
Some Elements of Z Specification Style: Structuring Techniques

Anthony MacDonald

Department of Computer Science and Electrical Engineering
and

Software Verification Research Centre
The University of Queensland

Brisbane 4072, Australia
email:fantig@csee.uq.edu.au

David Carrington

Department of Computer Science and Electrical Engineering
and

Software Verification Research Centre
The University of Queensland

Brisbane 4072, Australia
email:fdavecg@csee.uq.edu.au

Abstract: This article investigates the issue of structuring Z specifications. It uses examples
from a large specification (the production cell) to examine both conventions for using Z and
notational extensions, including Object-Z. Because of the importance of good structure within
a specification, specifiers need to be aware of a range of structuring techniques and understand
where each is applicable.
Key Words: Formal specification, Z notation, specification structure.
Category: D.2.1, F.3.1, F.4.3.

1 Introduction

[Kernighan and Plauger, 1978] assert that “Good programming cannot be taught by
teaching generalities. The way to learn to program well is by seeing, over and over,
how real programs can be improved by the application of a few principles of good prac-
tice and a little common sense”. We feel this applies equally to specifications, and in
this article we attempt to highlight the suitability of differing structuring techniques for
particular situations.

Application of formal methods and, in particular, Z [Toyn, 1999, Spivey, 1992] is
increasing. Z is a notation rather than a specific method and the notation provides many
ways to specify systems. This flexibility raises a question: is the structure of the spec-
ification important? To answer this question, we consider what Z specifications aim to
achieve and whether satisfying these aims is assisted by appropriate choices of struc-
ture.

[Spivey, 1989] states that formal specifications provide a precise description of a
system without unduly constraining how the system achieves it. Specifications allow
questions about the system to be answered without having to “disentangle the informa-
tion from a mass of detailed program code, or to speculate about the meaning of phrases
in an imprecisely worded prose description”. Spivey also states that a formal specifica-
tion can act as the single reference point between customer, designer and programmer.
Specifications are supposed to capture system requirements clearly and concisely. For-
mal specifications aim to provide a concise and unambiguous description of a problem
and should allow clear communication of the expected system behaviour.

Journal of Universal Computer Science, vol. 6, no. 12 (2000), 1203-1225
submitted: 28/2/00, accepted: 13/10/00, appeared: 28/12/00 Springer Pub. Co.

Can specification structure help achieve these aims? Normal Z practice is to struc-
ture a specification as formal schemas embedded in informal explanatory text. However
with Z’s increasing popularity, it is being used in a larger range of situations and the size
of specifications is increasing. The problems faced when writing/reading large specifi-
cations often mirror those associated with large pieces of programming code. Just as
techniques were developed and used to structure code at a higher level than proce-
dures, techniques must be used to structure large specifications at a higher level than
schemas. Approaches applicable to large software systems may be applicable to large
specifications. An‘in the large’ structuring technique should enable large specifica-
tions to satisfy the aims of formal specifications. Any additional structuring technique
should complement using schemas for lower-level structure. The components of the
specification should be independently understandable and should compose easily to
form an understandable whole without reference to unnecessary detail. Unfortunately
there is no single structuring technique: different techniques suit different situations.
This article demonstrates six different structuring techniques to highlight the choices
available to specifiers, starting with the simplest, or flat style. A logical progression
from this is the “Oxford” style which partitions the specification into components and
which can be seen in [Hayes, 1993, Chapter 2]. The third style parameterises simi-
lar components to avoid duplication. [Hayes, 1993, Chapter 5] provides an example.
Two further techniques use extensions to Z to impose structure: the first uses a li-
brary/module extension of Z developed by [Hayes, 1993, Hayes and Wildman, 1993]
and the second uses Object-Z [Duke and Rose, 2000, Smith, 1999, Rose, 1992]. Com-
bining object-orientation with Z has been investigated by many people, including
[Schuman and Pitt, 1987] and [Hall, 1990]. Two collections [Lano and Houghton, 1994,
Stepneyet al., 1992] describe work on extending Z with object-oriented features. These
five specification styles can be categorised as bottom-up specification styles and focus
on building large specifications from smaller specification components. A final style of
specification is also introduced that builds the specification top-down. This final style
of specification is similar to the flat style, but provides another view. We believe each of
the six specifications are equivalent in the behaviour they define, but this has not been
formally verified.

The article is divided into the following sections. [Section 2] introduces the produc-
tion cell, which is used as the basis of our study. [Section 3] introduces the bottom-up
specification structuring techniques using examples from a specification of the produc-
tion cell case study, and [Section 4] introduces the top-down specification technique.
[Section 5] discusses the suitability of each technique when applied to both small and
large specifications. The article closes with conclusions from the discussion.

2 Production cell

The original production cell can be found in a metal processing plant in Karlsruhe,
Germany. Forschungszentrum Informatik (FZI), Karlsruhe, used the production cell
as the basis for a study [Lewerentz and Lindner, 1995] of formal methods for criti-
cal software systems. The first step of that study generated a requirements document
[Lewerentz and Lindner, 1995, Chapter 2] that attempts to capture, in plain language,
the specification of a software controller for the production cell. The software controller
is required to control a simplified simulation [see Fig. 1] of the production cell which
runs cyclically.

The production cell simulation (the system) takes a metal blank as input. The metal
blank is transported by a conveyer belt (the feed belt) to an elevating rotary table. The
elevating rotary table rotates and rises vertically to present the metal blank for the robot
to pick up. The robot takes the metal blank to a press. The press presses the metal blank
and the robot retrieves the metal blank. The robot transports the metal blank to a second
conveyer belt (the deposit belt). The deposit belt transports the metal blank to the crane.

1204 MacDonald A., Carrington D.: Some Elements of Z Specification ...

Elevating

Rotary Table

Press

Feed Belt

Deposit Belt

Robot

Arm1 Arm2

Crane

Figure 1: The production cell

The crane picks up the metal blank and transports the metal blank to the feed belt and
completes the cycle.

The system actions are further complicated by a desire for speed and efficiency. To
accommodate these aims, the robot is fitted with two arms. The arms are placed at right
angles to each other and rotate together. The arms can extend/retract and load/unload
independently. A second consequence of the aim for speed and efficiency is that the
system should be able to handle multiple metal blanks in different parts of the system
concurrently.

Safety and liveness requirements also constrain the system’s operation. Safety re-
quirements are most important in this setting, as violation of them can lead to human
injury or machine damage. Violation of liveness results in safe failure in the worst
case. The safety requirements include restricting machine mobility to within safe lim-
its, avoiding collisions between machines, not dropping metal blanks outside safe areas
and keeping metal blanks sufficiently distant.

The specifications all make the following assumptions:

– all component movement is discrete, and
– conveyor belt movement is hidden and the belts are restricted to holding a single

metal blank each.

