
Use of E-LOTOS in Adding Formality to UML

Robert Clark

(University of Stirling, Scotland, UK

rgc@cs.stir.ac.uk)

Ana Moreira

(Universidade Nova de Lisboa, Portugal

amm@di.fct.unl.pt)

Abstract: E-LOTOS, a new version of the ISO standard speci�cation language LO-
TOS, is currently being developed. We describe how it can be used to give a formal
meaning to, and to discover inconsistencies in, UML models. As part of this work, we
give mappings from UML constructs to E-LOTOS. Emphasis is placed on dealing with
UML use case, class and interaction diagrams as these play the dominant part in the
development of a UML analysis or high-level design model. Requirements are usually
inconsistent and incomplete and we deal with how this can be modelled in a formal
language.

Key Words: UML, E-LOTOS, formal modelling, inconsistent speci�cations.

1 Introduction

Although the use of formal methods within the software development process is

a major academic research topic, its impact on industrial practice continues to

be disappointing. Even semi-formal methods have not had the impact that might

have been hoped for. However, there are signs that things are changing. Object-

oriented programming languages are becoming the dominant implementation

paradigm. An interesting feature of object-oriented program development is that

it is one area where analysis and design methods have a high pro�le, not only

amongst academic researchers, but also amongst practitioners.

Many di�erent object-oriented analysis and design methods have been pro-

posed and they di�er markedly in their degree of formality. The major advance

is that there is now general agreement on a standard notation to be used in the

object-oriented analysis and design phases, namely the Uni�ed Modeling Lan-

guage (UML) [see Rumbaugh et al. (1999)]. UML is a notation rather than a

method, but having an accepted standard notation means that it is now clear

when two methods di�er in their proposed process rather than in just the way

in which they express the same idea. It also leads to better tool support as tool

builders can concentrate their energies on a single notation.

UML is not a formal notation although it does include state machines as one

of its modelling techniques. The widespread use of UML makes it imperative

that its semantics are well de�ned and understood [see Kent et al. (1999)]. Work

Journal of Universal Computer Science, vol. 6, no. 11 (2000), 1071-1087
submitted: 16/6/00, accepted: 19/9/00, appeared: 28/11/00  Springer Pub. Co.

has been done on the semantics of its class diagrams [see France (1999)], the

pUML Group are a focus for research on the precise use of UML [see Evans,

Kent (1999)], and an associated Object Constraint Language (OCL) has been

designed [see Warmer, Kleppe (1999)].

Our research is into the introduction of formality into the object-oriented

analysis process and we have developed the Rigorous Object-Oriented Analysis

Method (ROOA) [see Moreira, Clark (1994), Moreira, Clark (1996), Clark, Mor-

eira (1999)]. A major aim of this work has been to show how formal methods

can complement methods such as OMT and OOSE which are widely used in in-

dustry [see Rumbaugh et al. (1991), Jacobson (1992)]. It is mainly the notations

used in OMT and OOSE that have been combined to form UML.

2 E-LOTOS

LOTOS is an ISO standard formal speci�cation language [see Brinksma (1988)]

with a new version called E-LOTOS currently under development [see ISO/IEC

(2000)]. E-LOTOS has a behavioural part, de�ned using a process algebra based

on a combination of CSP [see Hoare (1985)] and CCS [see Milner (1989)], and

a data typing part that is in the style of a functional language. LOTOS tools

enable a speci�cation to be analysed for syntactic and semantic errors and the

speci�cation can form the basis for formal reasoning. Our original development

of ROOA used the 1988 LOTOS standard and the object-oriented notation was

that of OMT [see Rumbaugh et al. (1991)], but it is straightforward to replace

LOTOS with E-LOTOS and OMT with UML. We have developed a prototype

translator from UML to LOTOS1.

E-LOTOS has several advantages over LOTOS. For example:

{ its data typing part is much easier to use,

{ it has a better integration between the data typing and behavioural parts,

{ it has subtyping in the data typing part,

{ it has exception-handling facilities,

{ it incorporates explicit control structures which makes it easier to represent

UML interaction diagrams and state machines,

{ it can specify real-time behaviour,

{ it includes a module construct corresponding to a package in UML.

