problems with work by Zantema of particular note (e.g. [27]). Most of
this work does not address the issue of fully automated termination checks for
programs, with [9] being an exception. In more speci�c programming areas, Giesl
has worked on automated termination proofs for nested, mutually recursive and
partial functional programs [10, 3]. This, like the work of Slind on TFL [21],
are based on synthesising term orderings and termination predicates within a
theorem-proving environment. In the more speci�c area of functional program-
ming, a decidable test for a broader class of de�nitions than primitive recursion
has been established for Walther recursion [14]. However, whilst ours is higher-
order and polymorphic, theirs is �rst-order and monomorphic. Moreover, the
discipline requires a programmer to provide di�erent versions of functions for
each algebraic subtype: our subtyping mechanism does this automatically. The
TEA system [18] has used N�ocker's abstract reduction technique (whereby the
standard evaluation of a program is replicated with abstract values; [17]) as a
termination analyser. Their method detects whether a program terminates un-
der a normal order evaluation scheme | it would have to be adapted for strict

486 Telford A., Turner D.: Ensuring Termination in ESFP

evaluation so as to detect strong normalisation. TEA does not deal with error
expressions as we have done in our strongly normalising discipline in that it \usu-
ally treats errors as termination". Abel has also recently produced a termination
checker, the Foetus system based on analysing call graphs [1]. This system only
deals with simple syntactic descent at present.

8 Conclusions and Future Work

We have demonstrated that abstract interpretation can be used as an e�ective
method for determining whether recursive functions terminate. The analysis is
derived from the semantics of the language and uses the same domain of values
employed to analyse the dual, corecursive case. The method can be incorporated
within a compiler for an elementary strong functional programming language.

Recent work in this area has involved extending the basic domain so as
to cope with types such as Rosetree and increasing the sophistication of the
subtyping domain by including a representation of the possible size orderings
between inputs. The purpose of this is to allow algorithms such as mergesort
which divides a list in half.

An advantage of our abstract interpretation approach is that it may be pos-
sible to integrate our algorithm with Cousot's abstract interpretation render-
ing of Hindley-Milner type inference [6]. Thus we would have a single system
which would ensure that type correctness meant that the program would have
to be strongly normalising. Furthermore, analyses used for optimisation, such
as binding-time analysis [12], may be integrated into this mechanism. In conclu-
sion, we believe that this work gives an extensible and modular framework for
broadening the class of algorithms that can be admitted by a syntactic analysis.

Acknowledgement

This work was supported by the UK Engineering and Physical Sciences Research
Council grant number GR/L03279.

References

[1] A. Abel. Foetus - termination checker for simple functional programs. World
Wide Web page, 1998. http://www.informatik.uni-muenchen.de/~abel/
publications/foetus/.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[3] J. Brauburger and J. Giesl. Termination analysis by inductive evaluation. In
C. Kirchner and H. Kirchner, editors, CADE 15, volume 1421 of Lecture Notes
in Arti�cial Intelligence. Springer-Verlag, 1998.

[4] T. Coquand. In�nite objects in type theory. In H. Barendregt and T. Nipkow,
editors, Types for Proofs and Programs (TYPES '93), volume 806 of Lecture Notes
in Computer Science, pages 62{78. Springer-Verlag, 1993.

[5] P. Cousot. Abstract interpretation. ACM Computing Surveys, 28(2):324{328,
June 1996.

[6] P. Cousot. Types as abstract interpretations. In 24th ACM Symposium on Princi-
ples of Programming Languages, pages 316{331, Paris, France, January 1997. ACM
Press.

[7] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proceedings Sixth ACM Symposium on Principles of Programming Languages, San
Antonio, Texas. ACM, 1979.

487Telford A., Turner D.: Ensuring Termination in ESFP

[8] P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In PLILP'92: Programming
Language Implementation and Logic Programming, volume 631 of Lecture Notes
in Computer Science, pages 269{295. Springer-Verlag, 1992. Proceedings of the
Fourth International Symposium, Leuven, Belgium, 13{17 August 1992.