3 Bottom-up Z specification styles

Our Z specification [MacDonald and Carrington, 1994][1995][MacDonald, 1998]1 of
the system has been built in a bottom-up manner. The first part of the specification is
the independent specification of each component. The system is subdivided into the
1 [MacDonald and Carrington, 1994] is a complete production cell specification; this article is

extracted from [MacDonald and Carrington, 1995] and [MacDonald, 1998].

1205MacDonald A., Carrington D.: Some Elements of Z Specification ...

following components: feed belt, elevating rotary table, robot, press, deposit belt and
crane. The independent specification of each component captures the local state infor-
mation and the allowable operations on the state. The independent specifications do not
take into account relationships between different components. For example, the robot
cannot pick up a metal blank from the elevating rotary table if no metal blank is there;
however this information is not relevant to the independent specifications of either the
robot or the elevating rotary table. The independent specifications, each with their own
local state, are combined to give the overall state of the system. Operations from the in-
dependent specifications are promoted to apply to the total state and are adjusted to take
into consideration the relationships between components. The system is modelled by
the overall state and the corresponding operations, but the operations are partial and are
only guaranteed to succeed (i.e., have a specified behaviour) when their pre-conditions
are satisfied. The final section of the specification extends the partial operations to total
operations. This is achieved by specifying possible error cases for each partial operation
as an error schema. Joining the partial operation and the error schema via the schema
calculus provides the final operation.

The five structuring techniques are explained using the robot section of the speci-
fication. The robot has several components and is introduced using the flat style. The
other techniques are introduced relative to this initial specification.

3.1 Flat

The robot has two arms, called arm1 and arm2, and four discrete orientations.

1 - load arm1 is where arm1 is aligned with the elevating rotary table and arm2 is not
aligned with any other production cell component,

2 - load arm2 is where arm2 is aligned with the press and arm1 is not aligned,
3 - unload arm2 is where arm2 is aligned over the deposit belt for unloading and arm1

is not aligned, and
4 - unload arm1 is where arm1 is aligned with the press and arm2 is not aligned.

RobotOrientation::= load arm1 j load arm2 j unload arm2 j unload arm1

Each robot arm has two attributes: the first,ComponentLoaded, records whether
the robot’s arm is carrying a blank (loaded) or not (unloaded) and the second,
Arm Extent, records whether the arm isretractedor extended.

ComponentLoaded::= loadedj unloaded
Arm Extent::= retractedj extended

Initially, both arm1 and arm2 areunloadedandretractedand the robot’s orientation
is load arm1.

Robot
robot orientation:

RobotOrientation
arm1 store: ComponentLoaded
arm2 store: ComponentLoaded
arm1 extent: Arm Extent
arm2 extent: Arm Extent

Init Robot
Robot

robot orientation= load arm1
arm1 store= unloaded
arm2 store= unloaded
arm1 extent= retracted
arm2 extent= retracted

For safety reasons, the robot must not rotate if either arm is extended. The robot’s
rotation does not change either the arm store status or the arm extension status, but only
accesses the relevant variables.

1206 MacDonald A., Carrington D.: Some Elements of Z Specification ...

RotateRobot0
�Robot
new pos? : RobotOrientation

arm1 extent= retracted^ arm2 extent= retracted
robot orientation0 = new pos?
arm1 store0 = arm1 store^ arm2 store0 = arm2 store
arm1 extent0 = arm1 extent^ arm2 extent0 = arm2 extent

Arm1 operations do not change the robot’s orientation or attributes of arm2.

�Arm1
�Robot

robot orientation0 = robot orientation
arm2 store0 = arm2 store
arm2 extent0 = arm2 extent

To extend arm1, the robot must be at one of two orientations:load arm1 or
unload arm1. At this level of abstraction, interactions between the arm and either the
elevating rotary table or the press are ignored. The store state of the arm is not changed.
The result of anExtendArm1 0 operation is the arm extended. A successful retract
operation leaves arm1 retracted without changing the store state of the arm or moving
the robot.

ExtendArm1 0
�Arm1

robot orientation2
fload arm1; unload arm1g

arm1 store0 = arm1 store
arm1 extent0 = extended

RetractArm1 0
�Arm1

arm1 store0 = arm1 store
arm1 extent0 = retracted

Loading arm1 only occurs when the robot is at orientationload arm1 and the arm is
extended and unloaded. A load arm1 operation causes the arm to be loaded with no other
change. Unloading arm1 has as its pre-condition that the orientation isunload arm1 and
the arm loaded, and as its post-condition that the arm is unloaded.

Load Arm1 0
�Arm1

robot orientation= load arm1
arm1 store= unloaded
arm1 extent= extended
arm1 store0 = loaded
arm1 extent0 = arm1 extent

Unload Arm1 0
�Arm1

robot orientation= unload arm1
arm1 store= loaded
arm1 extent= extended
arm1 store0 = unloaded
arm1 extent0 = arm1 extent

Operations for arm2 are almost identical except that they occur at orientations
load arm2 andunload arm2 instead of orientationsload arm1 andunload arm1. They
are not shown since they do not contribute directly to the discussion. However, the ex-
istence of multiple arms is important to the discussion.

1207MacDonald A., Carrington D.: Some Elements of Z Specification ...

3.2 Partitioned

The second technique partitions the robot into components. Each arm is specified and
then included in the robot2.

Arm1
arm1 store: ComponentLoaded
arm1 extent: Arm Extent

The given typeRobotOrientationmust be declared before the arms as the arm oper-
ations, except for retraction, are orientation-dependent. As access to the robot attribute
robot orientationis not possible, the operations require an input parameter. The input
parameter,current pos?, contains the arm’s current orientation and is used to ensure
that extending, loading and unloading of an arm occurs at the correct orientations.

ExtendArm1
�Arm1
current pos? : RobotOrientation

current pos? 2
fload arm1; unload arm1g

arm1 store0 = arm1 store
arm1 extent0 = extended

Load Arm1
�Arm1
current pos? : RobotOrientation

current pos? = load arm1
arm1 store= unloaded
arm1 extent= extended
arm1 store0 = loaded
arm1 extent0 = arm1 extent

Arm2 is defined similarly and is omitted for brevity.
The robot’s state schema is composed of three component state schemas. Defining

the schemaRobot0 is unnecessary here but simplifies later promotion operations. An
extra operation,GenerateOrientation, outputs the robot’s current orientation for input
to the arm operations.

Robot0 b= [robot orientation: RobotOrientation]

Robot
Robot0
Arm1
Arm2

GenerateOrientation
�Robot
current pos! : RobotOrientation

current pos! = robot orientation

Promoting operations on the arms to the robot state is straight-forward and in-
volves a simple framing schema and the schema calculus. The framing schema for
arm1 (Arm1 Ops) constrains the state variables that an arm1 operation can change to
only those from theArm1 state.