1 Work supported by Systems Engineering Research Institute (SERI), Teajon, Korea

1072 Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

As LOTOS and E-LOTOS speci�cations are executable, simulation tools can

be used to demonstrate their behaviour and show up inconsistencies, contradic-

tions, ambiguities, misunderstandings and omissions in the requirements [see

Eertink, Wolz (1993)]. When LOTOS or E-LOTOS is used to model an object-

oriented system, it can therefore be used to validate the requirements and to give

feedback to the requirements capture. That, of course, requires us to have a map-

ping from object-oriented constructs to their equivalent in LOTOS or E-LOTOS

and that forms an important part of ROOA.

There are, in fact, three di�erent aspects to our work:

{ The addition of rigour to the object-oriented development process and how

use case, class and interaction diagrams can be used in the development of

a formal speci�cation.

{ The use of E-LOTOS to give a formal meaning to, and uncover inconsisten-

cies in, a particular speci�cation expressed in UML.

{ Provision of a mapping from UML constructs to E-LOTOS to provide a

semantics for certain aspects of UML. As well as determining the semantics

of the constructs in each kind of diagram, we deal with the integration of

the views provided by the di�erent UML diagrams.

It is these last two aspects that are emphasised in this paper.

3 UML Models and E-LOTOS Speci�cations

3.1 How UML is Used

UML is a notation used in analysis and in both high-level and low-level design.

A major feature of a requirements speci�cation or of a high-level design is that

it purposefully ignores implementation detail. A given high-level design can then

be realised by di�erent implementations. Using a formal speci�cation language

such as E-LOTOS complements UML well because E-LOTOS gives us precision,

while encouraging us to stay at a high level of abstraction so that we are not

tempted to become involved prematurely in implementation details.

Let us consider the way in which UML is used in analysis or high-level design

and, even more importantly, how it is not used. Most, if not all, such UML

models contain a class diagram, a set of use cases and a set of either sequence

or collaboration diagrams. However, the actual parameters of the messages in

sequence diagrams will usually either be omitted or be symbolic variables rather

than actual values. Also, diagramming notations such as state diagrams are

often not involved because, in the early stages of development, it is important

to model the operations that an object o�ers and the operations that it requires

1073Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

from other objects rather than the details of its internal behaviour. Our work

therefore concentrates on use case, class and interaction diagrams so that it

is possible to have a formal meaning for UML models that only contain these

components.

It is not that E-LOTOS is unsuitable for representing state diagrams; in

fact it can be argued that, of all the UML models, state diagrams are the most

straightforward to represent in a process algebra like E-LOTOS. However, we

believe that in the analysis and high-level design phases, the most important use

of a UML model is to provide a suitable architecture and that the most important

behavioural feature is the way that the objects in this structure interact with

one another. That is best shown by means of either sequence or collaboration

diagrams.

3.2 UML Models and their Relation to ROOA

UML is composed of a large number of di�erent models. For example, use case

diagrams model users' expectations; class diagrams model static structure; inter-

action diagrams (sequence and collaboration diagrams) model dynamic object

interactions while state diagrams model the internal behaviour of individual ob-

jects. The di�erent diagrams are used in conjunction to capture requirements

and to model a solution.

Although a UML speci�cation typically contains a single use case model to

describe the user requirements and a single class diagram to show the static

structure of the speci�cation, a large number of separate sequence, collaboration

and state diagrams are required to model dynamic behaviour. The ROOA ap-

proach builds a single formal model, originally using LOTOS and, more recently,

E-LOTOS. This model not only speci�es the behaviour of the proposed system,

but also shows its static structure. A single uni�ed formal speci�cation therefore

corresponds to the set of models used in UML.

Moreover, to help us guarantee that the �nal formal object-oriented speci�ca-

tion is according to the requirements, we also formalise the interactions between

the actors and the system, i.e. the use case model. Both speci�cations are then

composed in parallel and the �nal result executed so that we can check that they

display the same behaviour.

