
Coffein: Construction and Presentation of Design
Knowledge

Stefanie Thies
(University of Paderborn, Germany,

thies@hni.uni-paderborn.de)

Abstract: Design is a hard problem: ill defined and open-ended. Schön [Schön (83)] charac-
terized the process of designing an artifact as a successive refinement of reflection and rede-
sign. Critiquing - the communication of reasoned opinion about an artifact - plays a central role
in the design process. A computational critiquing mechanism provides an effective form of
human-computer interaction to support these important aspects of design [Fischer 91]. Sys-
tems which realize such a computational critiquing mechanism are called Critiquing Systems.
These systems provide context sensitive advice and rationale for an artifact designed by a user.
This is realized by delivering so-called critiques, which contain relevant information for the
user to the task at hand and are some kind of rule of thumb. But design experts are not pro-
grammers and programmers are not designers. So we need a module which supports design
experts in stating their knowledge in form of critiques. The basis for this module is a a visual
critiquing language (here called visual CiLa), completed by a knowledge construction support-
ing component. Furthermore a single design expert normally does not have all existing design
knowledge. So the necessary information for building a complete design system is distributed
among different stakeholders. Therefore we additionally need concepts and algorithms to com-
bine and structure the critiquing knowledge of different design experts to construct a trustful,
consistent and wise codesigner. This aspect is done by a module constructing the knowledge
base and a module for constructing the virtual codesigner.

These two aspects - design knowledge construction and presentation - are realized in a tool
called Coffein. This article deals with the way Coffein works and how it influences the design
process.

Key Words: visual language, knowledge construction, multi-expert system, scientific visuali-
zation, knowledge based sysem, life-long-learning, infotmation systems.

Category: Multimedia Information Systems (H.5.1)

1 The Concept of Coffein

Design is a hard problem: ill defined and open-ended. Schön [Schön (83)] character-
ized the process of designing an artifact as a successive refinement of reflection and
redesign. Critiquing Systems are successfully applied in design tasks as shown with
the systems HERMES [Stahl 93], JANUS [Fischer 90], VDDE [Harstad 93] and
IDIAS [Gutkauf 97]. Computational critiquing is the communication of a reasoned
artifact by so-called critiquing systems. So these systems support the necessary
underlying action-reflection-cycle of design: a user designs an artifact, the critiquing

Journal of Universal Computer Science, vol. 6, no. 3 (2000), 324-344
submitted: 15/9/99, accepted: 25/11/99, appeared: 28/3/00  Springer Pub. Co.

system analyses the artifact and delivers so-called critiques (this cycle is presented in
[Fig. 1]).

A critique contains three parts of information [see also Tab. 1]:

1. For which kind of artifact is the critique valid; e.g. how to analyse the artifact.
This information is calledmetric and correlates to the if-condition of a rule.

2. The second information is what a user can do to solve the problem. This is called
advice and correlates to the then-part of the rule.

3. Third a critique contains information why there is a problem with the artifact.
This is calledreason.

Critiques are knowledge carrying pieces and build the knowledge base of critiquing
systems. These systems are easy to extend and to update by adding and modifying
critiques step by step. But designers - who are able to formulate design critiques - are
not programmers‘. Therefore we need a module for knowledge acquisition and con-
struction [see right part of Fig. 2]. Another problem is that collecting domain knowl-
edge from different domain experts can lead to inconsistencies resulting from the
different point of views as well as to an information overload through information
redundancy and overlaps. So we have to structure knowledge from different point of
views; this can be done in the knowledge base. Last but not least, these structure (as

Structure of
Critique

If
(metric)

Then
(advice)

Because
(reason)

Leading
Question

In which situation is
the critique valid?

What can you do to
solve the problem?

Why should you thing
about another solution,
why is there a problem?

Example If two colors of pie
slices in a pie chart are
not distinguishable

Then change one of
the colors, to make
them distinguishable

Because the correlation
between legend and pie
slices is harder if two
colors are very similar.

Formalism first order logic text, script-language text

Table 1: Specification of the Three Parts of a Critique

Critiquing
System

Artifact

critique

Figure 1: Structure of a Critiquing System

325Thies S.: Coffein: Construction and Presentation of Design Knowledge

well as the design knowledge) must be presented to the user by providing the meta-
phor of a virtual codesigner. This means a virtual person who wants to adapt to our
perspective and who wants to give us consistent information and advice about a given
designed artifact.

The following information is structured as follows. First (in Section 2) we explain the
knowledge construction module, focusing on the basis, the visual critiquing lan-
guage. Then (in Section 3) we show what inconsistencies can occur if different
experts modify the knowledge base and how we can handle this situation. In Section
4 we show the method to construct a virtual codesigner. Specially we want to show
how Coffein influences the design process on both sides: (a) influence for a user
designing an artifact and (b) for domain experts formulating their knowledge. This
article ends with a summary and an outlook.

2 The Knowledge Construction Module

Supporting domain experts in stating their knowledge is a difficult task, especially, if
we want to have more than text (which is hard to analyse by a computer). This prob-
lem is well known in the context of knowledge based systems and this also applies to
our problem of programming a metric. Different techniques of knowledge acquisition
and construction have been explored in the last years. In principle three kinds of
knowledge acquisition and construction by learning are distinguished [Knopik 91]:
(1) rote learning, (2) learning by being told, and (3) machine learning. These classes
are ordered by the load to the user: rote learning puts all the load on the user, but the

Knowledge Base

Knowledge
Construction

Knowledge
Presentation

Coffein

Users
doing their task

Domain Experts
doing their task

Knowledge Transfer

User Level Domain Expert Level

formulation
of critiques

getting
advice

Figure 2: Concept of Coffein as Knowledge Transfer Medium

326 Thies S.: Coffein: Construction and Presentation of Design Knowledge

user is aware of what s/he is doing and this technique works quickly. Prolog, Lisp,
Agentsheets and CLIPS are examples of this technique. Learning by being told is
similar to the technique of programming by demonstration [Cypher (93)]. The prob-
lem in the context of design is that changing the chart to a good chart is cannot be
learned by simply looking at some examples.