Arm1 Ops b= �Robot^ �Robot0 ^ �Arm2

Load Arm1 0 b= GenerateOrientation>> (Arm1 Ops^ Load Arm1)

Without the input parameter to the arm1 operations, separate framing schemas are
required for each operation, making the specification larger and more complicated. The
robot’s arms are identical in function and differ only in the orientations that an arm can
be extended, loaded or unloaded. The next three structuring styles specify a generic arm
which is instantiated twice.
2 The complete specification of the arms and the robot are found in the appendix of

[MacDonald, 1998].

1208 MacDonald A., Carrington D.: Some Elements of Z Specification ...

3.3 Parameterised

The parameterised specification defines a generic arm which is instantiated twice in the
robot3. A generic arm is specified as an independent entity parameterised onOrientation.
An arm does not contain information to restrict its actions to specific orientations but
captures the existence of such orientations. The arm state schema contains two new
state variables,load posandunload poswhich restrict the orientations at which load-
ing and unloading of an arm can occur. The variablesload posandunload posare never
changed (after initialisation) and�Arm is redefined to equate these variables (replacing
the conventional definition).

Arm[Orientation]
store: ComponentLoaded
extent: Arm Extent
load pos: POrientation
unload pos: POrientation

�Arm[Orientation]
Arm[Orientation]
Arm0[Orientation]

load pos0 = load pos
unload pos0 = unload pos

The arm operations differ slightly from those specified in the partitioned version.
Apart from the obvious addition of a generic parameter, an extend operation can al-
ways occur at this level of abstraction, i.e.Extendhas no pre-conditions and the post-
condition is an extended arm. The load and unload operations compare the input
current pos? with the variableload pos/unload posto ensure the operations proceed at
valid orientations. The specifications ofExtendandLoadhighlight two possible meth-
ods of defining operations within a component. The specification ofExtenddefers deci-
sions on when an extension is suitable to the caller of the operation. The specification of
Loadhowever defines that loading should always be constrained to specific orientations
and that the caller will define these orientations. BothExtendandLoadcould have been
specified in either way, but they are specified differently to highlight different methods
within the parameterised style.

Extend[Orientation]
�Arm[Orientation]

extent0 = extended
store0 = store

Load[Orientation]
�Arm[Orientation]
current pos? : Orientation

current pos? 2 load pos
extent= extended
store= unloaded
extent0 = extent
store0 = loaded

Compared to the flat specification, the robot’s state schema changes in two ways: the
number of state variables decreases by hiding arm details within the generic arm schema
and predicates constraining where each arm can be extended and loaded/unloaded are
added. This is an example of a common trade-off to be made when writing Z specifi-
cations; either putting constraints as part of a state invariant or putting them on every
operation that might otherwise violate them. Extra constraints on the arms are needed
because the arm specification is independent of the robot. For example, at the level of
an arm it is logical to allow extension unconditionally, but for safety reasons the robot
allows arm extension at certain orientations only.

3 The complete specification of the arm and the robot can be found in
[MacDonald and Carrington, 1994].

1209MacDonald A., Carrington D.: Some Elements of Z Specification ...

Robot
robot orientation: RobotOrientation
arm1; arm2 : Arm[RobotOrientation]

arm1:extent= extended, robot orientation2 fload arm1; unload arm1g
arm1:load pos= fload arm1g ^ arm1:unload pos= funload arm1g
arm2:extent= extended, robot orientation2 fload arm2; unload arm2g
arm2:load pos= fload arm2g ^ arm2:unload pos= funload arm2g

The robot’s operations change in several ways. Framing schemas4 are used to pro-
mote the arm operations to the robot state. These restrict an operation to apply to either
arm1 orarm2. The framing schema for arm1,Arm1 Ops, equates bothrobot orientation
andarm2 and bindsarm1 andarm10 to Arm andArm0 respectively.

Arm1 Ops
�Robot
�Arm[RobotOrientation]

arm20 = arm2
robot orientation0 = robot orientation
arm1 = �Arm
arm10 = �Arm0

Binding arm1 to Arm is necessary as the expressionarm1:extentis valid, while
arm1:Load is not. By including both�Robotand�Arm[RobotOrientation] and bind-
ing arm1 to Arm, the framing schema allows theLoadoperation on anArm to be pro-
moted and used at the robot level onarm1.

Load Arm1 0 b= GenerateOrientation>>
((Arm1 Ops^ Load[RobotOrientation]) n (�Arm[RobotOrientation]))

Using theGenerateOrientationschema defined in [Section 3.2], the current ori-
entation is piped to the load arm operation. The arm operation is restricted to chang-
ing only arm1’s state variables with all�Arm[RobotOrientation] occurrences hidden
(�Arm[RobotOrientation] is present in bothArm1 OpsandLoad[RobotOrientation]).

The preceding techniques use standard Z. The next two techniques use extensions
to Z to structure the specification.

3.4 Library

Specifying the robot using libraries is a logical extension of the parameterised specifi-
cation. An arm library [see Fig. 2] is specified and used by the robot5.

The library is parameterised by the typeOrientation. Parameterisation is applied
to the library as a whole rather than the individual schemas and simplifies the use of
genericity. The library is also textually enclosing allowing theload posandunload pos
state variables of the parameterised version to be constants within the library. A special
definition of�Arm is not required. The major differences between the library style
and the parameterised style occur at the robot level when the arm is used. Prior to use,
a library must be instantiated. As the specification requires two arms, the instantiated
4 This technique requires an additional framing schema to be used at initialisation. See

[MacDonald and Carrington, 1994].
5 The complete specification of the robot is in the appendix of [MacDonald, 1998].

1210 MacDonald A., Carrington D.: Some Elements of Z Specification ...

library Arm[Orientation]

An arm has two state variables. The first,store, records whether an arm is loaded or
unloaded and an arm is initially unloaded. The second,extent, records whether the
arm is retracted or extended and is initialised to retracted. Associated with an arm are
two constants,load posandunload pos, which are the orientations where an arm can
be loaded or unloaded. The values of the constants are set at instantiation time.

Arm Extent::= retractedj extended
load pos; unload pos: POrientation

State
store: ComponentLoaded
extent: Arm Extent

Init
State

store= unloaded
extent= retracted

Arm extension and retraction always succeed (at this level of abstraction) and change
the value ofextentwhile leavingstoreunchanged.

Extend
�State

extent0 = extended
store0 = store

Retract
�State

extent0 = retracted
store0 = store

An arm can only load and unload at certain orientations and to perform aLoad or
Unload operation, the arm must compare the current arm orientation to the set of
allowable load or unload orientations. These operations change only thestorevariable
of the arm.