[9] M. C. F. Ferreira and H. Zantema. Syntactical analysis of total termination. In
G. Levi and M. Rodrigues-Artalejo, editors, ALP '94, volume 850 of Lecture Notes
in Computer Science, pages 204{222. Springer-Verlag, 1994.

[10] J. Giesl. Termination of nested and mutually recursive algorithms. Journal of
Automated Reasoning, 19:1{29, August 1997.

[11] E. Gim�enez. Codifying guarded de�nitions with recursive schemes. In P. Dybjer,
B. Nordstr�om, and J. Smith, editors, Types for Proofs and Programs (TYPES '94),
volume 996 of Lecture Notes in Computer Science, pages 39{59. Springer-Verlag,
1995. International workshop, TYPES '94 held in June 1994.

[12] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice Hall, 1993.

[13] P. Martin-L�of. An intuitionistic theory of types: predicative part. In H.E. Rose
and J.C. Shepherdson, editors, Proceedings of the Logic Colloquium, Bristol, July
1973. North Holland, 1975.

[14] D. McAllester and K. Arkoudas. Walther recursion. In M.A. Robbie and J.K.
Slaney, editors, CADE 13, volume 1104 of Lecture Notes in Computer Science,
pages 643{657. Springer-Verlag, 1996.

[15] A.J.R.G. Milner. Theory of type polymorphism in programming. Journal of Com-
puter and System Sciences, 17(3):348{375, 1978.

[16] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The De�nition of Standard
ML | Revised. MIT Press, 1997.

[17] Eric G.J.M.H. N�ocker. Strictness analysis using abstract reduction. In Proceedings
of Conference on Functional Programming Languages and Computer Architectures.
ACM Press, 1993.

[18] S. Panitz and M. Schmidt-Shau�. TEA: Automatically proving termination of
programs in a non-strict higher-order functional language. In P. Van Henten-
ryck, editor, Static Analysis, volume 1302 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[19] S.L. Peyton Jones, R.J.M. Hughes, et al. Haskell 98: A non-strict, purely functional
language. WWW page, February 1999. http://haskell.org/definition.

[20] C. Reade. Elements of Functional Programming. Addison-Wesley, 1989.
[21] K. Slind. TFL: An environment for terminating functional programs. WWW page,

1998. http://www.cl.cam.ac.uk/users/kxs/tfl.html.
[22] A.J. Telford and D.A. Turner. Ensuring Streams Flow. In Michael Johnson, editor,

Algebraic Methodology and Software Technology, 6th Int. Conference, AMAST '97,
Sydney Australia, December 1997, pages 509{523. AMAST, December 1997.

[23] A.J. Telford and D.A. Turner. Ensuring the productivity of in�nite structures.
Technical Report 14-97, University of Kent at Canterbury, 1997.

[24] A.J. Telford and D.A. Turner. A Hierarchy of Languages with Strong Termination
Properties. Technical Report TR 2-00, University of Kent at Canterbury, February
2000.

[25] D.A. Turner. Miranda: A non-strict functional language with polymorphic types.
In J.P. Jouannaud, editor, Proceedings IFIP International Conference on Func-
tional Programming Languages and Computer Architecture, volume 201 of Lecture
Notes in Computer Science. Springer-Verlag, September 1985.

[26] D.A. Turner. Elementary strong functional programming. In P. Hartel and
R. Plasmeijer, editors, FPLE 95, volume 1022 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1995. 1st International Symposium on Functional Program-
ming Languages in Education. Nijmegen, Netherlands, December 4{6, 1995.

[27] H. Zantema. Termination of context-sensitive rewriting. In H. Comon, editor,
RTA '97, volume 1232 of Lecture Notes in Computer Science, pages 172 { 186.
Springer-Verlag, 1997.

488 Telford A., Turner D.: Ensuring Termination in ESFP