The third technique of machine learning has no impact on the user. But a lot of exam-
ples are needed. If we assume that a designer works 2 hours on a design and that there
are at least 129 different kinds of design, then we need at least 43 positive and nega-
tive examples (we assume, that we need at least 33% examples to learn the complete
tree with ID3 as mentioned in [Görz (95)]); e.g. 86 h of work for every designer.

So we selected rote learning as the basic technique for constructing the metric. This
technique is provided by visual CiLa, a visual critiquing language. The other two
parts of the critique – the advice and the reason – are primarily text, which is quite
easy to write. So we only have some simple supporting components for this. There is
also a supporting component for investigating given abstracta and advice statements.
We also need the specification of the connection between the design tool and the cri-
tiquing system, which is specified by the artifacts‘ hierarchy.

So we get the structure of the knowledge construction module as displayed in [see
Fig. 3]. The included supporting components - the artifact hierarchy editor, visual
CiLa, the solution editor, the reason editor and the inspection support - are explained
in the following sections. Please notice that after describing the artifact hierarchy as
the basis for all submodules, we put emphasize on the critiquing language for speci-
fying the metric, because this is the hardest task for the user. We further assume that a
designer creates a artifact, sees a problem with the artifact and starts to formulate the
referring critique. This initiating artifact will be seen as the first negative example for
the critique. Negative means that the critique fires; e.g. the system detects that the
artifact has a shortcoming.

Solution Editor

Then Because
Reason Editor

If
visual CiLa

Artifact Hierarchy Editor

formulation
of critiques

Knowledge Construction

Knowledge Base

Figure 3: Structure of the Knowledge Construction Module

327Thies S.: Coffein: Construction and Presentation of Design Knowledge

2.1 The Hierarchy of the Artifact

Basically the artifact hierarchy editor specifies the connection between the critiquing
system and the design tool. But further on it was shown [Thies 95] that defining a
hierarchy of the artifact eases the process of formulating a critique. Furthermore it
lowers the burden of finding names of objects, describing parts of the artifact. Lieber-
mann [Liebermann 89] points out that free defined labelling allows users to construct
their own vocabulary and to model their concept of the artifact. As mentioned in the
context of JANUS [Girgensohn (92)] it is hard for non-programmers to identify the
right object by name. By allowing users to define their own hierarchy and naming, we
overcome this problem. Because of the similarity to the needs of software specifica-
tion languages, we use a subset of UML for describing the artifacts‘ hierarchy. Brown
[Brown (89)] also points out that design in general contains a hierarchical structure.
So an adapted UML-supporting editor allows to define the artifacts hierarchy and to
specify the connection between the design tool and the critiquing system (by Apple
ScriptTM or Live ConnectTM) and is used as the artifact hierarchy editor.

2.2 Visual CiLa

The metric of a critique has to specify when a given artifact has a shortcoming. In the
context of design such decisions depend on how different objects influence each
other and on the relation between them. For example a yellow square does not attract
the eye because it is just coloured yellow. But it attracts the eye because all other sur-
rounding squares have less saturated colours [see Fig. 4].

The challenge for the metric is to express the relations of the involved objects and to
present this interactions easily. In JANUS [Girgensohn (92)] it becomes obvious that
debugging and testing facilities for the inference process are necessary to support
non-programmers. A visual language for the metric - which can visualize the infer-
ence process and the relations between the involved objects - can serve this purpose.
Experts [Schiffer (98)] in the area of visual languages argue that visual programming
languages can be easier to understand than linear text-based programming languages,
because the visual expression of a programming task can more closely mirror the pro-

Figure 4: Visual Attributes of several objects influence each other. This in
an example that good design often depends on several

influencing factors and relations.

328 Thies S.: Coffein: Construction and Presentation of Design Knowledge

grammers way of thinking than the textual expression does. They are able to lower
the load of identifying objects by allowing users to select an object from a given pal-
ette. We want to take these advantages and to support the visual recognition process,
especially in the context of formulating critique metrics.

But first we want to examine the needed expressiveness and structure of the critiquing
language: For example as mentioned above critiques can be seen as rules. This simple
interpretation of critiques as a special kind of production rule also relies on the results
of testing non-programmers‘ problem solving skills (see [Pane 98]). Tests showed
that 54 percent of the non-programmers use some kind of production rule as pro-
gramming style; 95 percent of the test subjects used set and subset specifications for
performing operations on multiple objects. This leads to the conclusions that some
kind of rule-like programming is an appropriate programming method for non-pro-
grammers. So the basic concept of rules - or more general first order logic - can be
used for formulating metrics of critiques. This concept was applied in JANUS [Gir-
gensohn (92)], IDIAS [Gutkauf 97] and VDDE [Harstad 93]. Also the concept of
abstracta, introduced in Hermes [Stahl 93], can be seen as a predicate concept of first
order logic. Referring to the known results [Wason 59], that expressing negative con-
cepts is more difficult than expressing affirmative ones, no explicit negation is pro-
vided. So an easy to programcritique has a DNF clause as condition. The predicates
are calledabstracta.

In order to provide a visual programming method for this language, we first look at
existing innovative approaches of visual logic programming languages in order to
construct an appropriate visual language for the metric of the critique. Agentsheets
[Repenning 95] introduced the successful concept of spreadsheets and palettes to
select predicates for a rule. Pictorial Janus [Saraswat 90] allows the display the infer-
ence mechanism by transporting objects between rules and VLPL [Puigsegur 96] has
a completely visual defined inference process. TPM [Eisenstadt 88] shows the struc-
ture and inference process of Prolog programs. However, the challenge for the metric
is that the relations of the involved objects are important. So the approaches used in
Agentsheets, Pictorial Janus and VLPL fall short. The approach used in TPM is
based on And/Or -Trees and describes relations between objects, but there is no intu-
itive understanding of the meaning of the tree itself. We decided to realize a spread-
sheet-based visual language, which visualizes the inference process via floating
objects and represents a real inference process. In order to allow an intuitive under-
standing of the structure of the critique, we transferred theAnd/Or-Tree to a pipe-,
collector-, and filter-metaphor. These are explained in the following.