Load
�State
current pos? : Orientation

current pos? 2 load pos
extent= extended
store= unloaded
extent0 = extent
store0 = loaded

Unload
�State
current pos? : Orientation

current pos? 2 unload pos
extent= extended
store= loaded
extent0 = extent
store0 = unloaded

endlib

Figure 2: The arm library

library must be decorated. The values ofload posandunload poscan be set when the
arm is instantiated.

instantiate Arm1 :: Arm[RobotOrientation]
Arm1 :: load pos= fload arm1g

Arm1 :: unload pos= funload arm1g

The robot’s state schema consists of three component state schemas.

Robot0 b= [robot orientation: RobotOrientation]

1211MacDonald A., Carrington D.: Some Elements of Z Specification ...

Robot
Robot0
arm1-Arm1 :: State
arm2-Arm2 :: State

arm1-extent= extended, robot orientation2 fload arm1; unload arm1g
arm2-extent= extended, robot orientation2 fload arm2; unload arm2g

The qualificationarm1- ensures all variables ofArm1 :: Stateare prefixed with
arm1-. Otherwise, the variables in the two arm schemas are unified as happens normally
in Z when schemas are combined. The decoration,Arm1, that occurs in the instantia-
tion, only applies to the schemas in the library. [Hayes and Wildman, 1993] choose this
approach “because it separates the concerns of qualification of names and decoration of
schemas”. The framing schema for arm1 is simplified to

Arm1 Ops b= �Robot^ �Robot0 ^ arm2-Arm2 :: �State

which allows changes to arm1’s state variables only. Loading arm1 becomes

Load Arm1 0 b= GenerateOrientation>> (arm1-Arm1 :: Load^ Arm1 Ops)

3.5 Object-Z
Specifying an arm [see Fig. 3] in Object-Z is similar to the library specification. The
specification is simpler because promoting operations in Object-Z is easier. This means
that we do not bother to parameterise the arm class. The robot operations differ from
those in the previous styles because each Object-Z operation schema has a delta (�)
list that defines those state variables that potentially change. This simplifies the oper-
ations by removing the equating of variables that do not change. For example,Extend
becomes a simple two line schema. Operations without a delta list inspect the state
without causing any change.

ComponentLoaded::= loadedj unloaded

Arm Extent::= retractedj extended

Arm

extent: Arm Extent
store: ComponentLoaded

INIT

extent= retracted
store= unloaded

Retracted
extent= retracted

Extend
�(extent)

extent0 = extended

Retract
�(extent)

extent0 = retracted

Load
�(store)

extent= extended
store= unloaded
store0 = loaded

Unload
�(store)

extent= extended
store= loaded
store0 = unloaded

Figure 3: The arm class

1212 MacDonald A., Carrington D.: Some Elements of Z Specification ...

Robot Orientation::= load arm1 j unload arm1 j load arm2 j unload arm2

RobotBase

orientation: Robot Orientation
INIT

orientation= load arm1

Rotate
�(orientation)
new pos? : Robot Orientation

orientation0 = new pos?

Arm1Orientation b= [orientation2 fload arm1; unload arm1g]

Arm2Orientation b= [orientation2 fload arm2; unload arm2g]

LoadArm1Orientation b= [orientation= load arm1]

LoadArm2Orientation b= [orientation= load arm2]

UnloadArm1Orientation b= [orientation= unload arm1]

UnloadArm2Orientation b= [orientation= unload arm2]

Figure 4: The robotbase class

Robot

base: RobotBase
arm1; arm2 : Arm

arm1 6= arm2
arm1:extent= extended, base:Arm1Orientation
arm2:extent= extended, base:Arm2Orientation

Init b= arm1:Init ^ arm2:Init ^ base:Init

Rotate b= arm1:Retracted̂ arm2:Retracted̂ base:Rotate

ExtendArm1 b= arm1:Extend^ base:Arm1Orientation

ExtendArm2 b= arm2:Extend^ base:Arm2Orientation

RetractArm1 b= arm1:Retract

RetractArm2 b= arm2:Retract

Load Arm1 b= arm1:Load^ base:LoadArm1Orientation

Load Arm2 b= arm2:Load^ base:LoadArm2Orientation

Unload Arm1 b= arm1:Unload^ base:UnloadArm1Orientation

Unload Arm2 b= arm2:Unload^ base:UnloadArm2Orientation

Figure 5: The robot class

1213MacDonald A., Carrington D.: Some Elements of Z Specification ...

The major difference occurs where operations are promoted to the robot level [see
Fig. 4 and 5]. An intermediate level of structure is introduced via theRobotBaseclass
that encapsulates all information about the robot’s orientation. It serves to simplify the
Robotclass specification. No framing schemas are necessary and the load operation for
arm1 is

Load Arm1 b= arm1:Load^ base:LoadArm1Orientation

Each of the specification techniques achieves the same end via different methods.
The following section discusses the positive and negative aspects of each technique.

4 Top-down Z specification styles

The preceding specifications of the production cell have all modelled the system as a
collection of components with operations specified on a per component basis. However,
the system can be viewed from the perspective of the metal blank with the production
cell considered as a series of transitions between states. The transitions are equivalent
to moving a metal blank from one component of the cell to another component, e.g.,
from the feed belt to the elevating rotary table. As well as transferring metal blanks
from component to component, the movement of the robot, press, crane and elevating
rotary table must be considered. Specifying these transitions leads to a specification
that differs significantly from those earlier. Stylistically it is closest to the flat specifica-
tion [Section 3.1]. The important difference is not the style used, but the model chosen,
particularly as the model chosen changes the abstraction and granularity of the spec-
ification. The complete specification is presented in [MacDonald, 1998] and consists
of given types, a state schema, an initialisation schema and twelve operation schemas.
The twelve operation schemas are further subdivided into eight metal blank transition
operations and four component movement operations.

The specification makes a further assumption to those outlined in [Section 2]. The
assumption is that the extension and retraction of both the robot arms and the crane are
hidden within the transitions. This extra assumption is because we choose not to model
the robot’s arms, just as in [Section 2] we choose not to model the crane’s arm. For
instance, an operation taking a metal blank from the elevating rotary table to the robot
would have to deal internally with extending the robot’s arm, turning on the magnet to
pick up the metal blank and retracting the robot’s arm.

4.1 State specification

The production cell’s state can be divided into two separate groups. The first group
contains a state variable for each component to record whether the component is loaded
with a metal blank. Each of these is initialised tounloaded. The second group con-
tains state variables related to component movement. These variables are present only
for the robot, press, crane and elevating rotary table as these components do not have
their movement hidden. The robot and elevating rotary table have their initial posi-
tions/orientations set in agreement with the original system requirements.

1214 MacDonald A., Carrington D.: Some Elements of Z Specification ...

Cell
feed belt store: ComponentLoaded
table store: ComponentLoaded
robot arm1 store: ComponentLoaded
robot arm2 store: ComponentLoaded
pressstore: ComponentLoaded
depositbelt store: ComponentLoaded
crane store: ComponentLoaded
table position: Table Position
pressposition: PressPosition
robot orientation: RobotOrientation
crane position: Crane Position

The state schema highlights one of the major differences of this specification, the
high level of abstraction. For example, the robot is viewed as a simple entity that has
two load attributes,robot arm1 storeand robot arm2 store, and a position attribute,
robot orientation. The simple high-level view of the robot, as presented, is an abstrac-
tion from the complexity of the robot and its arms.

4.2 Operation specifications

An operation is specified for each transition of a metal blank from one physical com-
ponent in the production cell to another. Operations are also specified for movement of
the physical components. The operations presented below are only those that involve
the robot. These operations are partial operations, and error schemas and total opera-
tions can be defined as mentioned earlier. The specification of the transitions from the
elevating rotary table to the robot, robot to the press, press to the robot and robot to the
deposit belt are introduced. Finally the operation to move the robot is presented.

Moving a metal blank from the elevating rotary table to the robot requires the robot
to be oriented toload arm1, the elevating rotary table to be in position to unload and
the elevating rotary table loaded and the robot’s arm1 unloaded. Post transition, the
components have not moved but the robot’s arm1 is loaded and the elevating rotary
table is unloaded. No other state variables are changed.

ERT to Robot
�Cell

table position= ready to unload
table store= loaded
robot orientation= load arm1
robot arm1 store= unloaded
table store0 = unloaded
robot arm1 store0 = loaded
feed belt store0 = feed belt store
robot arm2 store0 = robot arm2 store
pressstore0 = pressstore
depositbelt store0 = depositbelt store
crane store0 = crane store
table position0 = table position
pressposition0 = pressposition
robot orientation0 = robot orientation
crane position0 = crane position

1215MacDonald A., Carrington D.: Some Elements of Z Specification ...

With the robot loaded at orientationunload arm1 and the press unloaded at position
openfor arm1, a transition can take place between the press and the robot. A metal
blank is passed from the robot to the press changing only the load variables of the
robot’s arm1 and the press.

Robot to Press
�Cell

robot orientation= unload arm1
robot arm1 store= loaded
pressposition= openfor arm1
pressstore= unloaded
robot arm1 store0 = unloaded
pressstore0 = loaded
feed belt store0 = feed belt store
table store0 = table store
robot arm2 store0 = robot arm2 store
depositbelt store0 = depositbelt store
crane store0 = crane store
table position0 = table position
pressposition0 = pressposition
robot orientation0 = robot orientation
crane position0 = crane position

The operationsPressto RobotandRobot to DepositBeltare similar in content and
style to the preceding operations and are omitted for brevity.

The move operation,RotateRobot, receives as input the new position/orientation.
The variable associated with the robot’s movement,robot orientation, is set to the new
value and all other state variables are unchanged. The move operations for the other
components are similar.

RotateRobot
�Cell
new pos? : RobotOrientation

robot orientation0 = new pos?
feed belt store0 = feed belt store
table store0 = table store
robot arm1 store0 = robot arm1 store
robot arm2 store0 = robot arm2 store
pressstore0 = pressstore
depositbelt store0 = depositbelt store
crane store0 = crane store
table position0 = table position
pressposition0 = pressposition
crane position0 = crane position

4.3 Summary

This specification differs significantly from those earlier introduced. Stylistically it is
closest to the flat specification. The important difference is not the style used, but the

1216 MacDonald A., Carrington D.: Some Elements of Z Specification ...

model chosen. Particularly as the model chosen changes both the abstraction and gran-
ularity of the specification. The system is viewed from the perspective of the metal
blank with the production cell considered as a series of transitions between states. This
transition-based specification of the production cell abstracts away from detail to the ex-
tent that certain safety and ordering conditions become hidden. For example, the robot’s
arms are not present in the specification and therefore explicitly constraining the robot’s
arms to be retracted when rotating is not possible.

Each of the specification techniques achieves the same end via different methods.
The following section discusses the positive and negative aspects of each technique.

5 Discussion

Initially, the discussion of each technique is constrained to its suitability for specifying
the robot and its arms [Section 5.1]. However, the robot and its arms have a simple
relationship and the components operate independently of each other at the robot level.
[Section 5.2] deals with each technique when applied to the complete production cell
with many components that interact to give the top-level system operations.

5.1 Structuring in the small

The size6 of the robot specification differs little between the bottom-up techniques. The
Object-Z version is the shortest at a page and a half while the parameterised version
is the longest at two pages. An interesting point is that factoring components does not
necessarily decrease specification size. In the top-down specification, it is not easy to
separate the robot specification from the rest of the specification, but it is approximately
two and a half pages long.

It can be noted that the partitioned style, which specifies each arm before inclusion
in the robot state, does not work successfully for components that are dependent on
some aspect of the higher-level state. This problem is avoided in the other component-
based7 styles by using generic parameters. A component-based specification requires
the components to be independently understandable. The top-down specification by
definition does not suffer from this problem.

The parameterised specification [Section 3.3] is the most difficult to understand of
all the specifications with both framing schemas and hiding making the specification
complex, while the Object-Z specification is probably the simplest to understand (once
the Object-Z conventions are understood). The top-down specification is the most ver-
bose, but whether this affects understandability is open to debate.

Looking at specific details of the specifications, there are no interesting differences
between the specifications of the arms other than the simplification and lack of duplica-
tion gained by reusing the arm rather than specifying two similar arms. However, there
are three kinds of difference at the robot level: differences relating to the robot’s state
schema and initialisation, differences relating to theRotateRobotoperation, and dif-
ferences in the arm operations at the robot level. The differences in the arm operations
at the robot level centre on the different promotion techniques used by the structuring
styles. The top-down specification will be considered and mentioned where appropriate
in this comparison, but in some cases is too different for any useful detailed compari-
son to be made. In particular, the top-down specification does not explicitly specify the
robot’s arms and hence no comparison can be made.
6 This is the size of the complete specifications, not just the fragments included in this article.
7 A component-based specification style is a style that builds a larger specification from several

smaller parts.

1217MacDonald A., Carrington D.: Some Elements of Z Specification ...

The main difference between the state schemas is the addition of predicates in the
parameterised, library and Object-Z versions. These predicates make the constraints
on the robot state explicit rather than implicit via the operations as illustrated in the
simpler flat and partitioned versions. The initialisations are almost identical except for
the instantiated generic arms in the parameterised style that require a framing schema
to nominate which arm is being initialised. It can be inferred that parameterisation is
not suited to structuring where multiple instantiations of the same type are needed, but
is more suited where each instance is based on a different type.