2.2.1 The Metaphors

To plug a critique metric together, one can select tiles from a palette and place them
on a spreadsheet. We distinguish three kinds of tiles corresponding to the underlying
metaphors: pipe tiles, filter tiles and collector tiles. These allow an intuitive under-
standing of the metric (i.e. the DNF-clause).

329Thies S.: Coffein: Construction and Presentation of Design Knowledge

The Pipe Metaphor.Pipe tiles can have at most two inputs and two outputs. The
basic concept is that the data flows from left to right and top down. Pipes can simply
connect components of the puzzle as well as perform a kind of OR-connection:
[Fig. 5] shows an example pipe tile with one data input and two data outputs. This
means the datuma comes out at the right side of the tile and at the bottom side of the
tile and the dataa can fulfil the right or the lower part.

The Filter Metaphor. A filter represents a predicate and is build out of a head-filter-
tile, an arbitrary number of input-tiles and an end-filter-tile. This allows us to formu-
late each n-inputs predicate. The principle is that the filter waits until all inputs
received data. Then the predicate - associated with the filter - is checked for the given
data. If it becomes true the data will be sent through the filter from left to right, as in
a pipe. If not, the data will get stuck in the filter.

The Collector Metaphor. A collector represents a connection of different pipes. It is
based on the idea that a collector waits until thedata pressure is high enough and
then allows the data to flow.

a

aa

Figure 5: Pipe Tile

Abtracta(a,b)
a a

bb

Figure 6: Fiter Tiles

Collector(a,b)

(a,b)
b

a

Figure 7: Collector Tiles

330 Thies S.: Coffein: Construction and Presentation of Design Knowledge

At the data inputs is a set of involved objects. [Fig. 7] shows the variablesa andb at
the inputs. At the data output - right side - is the set of a andb. The logic interpreta-
tion of this collector is that it presents the set of variables which are bounded by the
interpretation I to fulfil it.

Other tiles in visual CiLa are the object tank tile and the critique tile. An object tank
represents the need of a logical variable. Critique tiles present the advice as tile. The
interaction between these tiles is shown in the following example.

2.2.2 An Example

It is clear that visual CiLa is able to present each kind of DNF clause. Now let‘s make
clear how we present such an expression visually. Below [see Fig. 8] you see the
expression in the form of a DNF-clause. The next diagram [see Fig. 9] shows the
same expression represented by visual CiLa. In general you can distinguish two parts
of the visual critique: the upper part presenting the first AND-clause and the lower
part presenting the second AND-clause.

x y,() Pred1
1

x y,() Pred1
2

x y,()∧() Pred2
1

y()∨() Bar x() Bar y())∧ ∧();∃

1th And-Clause
2 th And-Clause

Object-Constraints

Metric in first order logic

Figure 8: A typical DNF-Clause used for a critique-metric.

Metric presented in CiLa

Figure 9: Example for an first order logic expression in visual CiLa. This
example shows what the given logic expressions look like in visual CiLa. The
upper part presents the first AND-Clause the lower part present the second

AND-Clause. The numbers indicate special points in the graphic: (1) start of
the or-connection (2) end of the or-connection (3) collector indicating that

both objects are involved in this clause.

Pred_1_1 Pred_1_2

Bar

Bar

Pred_2_1

1

2

3

331Thies S.: Coffein: Construction and Presentation of Design Knowledge

The frame of the critique is build by two object tanks at the left side and the critique
tile at the right side. The object tank represents the connection to the given artifact
and the critique tile represent the connection to the user; i.e. the critique tile contains
the textual advice and textual reason for the user. The numbers in the diagram indi-
cate interesting aspects of the visualization: (1) start of the or-connection (2) end of
the or-connection (3) collector indicating that both objects are involved in this clause

2.2.3 Debugging Facilities

In general two faulty situations can occur: (a) a user gets a critique and does not know
why, and (b) a user expects a specific critiques to appear but it doesn’t. To overcome
these problems, we must give the user the possibility to understand why s/he gets this
critique and what the delivered texts mean. So s/he has to take into consideration
which objects are involved in the critical situation and what relations they fulfil.
Therefore the visual language has to represent the structure of the critique and must
be able to simulate the process of inference. Visual CiLa shows the connection
between the inferred objects and allows the visualization of the inference process by
sending data through the pipes. So both requirements are fulfilled. [Fig. 10] demon-
strates the concept of such a simulation.

Such a simulation builds the starting point for debugging. On a more abstract level,
debugging a critique means to compare the systems‘s actual behaviour against the
user’s expectations and intentions. With poor debugging technology, this comparison
must take place largely within the user’s head, and often overwhelms the ability of
the users to deal with complexity [Liebermann 97]. [Liebermann 95] shows, that peo-
ple first want to locate the source where the mismatch between their expectation and
the system‘s behaviour takes place and then go into detail to correct the critique

So one needs a visualization of the process of checking a critique for a given artifact
and the inference mechanism has to be presented in a linear, animated way. The inte-

Figure 10: Simulation example of a critiquing metric in visual CiLa. After
connecting two concrete objects of the artifact to the object tanks, the simu-
lation starts. Pipes transport the data following their own form. Predicates
check if the received data fulfils the predicate and then send it further to the
right, or the data get stuck. Above both predicates are false - see marked as

red - and the datum get stuck.

data
Flow of

332 Thies S.: Coffein: Construction and Presentation of Design Knowledge

grated debugger of visual CiLa provides such a simulation. To allow an easy location
of the mismatch, the control structure of the debugger is reversible; i.e. the user has
bidirectional control over the debugging process. So a user can run forward until an
error occurs and can then step backwards until the precise source of the error is
located. The state or internal operation of the critiquing system is visualized by show-
ing the data flow and the actual checked sub-condition. This demonstrates another
advantage of abstracta: the structure to simulate remains simple and the textual
description of the underlying predicate allows an easy understanding on a more
detailed level.

2.2.4 Concept Summary of Visual CiLa

The language Visual CiLa allows the programming of critique metrics directly and is
based on a special subset of first order logic. Visual CiLa is build on top of a pipe-,
filter and collector-metaphor and allows users to plug critiques together by placing
tiles on a spreadsheet. Furthermore Visual CiLa supports users in simulating the
inference mechanism, which is represented by the flow of objects through the pipes.
Filters and collectors visualize the functionality of inference and support the debug-
ging process of such critiques.

2.3 The Supporting Modules

Besides the main component of the knowledge construction module, using visual
CiLa, we realized so-called supporting modules which are mentioned only to get a
complete view of the tool Coffein.

2.3.1 The Solution and the Reason Editor

In order to give a reason for a critique, one has to specify a reasoned opinion about an
artifact; in the context of design this is called the design rationale. A design rationale
gives the reason for designing an artifact the way it is or should be designed. To give
a hint, i.e. to argue for a design rationale, one tries to make clear why a general rule
can be applied to a given context. A critique has to allow these things: by defining a
metric, one defines the condition of the referring rule. Like mentioned in Section 2,
we assume that a user provides a negative example at the beginning of the process of
constructing a critique. So the metric is valid for the given situation. The concrete
objects - fulfilling the metric - are provided as a starting point to formulate the reason
for the rule textually. In IDIAS it becomes obvious that people formulate the critiques
referring to the concrete critical situation.

For example one user specified, that it is better to write long labels belonging to a bar
top-down and not left-right. He constructed such a critical situation with a long label
belonging to a blue bar, to make clear the spacing problem. Writing the text he
referred to the blue bar, which was the critical bar with the long label in the given
example; it was hard for him to translate from the given example back to the general
rule.

Visual CiLa supports the user in formulating the advice and reason in the context of
the general rule: the concrete objects and cases of the metric can be referenced by

333Thies S.: Coffein: Construction and Presentation of Design Knowledge

clicking on them, and so errors like the one mentioned above are prohibited. The val-
idation of the applied general rule can be provided by examples, pro and cons of the
rule, links to related background knowledge and so on. Also suggestions on how to
solve this conflict can help to get an understanding of the general rule.

If the user is also aware of a concrete solution, we ask him/her to identify the critical
objects. Now we ask the user to solve the problem and trigger these action and gener-
ate a list of self-disclosure examples, as provided by Chart‘n Art [DiGiano 95]. These
actions are textually described by the user and build the basis for providing a solu-
tion.

2.3.2 The Exploring Module

The exploration module allows the user to explore the already implemented function-
ality of the critiquing system. This means that users are able to find existing abstracta
and to find already typed in reason- and advice-texts. So we implemented an abstrac-
tion parser that helps people to find the right abstracta for their metric and a text com-
parer, by finding similar texts to a given list of keywords.

The Abstraction Parser.Sometime users have problems in formulating their knowl-
edge on a more formal level, such as first order logic. So we provide the possibility of
describing the critical textual and interactively construct the first order logic expres-
sion. Let‘s assume we have the following textual description of the metric:

Referring to the artifact hierarchy, we parse the sentence looking for numbers,
objects, objects attributes and colour names. The rest of the sentence - without exple-
tives or fillers - are assumed as predicates (where the logical context is considered).
So we look for similar predicates implemented in the database of abstracta. The
determined abstracta are displayed.

The Text Comparer.We simply use the technique of LSA [Deerwester 90] for find-
ing the relation between the query given by the user and the texts stored in the data-
base as reason-texts and advice-texts. We provide the matching documents as a list
similar to those used in traditional search engines like AltaVistaTM, LycosTM, metacra-
wlerTM and so on.

3 The Knowledge Base Module

When a critique is formulated it is stored in the knowledge base. But not every update
or extension of a knowledge base will lead to a better knowledge base, even if every
part if the knowledge base is correct. This fact is called Knowledge Anomaly
[Dücker 99]. For example a user adds a critique stating that printing text in blue is

If there aretwo pie slices, which have acolour I cannot distinguish...

Number Object Object Attribute Predicate

334 Thies S.: Coffein: Construction and Presentation of Design Knowledge

bad based on the fact that blue does not attract the eye. Another user suggests using a
blue colour, which reminds us of the ink used for writing in school. A user who gets
the first critique, changes the colour and then gets the second critique will be very
confused, especially if this situation not only occurs with one pair of critiques but
several pairs. To overcome this problem, we have to detect such inconsistencies and
we must make them transparent to the user. So the knowledge base module checks
each critique being placed in the knowledge base. It looks for inconsistencies
between new critiques and the critiques already checked in. To do so, we first have to
define what inconsistencies are (Section 3.1) and then we show how to store and use
this information effectively (Section 3.2).

3.1 Definition of Inconsistency

For production-rules Ojelanki et. al. [Ojelanki 92] identified four types of rule incon-
sistencies: (1)logical equivalence, (2) logical inclusion, (3) condition inconsistency,
and (4)action inconsistency, like shown in the following table [see Table 2]:

Another type of inconsistency [Ojelanki 92] - a kind of rulebase inconsistency - is
logical incompleteness; this means that no computation can be done for at least one
situation. Our problem is that we have no secure information about the actions the
user is told, especially considering that the advice in a critique can contain different
suggestions for solutions (e.g. different actions are recommended). Thisaction
inconsistencyis an important part of the design process and traditional definitions of
inconsistency fall short. So we must take a closer look at the conditions, assuming
that the information we have about the action - the advice and the reason - of the rules
is very fuzzy. For example the fact that two actions are not textually identical does
not ensure that the actions - i.e. the resulting actions of the user - are different.