Across the six different specification techniques, there are three distinct specifica-
tion strategies used forRotateRobot0. The first strategy is used in both the flat and
parameterised versions and requires the post-state of every variable of the robot to be
described explicitly. This example is from the parameterised version.

RotateRobot0
�Robot
new pos? : RobotOrientation

arm1:extent= retracted^ arm2:extent= retracted
robot orientation0 = new pos?
arm10:store= arm1:store^ arm20:store= arm2:store
arm10:extent= arm1:extent̂ arm20:extent= arm2:extent

The top-down specification is an extreme version of this first strategy where the
post-state of each variable in the specification must be described explicitly. By hiding
the arms the specification also weakens the pre-condition on a robot rotation as shown
below.

RotateRobot
�Cell
new pos? : RobotOrientation

robot orientation0 = new pos?
feed belt store0 = feed belt store
table store0 = table store
robot arm1 store0 = robot arm1 store
robot arm2 store0 = robot arm2 store
pressstore0 = pressstore
depositbelt store0 = depositbelt store
crane store0 = crane store
table position0 = table position
pressposition0 = pressposition
crane position0 = crane position

The second strategy is used in both the partitioned and library versions and uses the
structure of the specification to equate whole components rather than individual state
variables. The example used below is from the library style.

RotateRobot0
�Robot
new pos? : RobotOrientation

arm1-extent= retracted^ arm2-extent= retracted
robot orientation0 = new pos?
�arm1-Arm1 :: State0 = �arm1-Arm1 :: State
�arm2-Arm2 :: State0 = �arm2-Arm2 :: State

1218 MacDonald A., Carrington D.: Some Elements of Z Specification ...

The third strategy is used only in the Object-Z version. This version clearly identi-
fies the components involved in the operation. Expanding that definition gives

Rotate
�(orientation)
new pos? : RobotOrientation

arm1:extent= retracted^ arm2:extent= retracted
base:orientation0 = new pos?

The Object-Z delta list enumerates the state variables that may be changed by this
operation, removing the need to specify explicitly that other state variables do not
change. The last two strategies for the rotate operation are more focussed as they ab-
stract from unnecessary detail.

The arm operations at the robot level differ for each technique. The flat style, while
being relatively easy to follow, has considerable duplication, no information hiding and
does not encourage reuse. The partitioning style provides information hiding, but has
the duplication problems associated with the flat technique. As already stated, parame-
terised structuring is not suited to multiple instantiations. Framing schemas are needed
to equate the unused state components and to restrict the operation to the relevant arm.
The parameterised style also uses hiding. While neither framing schemas nor hiding
are difficult concepts, their use is counter-intuitive, especially when compared to the
final two techniques. The library mechanism is considerably easier to understand with
a framing schema needed only to equate the unused state components. Object-Z is sim-
pler again with no need for framing schemas. The top-down specification does not have
arm operations.

For a simple system where the components do not interact with each other (i.e.
an arm1 operation at the robot level does not affect arm2 at all), the library mecha-
nism or Object-Z seem to be the easiest to use and understand. The decision between
them would be based on whether the specifier wishes to use an object-oriented ap-
proach or not. The top-down specification provides another perspective of the system
which allows the specifier to abstract from the detail of the interaction between system
components. This abstraction makes the top-down specification useful for initial under-
standing of the problem, but limited for completely understanding the complexities of
interaction between system components.

5.2 Structuring in the large

The second half of the production cell specification involves combining all the com-
ponents and promoting and combining component operations to operations on the pro-
duction cell. Promotion is complicated by relationships between components at the pro-
duction cell level. These relationships either impose additional constraints on operations
defined for a single component or require defining system-level operations as combi-
nations of component operations. Defining these relationships requires access to state
variables of multiple components, but changing these variables is mostly not required.

The flat style is not appropriate as components are being considered. The arguments
for not using the flat style at the robot level also apply at the production cell level.
These include lack of information hiding and duplication that leads to a cumbersome
specification (thirteen state variables with no more than five accessed by any single
operation). For similar reasons, the top-down style, which is closely related to the flat
style, is not considered in this section of the discussion. Components can be included
in the production cell in two ways: as instances (declaration) or by direct inclusion
(schema inclusion). The discussion of component inclusion is in two parts, the first
considering alternatives in Z and the second considering Object-Z.

1219MacDonald A., Carrington D.: Some Elements of Z Specification ...

5.2.1 Inclusion in Z

Z schema inclusion promotes state variables but not operations. As was shown earlier
using the parameterised style, such operations are normally promoted using framing
schemas. For the production cell, only direct inclusion of components is discussed as
the other methods of promotion (and/or combination) have been fully discussed in [Sec-
tion 5.1] and either do not scale up (flat) or do not behave any differently in the large
(partitioned and library). The state of the complete system,Cell, is a conjunction of the
state from each of the individually specified components.

Cell b= Feed Belt^ ERT^ Robot^ Press^ DepositBelt^ Crane

Generating the system-level operations from the component operations using pro-
motion and conjunction uncovers issues not present in a smaller, less complex specifi-
cation. Firstly, extra constraints on operations at the production cell level are needed.
For example a robot arm, as long as the robot is at a correct orientation, can always be
extended within the robot component. However for safety reasons, the robot’s arm ex-
tensions are constrained at the production cell level where the robot must interact with
either the elevating rotary table, the press, or the deposit belt. Another issue is how to
specify those state variables that are unchanged, especially when most of the production
cell operations access state variables from only one or two components. The discussion
focuses on the robot, but now considers its relationships with the rest of the cell.

5.2.1.1 Unchanged state variables

Consider the operationLoad Arm1 1, which is defined as the combination of the robot
operationLoad Arm1 0 and the operationUnload ERT 0 from the elevating rotary
table. The operationLoad Arm1 1 changes the state variables associated with both the
robot and elevating rotary table leaving the state variables associated with all other
components unchanged. Equating unchanged components can be approached in several
ways. The simplest method is to equate each of the unused states independently.

Load Arm1 1
�Cell
Load Arm1 0
Unload ERT 0

�Feed Belt0 = �Feed Belt
�Press0 = �Press
�Deposit Belt0 = �DepositBelt
�Crane0 = �Crane

However, with a large collection of components, this approach produces long lists
and is a tedious process. It would be clearer if it were possible to equate the whole state
except the components changed by the operation as shown below.