Fist we want to check the consistency of the conditions of the two critiques. Let‘s
assume the following formalism: . Now let‘s define
a condition inconsistency for two critiques . Now we can formu-
late consistency constraints valid for all designs. All possible relations between the
two conditions can be formulated as a boolean function in this form:

Inconsistency in
the field of AI

conditions are
equivalent

conditions are
not equivalent

conditions are
inclusions

actions are
equivalent

logical
equivalence

condition
inconsistency

logical
inclusion

actions are not
equivalent

action
inconsistency

Table 2: Inconsistencies of Production Rules

critiquei : condi advicei reasoni,→()
critique1 critique2,

f 2

designs∀ f 2 cond1 design() cond2 design(),()

335Thies S.: Coffein: Construction and Presentation of Design Knowledge

Additionally we can assume that each of both conditions (at least for one design)
becomes true and that this condition is false for at least one design. So has to fulfil
the following:

Now let‘s look at all possible boolean functions [see Tab. 3]:

The rows with a white background contain boolean functions which hurt the condi-
tion given above. So the red rows present possible boolean functions for the relation
between two critiques. As seen, we identified six situations [see Tab. 4]:

con1 con2
0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1

0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 1

1 0 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1

1 1 0 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1

id
en

tit
y→

co
m

pl
et

en
es

s→
al

te
rn

at
iv

es→
re

fin
em

en
t→

ge
ne

ra
lis

at
io

n→
co

m
pl

et
en

es
s→

se
pa

ra
tio

n→

Table 3: Possible Relations between two critiques

Name Description Problem

identity both conditions are either true
or both are false.

the critiques criticise the same
design, but have different lines
of argument.

generalisation whenever cond2 is true also
cond1 is true.

cond1 is a more general case
of cond2.

refinement whenever cond1 is true also
cond2 is true.

cond1 is a special case of
cond2.

completeness every time critique with cond1

or cond2 occurs; e.g. no design
without a critique.

It is not possible to create a
critique without a critique.

alternatives It is not possible that both cri-
tiques occur at the same time;
e.g. their compete.

These are potential conflicting
point of views.

separation Everything can happen. no problem

Table 4: Condition Inconsistencies for Critiques

f 2

x x' y y', , ,() 0 1,{ }∈()∃ f 2 0 x,() f 2 1 x',() f 2 y 0,() f 2 y' 1,()∧ ∧ ∧

f 2

designs∀ f 2 cond1 design() cond2 design(),()

336 Thies S.: Coffein: Construction and Presentation of Design Knowledge

Condition identity, condition refinement, condition generalisationandcompleteness
are seen as inconsistencies caused by overload and redundancy of information.Con-
dition alternatives andcondition separation are relations with cause no problems.
The same situations can be defined betweenn conditions of critiques [Thies 99a]

3.2 Usage of (In)Consistency Information

After determining which inconsistencies exist, we build up a graph which presents
these relations. The algorithm for construction is as follows:

• Each node represents a class of equivalent conditions, and has a link to all line of
arguments. Formal: if and are condition identical we have a
node which has a link to , , and a second link to

, , .

• Each black directed edge in the graph represents a condition refinement of two
critiques. Formal: if is a refinement of and has a link to
and has a link to then there is a black edge from to .

• Each red undirected edge in the graph represents acondition completeness
between two critiques. Formal: if is condition complete to and
has a link to and has a link to then there is a red edge from

 to .

• Each blue undirected edge in the graph represents an alternative between the two
critiques. Formal: if is an condition alternative to and has a link
to and has a link to then there is a blue edge from to

.

Please notice that all critiques linked to a node have the same relations to other cri-
tiques; that is to other nodes. Let‘s assume the graph looks like presented in [Fig. 11].

We can now use this graph for efficient evaluation of the critiques. First we check all
nodes with no incoming edges and label them with the result; i.e. true or false. Then
we follow the outgoing edges: nodes connected by a red edge are labelled with the
opposite of the own label. If the node is labelled true, then the black connected nodes

critiquei crit iquej

nodet condi advicei reasoni
condj advicej reasonj

condi condj nodes condi

nodet condj nodet nodes

condi condj nodes
condi nodet condj

nodet nodes

condi condj nodes
condi nodet condj nodet

nodes

Figure 11: Critique Inconsistencies displayed as Graph (Example)

1

4

3

5

2

6

1

critique i
critique i

critique i
critique i

Links of node i
1

2

n
...

critique 2 is refinement of critique 1
critique 3 is refinement of critique 2
critique 4 is refinement of critique 1
critique 1 and critique 6 are complete

critique 1 and critique 5 are alternatives

identical
critiques

337Thies S.: Coffein: Construction and Presentation of Design Knowledge

are evaluated. If the node is labelled false, then the blue connected nodes are evalu-
ated and all black connected nodes are labelled with false. This loop continues until
no further nodes can be labelled. All nodes labelled with true present critiques which
are valid for the given context.

4 The Module for Knowledge Presentation

Designing an artifact is an open-ended problem (see [Rittel 73]) which allows a
diversity of solutions. The situationally best solution depends on the user‘s goals, as
well as on his/her specific background and abilities; i.e. on the users perspective. To
obtain this solution, we often want to have a codesigner: (1) Who tries to adapt to our
perspective; for example to our explicit and tacit goals. (2) Who has a consistent
point of view but (3) also mentions other people‘s opinions and point of views. To
construct such a codesigner, we use the knowledge base of critiques from different
designers as a basis.

But simply putting together these knowledge bases is no solution, as shown in
[Schekelmann (98)] and [Harstad 93]. We identified four types of inconsistencies
which can occur by simply merging the knowledge bases: alternatives, identity,
refinement and completeness.

For each inconsistency, an algorithm and a concept is developed to construct a con-
sistent point of view for the virtual codesigner. The basis for all algorithm is the
graph introduced in Section 3.2 and a user model which allows the comparison of the
recipient of a critique with the author of a critique. This model is constructed by look-
ing at the user‘s interactions with the critiquing system. This model will be explained
in the following section. Afterwards we show how we can implement the user model
and the graph to select a point of view for the virtual codesigner.

4.1 The User Model

Visual CiLa allows users to formulate and modify critiques of the critiquing systems.
So users are not only recipients of delivered critiques, but they are also able to adapt
them to their special needs, vocabulary, background and line of argument. So they
become the authors of the adapted critique; thus, recipients of critiques are normally
also authors of critiques. So a user has two roles: (a) recipient of critiques and (b)
author of critiques. Therefore we have two kinds of information about the user: (a)
The critiquing statistic; i.e. which critiques occur for the user; (b) the versions, lines
of argument of critiques which are adapted by the user. The purpose of the user
model is to get indicators of which texts are more comprehensible and appropriate to
a specific user than others. These two kinds of information are used as follow. The
statistic allows us to construct dependent sets of critiques by graph partitioning; this
means that critiques of one set normally occur together and so present a specific lack
of knowledge on the user‘s part. The user-adapted or formulated critiques are used to
extract information about the user‘s specific wording. Latent Semantic Indexing
[Deerwester 90] and also graph partitioning allows us to group critiques which con-
tain the same wording. So the user model contains information which kind of word-

338 Thies S.: Coffein: Construction and Presentation of Design Knowledge

ing group s/he belongs to and which sets of critiques present the user‘s lack of
knowledge. We can compare users on the basis of lack of knowledge and wording. Of
course the user is also able to inspect his/her user model. For more details see [Thies
99c].

Here we see that end-user modifiable critiquing systems - used as a basis for a group
memory - allows special input for user modelling. Standard techniques of graph par-
titioning are used to establish a user model which allows a measurement of compre-
hensibility of other people‘s arguments for the user - depending on the user‘s specific
wording and background knowledge. This helps to overcome the problem of infor-
mation overload and incomprehensible information. A small test case with 5 persons
produced promising results.

4.2 Selecting a Point of View

Let G be the graph of critiques as discussed in Section 3.2. Each directed path (i.e.
each black path - - paths of length one are allowed) corresponds to one hint

 of the virtual codesigner. Say is the set of all possible
hints for the actual critique base. Define is the list of authors connected to

; e.g. is the set of all authors of all critiques linked to a node of .
Formal: .

4.2.1 Step 1: Complete Critiques:

First we decide the point of view based on complete critiques: If there is ,
and there is a node of which is connected by a red edge with which
is a node of , then calculate the minimal distance of the recipient user and all
member of and all users of . Select the author of

 so, that the distance between that actual user and the selected
author is minimal based on the calculated user model. The referring

 - specially - is marked as „point of view“. Please notice that we can-
not guarantee that the selected author only occurs in OR . But tests
showed that this situation does not occur in real life. If this situation occurs, we select
the - especially - randomly and mark the other hint as „contrary
point of view“.

4.2.2 Step 2: Alternatives of Critiques

If there is , and there is a node of which is connected by a
blue edge with which is a node of , and e.g. is labelled with
„point of view“ then mark with „out of point of view“.

4.2.3 Step 3: Refinement of Critiques

For the remaining unlabelled hints in we select the point of view based on
refinement critiques. If a path has no label and contains a subpath which
is labelled, then label the same way. Label each remaining unlabelled hint
with „point of view“.

pathi

hinti Sethint hintipathi
∪=

authorsi
hinti authorsi pathi

authorsi author author node→{ }
node pathi∈∪=

pathi pathj

nodei pathi nodej

pathj

authorsi authorsj authort
authorsi authorsj∪

authort patht

t i j,{ }∈ hintt
authorsi authorsj

patht t i j,{ }∈ hintt

pathi pathj nodei pathi

nodej pathj pathj hinti
hinti

Sethints

pathi pathi'

pathi hintt

339Thies S.: Coffein: Construction and Presentation of Design Knowledge

After applying these three steps we get the where each element is labelled
with: „point of view“, „out of point of view“, „contrary point of view“. Now we use
this information to construct the behaviour of the virtual codesigner.

4.3 Construction and Behaviour of the Virtual Co-Designer

Let‘s assume the user provides a designer artifact and checks for critiques. Say
is the resulting labelled graph of the critiques, as defined in Section 3.2. Define
as the subgraph of only containing the nodes which are labelled true and only
those edges which connect true labelled nodes. For eachmaximal path of
look up label of the corresponding hint . So is „point of view“, „out
of point of view“ or „contrary point of view“.

Case 1: Point of View.

Select the most specific node of the related path - i.e. at the ending of the
path. Select the critique of this node , whose author has a minimal distance to
the actual user. The advice and reason of the selected critique are displayed directly.

All other critiques corresponding to this path are collected in a list, then they are
ranked depending on the user model. This list is also shown as a selection list to the
user. So the system provides information first and directly which is assumed to be
more comprehensibility for the user. The selection list can be changed by the user and
should be seen as support and not as a dictate. The user is also able to inspect his/her
user model getting wording examples and examples of typical received critiques. The
texts of the complete critique (if they exist) are mentioned as a opinion from another
designer. So the display is structured as seen in Fig. 12.