Load Arm1 1
�Cell
Load Arm1 0
Unload ERT 0

�Cell0 n (Robot0;ERT0) = �Cell n (Robot;ERT)

This is not valid Z as hiding is not allowed to be used with theta (�). There are
two equivalent methods that both involve declaring the sub-state before use. The first
method uses existential quantification:

1220 MacDonald A., Carrington D.: Some Elements of Z Specification ...

Cell 0 b= 9ERTo
9

Robot� Cell

The second uses hiding and is closer to the preferred but invalid definition above.
The definition forCell 0 should contain the state variables to be hidden in parenthe-
ses rather than the state schemas to which the variables belong. However, this minor
extension captures clearly what is required.

Cell 0 b= Cell n (Robot;ERT)

Either method can be used in the following schema which is valid Z.

Load Arm1 1
�Cell
Load Arm1 0
Unload ERT 0

�Cell 00 = �Cell 0

The production cell has eleven different sub-states for seventeen operations and
having to pre-declare each sub-state and include a predicate in each operation is cum-
bersome. It is preferable to move the statement of what remains unchanged from the
predicate section to the declaration section of a schema and avoid naming each substate.
A new naming convention is proposed enabling the specifier to specify that the whole
state remains unchanged except for a list of state variables. The list of state variables
can also contain a schema reference where the schema reference is a state schema and it
is equivalent to listing all the variables in the state schema. The new naming convention
has the form�Ar(B) and is equivalent to�A n (�B) ^ �B or (9�B � �A) ^ �B.
The new naming convention is demonstrated by the definition ofLoad Arm1 1.

Load Arm1 1 b= �Cellr(Robot;ERT) ^ Load Arm1 0 ^ Unload ERT 0

where

�Cellr(Robot;ERT) b= �Cell n (�Robot; �ERT) ^ �Robot^ �ERT

Using this new naming convention would have a large impact on the visible pre-
sentation, and arguably the understandability, of the top-down style. For example, the
fourteen line specification ofRotateRobotis reduced to a four line specification.

RotateRobot
�Cellr(robot orientation)
new pos? : RobotOrientation

robot orientation0 = new pos?

5.2.1.2 Extra constraints

To capture additional constraints on system-level operations, extra predicates are added
to operations at the production cell level. Adding extra predicates is quite straight-
forward and an example is the schemaExtendArm1 1. ExtendArm1 1 constrains the
arm to extend only if a collision can not occur between the loaded arm and a blank on
either the elevating rotary table or in the press.

1221MacDonald A., Carrington D.: Some Elements of Z Specification ...

ExtendArm1 1
�Cellr(Robot)
ExtendArm1 0

(robot orientation= load arm1
^ table position= ready to unload
^ table store= loaded) arm1 store= unloaded)

(robot orientation= unload arm1
^ pressposition= openfor arm1
^ arm1 store= loaded) pressstore= unloaded)

5.2.1.3 Error schemas

The operations defined previously for the production cell are partial operations. An
operation is partial when its behaviour is defined for only some states. Error schemas are
specified and then combined with partial operations to produce total operations that are
always defined and these either output anok report or a report specifying the error that
occurred. This means the behaviour of the operation is specified in all circumstances.
The error schema and the total operation for loading arm1 are shown as an example.

Report::= ok j wrong robot orientationj avoid collision betweenblanksj � � �
Successb= [r! : Reportj r! = ok]

ExtendArm1 Error
�Cell
r! : Report

robot orientation 62 fload arm1; unload arm1g)
r! = wrong robot orientation

robot orientation= load arm1)
(table position= ready to unload^ table store= loaded
^ arm1:store= loaded) r! = avoid collision betweenblanks)

robot orientation= unload arm1) � � �

ExtendArm1 b= (ExtendArm1 1 ^ Success) _ ExtendArm1 Error

5.2.2 Object-Z

Object-Z can be structured using either inheritance or instantiation; for this case study,
instantiation is used because it models the production cell more naturally as a collection
of structured components.

5.2.2.1 Unused state variables

Promoting individual component operations to the production cell and combining them
to form production cell operations is simple in Object-Z, as shown in the robot example,
with none of the Z problems of having to equate unused state variables.

1222 MacDonald A., Carrington D.: Some Elements of Z Specification ...

5.2.2.2 Extra constraints

Adding extra constraints to an operation is not as simple and can be attempted in several
ways. The first adds an extra local operation containing the extra predicates. An example
of an extra constraint and its use is shown for the extend arm operation that restricts the
arm’s extension to avoid collisions between blanks.

Extra ExtendArm1
(robot:base:orientation= load arm1 ^ ert:position= ready to unload

^ robot:arm1:store= loaded) ert:store= unloaded)
(robot:base:orientation= unload arm1 ^ press:position= openfor arm1

^ robot:arm1:store= loaded) press:store= unloaded)

ExtendArm1 b= robot:ExtendArm1 ^ Extra ExtendArm1

In some cases, the extra constraints could be operations exported from one of the
component classes. This was demonstrated in theRobotclass definition where the op-
erationArm1Orientation from theRobotBaseconstrains theExtendArm1 operation.
This method has some drawbacks; the extra constraints may not be able to be placed in
a single class. The constraintExtra ExtendArm1 is an example because of inter-object
dependencies. A possible solution is for the component classes to provide an operation
equivalent to each possible combination of state variables and every possible value of
the state variable and combine these essentially boolean operations (predicates) at the
top-level. For the arm class, the additional operations would include the following:

Arm Retracted
extent= retracted

Arm Extended
extent= extended

Arm Loaded
store= loaded

Arm Unloaded
store= unloaded

Combining simple operations to capture the extra constraints has disadvantages.
The combination of simple operations generates a schema of approximately the same
size and arguably greater complexity than the extra operation. Placing the simple op-
erations in the classes is conceptually sound, but increases the complexity of the class
without an equivalent lessening of the complexity at the higher level. Placing an ex-
tra operation within a component class also causes problems by placing application-
specific information within a low-level, reusable class. This can be overcome using
inheritance and placing the extra operations in an intermediate class. The intermediate
class is a wrapper around the reusable class customising it for the application.

The extra constraints could become class invariants. This may require rewriting the
predicates (from the extra operations) to ensure the system is not over-constrained. The
constraintExtra ExtendArm1 is suitable as part of a class invariant. Adding extra pred-
icates to the class invariant makes them apply to all operations in the class. However, the
constraints may be required only for a subset of the class operations and this can make
the specification harder to understand. Some constraints only need hold for the duration
of an operation and not at any other time. For example, moving the press requires the
robot’s arms be retracted and yet loading the press requires a robot arm to be extended.
In our specification, it is not possible to capture as a class invariant that the robot arms
must be retracted if the press is moving, yet are allowed to be extended at other times.

1223MacDonald A., Carrington D.: Some Elements of Z Specification ...