Sethints

Glab

G'lab

Glab

pathi G'lab

labeli hinti labeli

nodet pathi

nodet

Figure 12: Structure of Critique Display: (a) Point of view
critique, (b) other argumentations as list and

(c) complementary/alternative critiques

Selected Critique

Complementary
Critique

Ranked list of other
argumentations

340 Thies S.: Coffein: Construction and Presentation of Design Knowledge

Case 2: Out of Point of view.Select the critique , like the selected and
directly displayed critique in Case 1. In the same way select , for the alter-
native connected path. Display as selected critique:

The rest is calculated like Case 1.

Case 2: Contrary Point of View.Show nothing to the user.

We decide which critique based on the author‘s knowledge is the best fitting for the
user, also considering the existing inconsistencies. Those critiques become the „point
of view“ of the constructed codesigner. The other critiques are considered as different
points of view the codesigner knows and is able to mention or allude to. So the code-
signer is also able to prod the user to think about different aspects or point of view.

5 A Usage Scenario

The project Intersim [Arias 97] tries to get citizens involved in the planning of bus
routes and city design. They built a simulation of a city including traffic and bus
routes with Agentsheets [Repenning 95] in order to allow citizens to explore the pos-
sibilities and disadvantages of new bus routes. One goal is to make this simulation
available in different public libraries. So that many citizen at different places have the
opportunity to get involved in the design process. We want to set up our usage sce-
nario in this context:

A citizen called John looks at the simulation at the public library in Boulder. He looks
at the bus route and realizes that a residential area has no bus stop. So he formulates a
critique that a living area should have a “reachable” bus stop. The abstraction parser
delivers the abstracta „near“, „very near“ and „not far away“ as possible abstracta.
John looks up, if „near“ is the appropriate abstracta, he formulates his critique with
this abstracta. Then he tests the critique in different situations and gets not satisfac-
tory results. He decides that near is a too rigorous restriction and he tries „not far
away“ which works fine for his requirements. He places a bus stop in the area, dem-
onstrating a solution as well as for solving the problem itself. After playing around a
while he stops this session.

The next day a citizen group at the university of Boulder meets and starts the same
simulation as John did the day before. Sarah sees the new bus stop and removes it
because she lives near this place and hates traffic. Immediately John‘s critique pops

critiqueout

crit iquein

„Other people say the following:“ +
text of +
„But I thing: „ +
text of .

critiqueout

crit iquein

Figure 13: Example, how to display a selected critique

341Thies S.: Coffein: Construction and Presentation of Design Knowledge

up and informs Sarah about his motivation for placing a bus stop there. Now Sarah
has the possibility to make her own critique (referring her problem with traffic) pub-
lic for discussion. After pointing out her objection the group argues that common
issues are more important than personal issues. So Sarah provides a compromise by
moving the bus stop a few meters and putting a critique into the system that she don’t
want to have a bus stop very near of her house. If John looks at the simulation again
he will see the change and get the supporting information provided by Sarah‘s cri-
tique.

So the critiquing system is used as a group memory, even over distance, and is con-
text sensitive. People can be sure that their constraints are considered, if they formu-
late the referring critiques. The argumentation for personal constraints are placed on
a logical level and are based on hard facts, which can be proved and criticised. So
compromises and solutions are easier to find.

6 Conclusion

We introduced the tool Coffein, a development environment for critiquing systems.
The three main modules - knowledge construction module, knowledge base module
and knowledge presentation module - are described. Visual CiLa (the basis of the
knowledge construction module) is explained in detailed. We believe that this lan-
guage is a framework which allows design experts to formulate, to test, and to debug
their expertise as critiquing knowledge. A test with 30 children showed that even 9th
graders with no programming skills were able to formulate critiques in the context of
the game GO, to test them and to debug them. It also became obvious in the test how
the visualization of the process supports the understanding of the mechanism itself.
We identified four types of inconsistencies and showed how they can be stored and
used as an effective inference mechanism in the knowledge base module. This infor-
mation about inconsistencies is used in the knowledge presentation module: it selects
a point of view depending on the user model and represents the information user spe-
cific and consistent; it also alludes to other point of views.

By providing support for expressing design knowledge in the form of critiques and
by delivering these constructed knowledge in a context sensitive, consistent points of
view, we provide a special kind of group memory. This memory can be filled even by
non-programmers by using the visual critiquing language for formulating critiques as
a piece of the designer‘s knowledge. The structuring and combining of these pieces
of advice is done automatically and presented in a human manner, by a virtual code-
signer. We therefore lower two basic burdens of group memories: to populate a group
memory and to access information stored in a group memory.

Acknowledgements

I would like to thank Prof. Dr. Ernesto G. Arias, Prof. Dr. Gitta Domik, Prof. Dr. Gerhard
Fischer, Dipl. Inform. Michael Thies, as well as the group Intersim.

342 Thies S.: Coffein: Construction and Presentation of Design Knowledge

References

[Arias 97] Ernesto, G. Arias: „The Bridging of the Virtual and Physical: The InterSim as a Col-
laboration Support Interface“; Proceedings AI-ED 97, 8th World Conference On Artifi-
cial Intelligence In Education (1997)

[Brown (89)] Browns, D.C., Chandrasekaran, B.:„Design Problem solving (Knowledge Struc-
tures and Design Strategies)“; Morgan Kaufmann Publischer (1989)

[Deerwester 90] Deerwester, S., Dumais, S. T., Furnas, G.W., Landauer, T. K., Harshman, R.:
„Indexing by latent semantic analysis“; Journal of the American Society for Informa-
tion Science, 41, 6 (1990), 391-407.

[DiGiano 95] DiGiano, C., Eisenberg, M.: “Self disclosing design tools: a gentle introduction
to end-user programming”, Proc. DIS’95 Symposium on Action Systems, G.Olson and
S. Schon, ACM Press, Michigan (1995).

[Domik 94] Domik,G., Gutkauf, B.: “User Modeling for Adaptive Visualization Systems”;
IEEE 1994, (1994).