5.2.2.3 Error handling
Error handling in Object-Z has the same problems and solutions as extra constraints.
Adding error schemas to the production cell highlights a stylistic problem. Unlike the
familiar Z style that embeds schemas in informal text, the Object-Z class syntax does
not encourage specifiers to include informal explanations within the class. Instead, class
definitions are embedded in informal text. This means that each class needs to be kept
as small as possible. This can be achieved by using inheritance and instantiation to build
complex classes in stages.

6 Conclusions

This article has investigated six different structuring techniques for Z specifications.
The first five techniques were introduced and compared using part of the production
cell specification. The specification of the robot is small enough to understand and yet
complex enough to enable comparison of the structuring techniques. The same struc-
turing techniques were also applied to a larger context, the complete production cell, to
investigate if the approaches that are appropriate in the small are also valid in the large.
The introduction of the first five techniques focused on a component-based view of the
production cell; the sixth technique is introduced using a transition-based view of the
production cell. This last technique developed a specification that differs significantly
from those developed using the the first five techniques.

Each structuring technique has benefits and is suited to different situations. The flat
technique is suitable for small specifications where the use of components is unneces-
sary. Each component of the production cell except the robot was built in this fashion
except in the Object-Z version. The partitioned technique provides a suitable style when
each component is able to be independently specified. Structuring using parameterisa-
tion is useful if the instances have distinct parameters, but quickly becomes complex
for multiple instances with the same parameter. The library structuring method embod-
ies the advantages of the previous two techniques. The library mechanism overcomes
the lack of reuse in the partitioned style and the instantiation problems of the parame-
terised style. With a larger specification, the focus moved from structuring to promotion
difficulties and the promotion technique used by the partitioned and library techniques
was found to be suitable. An extension to Z was suggested and involved the extension
of the Xi (�) naming convention. The new naming convention enables the specifier to
specify that the whole state remains unchanged except for the list of state variables fol-
lowing the symbol,r. Object-Z provides a concise structuring and promotion method
for small systems, but in larger systems some problems were encountered dealing with
extra constraints on top-level operations and with error schemas. Stylistically the sixth
specification is closest to the flat specification. The important difference is not the style
used, but the model chosen. In particular, the new model changes both the abstraction
and granularity of the specification. Our transition-based specification of the production
cell abstracts away from detail to the extent that certain safety and ordering conditions
become hidden.

The six specifications are specifications of the production cell’s expected behaviour,
not a specification of a possible controller implementation. Consequently, the specifi-
cation does not capture the optimal order of robot rotation or force the press to actually
press a metal blank. Furthermore, the scheduling of operations to control the production
cell efficiently is not captured. The comparison of the specification styles has focused
on their use rather than their comprehensibility to readers. A comparison of the com-
prehensibility of the specifications would substantive, but those interested should read
[Finney, 1996] for a discussion of the comprehensibility of formal methods.

Specifiers and designers need to be aware of a range of structuring techniques and
understand when each technique is applicable. This article has provided some realistic
examples of techniques currently in use. As Z is applied to larger specification tasks,
well-structured specifications become even more important.

1224 MacDonald A., Carrington D.: Some Elements of Z Specification ...

References

[Duke and Rose, 2000] R. Duke and G. Rose.Formal Object-Oriented Specification using
Object-Z. MacMillan, 2000.

[Finney, 1996] K. Finney. Mathematical notation in formal specification: Too difficult for the
masses?IEEE Transactions on Software Engineering, 22(2):158–159, February 1996.

[Hall, 1990] A. Hall. Using Z as a specification calculus for object-oriented systems. In
D. Bjørner, C. Hoare, and H. Langmaack, editors,VDM’90: VDM and Z!, volume 428 ofLec-
ture Notes in Computer Science, pages 290–318. Springer-Verlag, 1990.

[Hayes and Wildman, 1993] I. Hayes and L. Wildman. Towards libraries for Z. In J. Bowen
and J. Nicholls, editors,Z User Workshop: Proceedings of the Seventh Annual Z User Meeting,
London, December 1992, Workshops in Computing, pages 37–51. Springer-Verlag, 1993.

[Hayes, 1993] I. Hayes, editor.Specification Case Studies. Prentice Hall, London, UK, 2nd
edition, 1993.

[Kernighan and Plauger, 1978] B. Kernighan and P. Plauger.The Elements of Programming
Style. McGraw-Hill, second edition, 1978.

[Lano and Houghton, 1994] K. Lano and H. Houghton, editors.Object-oriented specification
case studies. Prentice Hall, 1994.

[Lewerentz and Lindner, 1995] C. Lewerentz and T. Lindner. Case study production cell. In
Formal Development of Reactive Systems, number 891 in Lecture Notes in Computer Science.
Springer-Verlag, 1995.

[MacDonald and Carrington, 1994] A. MacDonald and D. Carrington. Z specification of the
Production Cell. Technical Report TR94-46, Software Verification Research Centre, Dept.
Computer Science, Univ. of Qld, Australia, November 1994.

[MacDonald and Carrington, 1995] A. MacDonald and D. Carrington. Structuring Z Specifica-
tions: Some Choices. In J. Bowen and M. Hinchey, editors,ZUM’95: The Z Formal Specifi-
cation Notation, number 967 in Lecture Notes in Computer Science, pages 203–223. Springer-
Verlag, September 1995. Also available as SVRC Techreport, TR95-19.

[MacDonald, 1998] A. MacDonald.Designing Software from Formal Specifications. PhD the-
sis, Department of Computer Science and Electrical Engineering, University of Qld, Australia,
1998. Available from Australian Digital Theses Program: http://adt.caul.edu.au/.

[Rose, 1992] G. Rose. Object-Z. In S. Stepney, R. Barden, and D. Cooper, editors,Object Ori-
entation in Z, Workshops in Computing, pages 59–77. Springer-Verlag, 1992.

[Schuman and Pitt, 1987] S. Schuman and D. Pitt. Object-oriented subsystem specification.
In L. Meertens, editor,Program Specification and Transformation, pages 313–341. North-
Holland, 1987.

[Smith, 1999] G. Smith.The Object-Z Specification Language. Kluwer Academic Publishers,
1999.

[Spivey, 1989] J. Spivey. An introduction to Z and formal specifications.Software Engineering
Journal, 4(1):40–50, January 1989.

[Spivey, 1992] J. Spivey.The Z Notation: A Reference Manual. Prentice Hall, second edition,
1992.

[Stepneyet al., 1992] S. Stepney, R. Barden, and D. Cooper, editors.Object Orientation in Z.
Workshops in Computing. Springer-Verlag, 1992.

[Toyn, 1999] I. Toyn, editor.Z Notation: Final Committee Draft, CD 13568.2. August 1999.

1225MacDonald A., Carrington D.: Some Elements of Z Specification ...