[Dücker 99] Dücker, M., Gutkauf, B., Thies, S.: „A Collaborative Development Environment
for Design-Oriented Critiquing Systems“; Proc. of the 32th Hawaii Int. Conference on
System Sciences (HICCS 99), (1999).

[Eisenstadt 88] Eisenstadt, M., Brayshaw, M.: „The Transparent Prolog Machine (TMP): An
Execution Model and Graphical Debugger for Logic Programming“; Proceedings of
the Conference on Logic Programming, Austin, Texas, (1988).

[Fischer 91] Fischer, G., Mastaglio, T.: „A conceptual framework for knowledge-based critic
systems“; Proc. Decision Support Systems 7, (1991).

[Fischer 90] Fischer, G., Girgensohn, A.: „End-User Modifiability in Design Environments“;
Proc. Human Factors in Computer Systems, CHI ‘90, ACM, Seattle, WA, (1990).

[Girgensohn (92)] Girgensohn, A.: „End-User Modifiability in Knowledge-Based Design
Environments“, Ph.D. Dissertation, Department of Computer Science, University of
Colorado (1992).

[Gutkauf 97] Gutkauf, B., Thies, S., Domik, G.:„A User-Adaptive Chart Editing System Based
on User Modeling and Critiquing“; Proceedings of the Sixth International Conference
UM97, Sardegna, Italy, Springer Verlag (1997).

[Görz (95)] Görz, G.:“Einführung in die künstliche Intelligenz”, Addison-Wesley, Berlin
(1995).

[Harstad 93] Harstad, B.: „New Approaches for Critiquing Systems: Pluralistic Critiquing,
Consistency Critiquing, and Multiple Intervention Strategies“, PHD-Thesis at:
Department of Computer Science, University of Colorado at Boulder, December,
(1993).

[Knopik 91] Knopik, T.: „Methoden des maschinellen Lernens für den interaktiven Wissenser-
werb“, Stuttgart Univ., Diss., (1991)

[Liebermann 97] Liebermann, H.: “Introduction and Guest Editor, Special Issue on Debugging
and Software Visualization”, Communications of the ACM, April (1997).

[Liebermann 95] Liebermann, H., Fry, C.: „Bridging the Gap Between Code and Behavior in
Programming“; Proc. ACM Conference on Computers and Human Interface [CHI-95],
Denver, April (1995).

[Liebermann 89] Liebermann, H.: „Programming Descriptive Analogies by Example“; Proc.
Workshop on Inheritance Hierarchies in Knowledge Representation, Viareggio, Italy
(1989).

343Thies S.: Coffein: Construction and Presentation of Design Knowledge

[Ojelanki 92] Ojelanki, K., Bryson, N.: „A Formal Method for Analyzing and Integrating the
Rule-Sets of Multiple Experts“; Proc. Information Systems; Vol. 17, ISBN: 0306-4379
925500-000, (1992).

[Pane 98] Pane, J. F., Ratanamahatana, C. A., Meyers, B. A.:„Analysis of the Language and
Structure in Non-Programmers‘ Solutions to Programming Problems“, Report at:
Carnegie Mellon University, School of Computer Science (1998).

[Puigsegur 96] Puigsegur, J. , Augusti, A., Robertson, D.: „A Visual Logic Programming Lan-
guage“; Proceedings of the Conference on Visual Languages, Boulder, Colorado
(1996).

[Repenning 95] Repenning, A., Summer, T.: „Agentsheets: A Medium for Creating Domain-
Oriented Visual Languages“, Proc.„IEEE Computer“, Number 3, Volume 28, (1995)

[Rittel 73] Rittel, H. W. J., Webber, M.: „Dilemmas in a general theory of planning“; Proc. Pol-
icy Sciences, 4:155-169, (1973).

[Saraswat 90] Saraswat, V., Kahn, K. M., Levy, J.: “Janus: A Step forward towards Distributed
Constraint Programming“; Proceedings of the North American Conference on Logic
Programming, Austin, Texas, MIT Press, October (1990).

[Schiffer (98)] Schiffer, S.: “Visuelle Programmierung“, Addison Weslay Longmann Verlag,
Bonn, ISBN 3-8273-1271-x, (1998).

[Schekelmann (98)] Schekelmann, A.: „Materialflußsteuerung auf der Basis des Wissens
mehrere Experten“; HNI-Verlagschriftenreihe, ISBN 3-931466-46-9 (1998).

[Schön (83)] Schön, D.A.: “The Reflective Practitioner - How professionals think in action“;
Basic Books, Inc., Publishers, New York, ISBN 0-465-06874-X, (1983).

[Cypher (93)] Cypher, A.: „Watch What I Do, Programming by Demonstration“, MIT Press,
ISBN 0-262-03213-9 (1993).

[Stahl 93] Stahl, G.: „Interpretation in Design: The Problem of Tacit and Explicit Understand-
ing in Computer Support of Cooperative Design“; Ph.D. dissertation. Department of
Computer Science. University of Colorado at Boulder (1993).

[Thies 99a] Thies, S.: „Konstruktion von pluralistischem Visualisierungswissen“; GI-Graphik-
tag 1999, Rostock (1999).

[Thies 99b] S. Thies; „User Modeling for Critiquing“; Proc. User Modelling UM 99, Canada,
Banff (1999).

[Thies 99c] Thies, S.: „Benutzeradaptivität für Critiquing Systeme“, Abis 99, Magdeburg
(1999).

[Thies 95] Thies, S.: „Ein benutzeradaptives Kritiksystem zur Erstellung von Business-
Grafiken, modelliert durch eine Regelsprache“; Diplomarbeit, Universität Paderborn,
FB17, vorgelegt bei Prof. Dr. Gitta Domik (1995).

[Wason 59] Wason, P. C.: „The Processing of Positive and Negative Information“; Quarterly
Journal of Experimental Psychology, Number 11, Volume 92, (1959).

344 Thies S.: Coffein: Construction and Presentation of Design Knowledge