Whenever we have a set of di�erent models, problems arise of ensuring their

compatibility. UML CASE tools can indicate some situations where models are

incompatible, e.g. where an interaction diagram uses an operation that has not

been de�ned in the corresponding class diagram, but they do not show up in-

stances where the models de�ne inconsistent or incompatible behaviour. If, on

the other hand, a single formal speci�cation is constructed from a set of UML

models, then it is possible to identify logical inconsistencies and contradictions.

1074 Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

This is especially so when the resulting speci�cation is executable as is the case

with LOTOS and E-LOTOS.

The class diagram is the central co-ordinating component of any UML model

and so the structure of our E-LOTOS object-oriented speci�cations is derived

directly from class diagrams. However, class diagrams show static structure,

not dynamic behaviour and, when dealing with semantics, we must focus on

behaviour. As it is a process algebra, E-LOTOS is well suited to the de�nition

of dynamic behaviour. However, it is essential that the de�nition of dynamic

behaviour �ts in, is compatible with and can be interpreted within the static

structure de�ned from the class diagram. Formally modelling the constructs of

a UML class diagram in conjunction with the use case and sequence diagrams

is therefore a central part of our work.

4 UML Concepts in E-LOTOS

4.1 Classes and Objects

A class is speci�ed by an E-LOTOS process de�nition and an object is rep-

resented by a process instance. The formal model produced by applying the

ROOA method is a LOTOS or E-LOTOS speci�cation that describes behaviour

in terms of a set of communicating concurrent objects, i.e. as a set of commu-

nicating process instances. Each object has a distinct identity. We model this

in E-LOTOS by allocating each object a unique constant when the object is

instantiated. This constant is known as the object identi�er and is held as a

parameter of the process representing the class.

An E-LOTOS process is like a black box and its externally observable be-

haviour is its interactions with other processes. Processes interact by synchronis-

ing on events at a gate. In an event, a value declaration has the form !v, where

v is a value expression, while a variable declaration has the form ?v where v

has been declared to be a variable of some type. If a process o�ers the following

event at gate g:

g(!2, !true)

and another process o�ers the event:

g(?x, ?b)

where x has been de�ned to be an Int and b to be a Bool then, as the two

events have the same structure, the processes may synchronise on these events.

During synchronisation, we have communication as the value 2 is bound to the

variable x and true to the variable b.

Fig. 1 shows a simple UML class diagram describing part of a simple ware-

house system. The warehouse includes an inventory which maintains a list of

1075Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

0..*
...

...

Warehouse
Inventory

−size: Integer

+Inventory(p1: Integer)
+addProduct(inf: Info): Product
+inStock(p: Product): Boolean

Product

...

+Product()
+deposit(q: Integer): void
+howMany(): Integer

Figure 1: Simple Class Diagram

products. This is represented in the diagram by classes Warehouse, Inventory

and Product with arrows showing the navigability of their associations.

The outline E-LOTOS de�nition corresponding to Inventory is:

process Inventory[g, gProduct](id: InventoryId, p1: Int) is

var size: Int := ...,

productListId: ListProductId := [] in

loop

var p: ProductId,

inf: Info in

g(!addProduct, !id, ?inf);

...

g(!rtn addProduct, !id, any: ProductId)

[]

g(!inStock, !id, ?p);

...

g(!rtn inStock, !id, any: Bool)

endvar

endloop

endvar

endproc (*Inventory*)

The private attributes of an object are modelled as the local variables of an

E-LOTOS process. That provides information hiding. The �rst parameter in a

process heading speci�es the object identi�er while the others correspond to the

parameters of the constructor in UML. We describe the record structure of an

object identi�er such as ProductId later. Abstract data types (ADTs) for Int

and Bool are de�ned in the E-LOTOS library while the Info ADT is de�ned in

the data typing part of the speci�cation.

Parameters or returned values that are references to objects are modelled as

object identi�ers. An association is modelled as an attribute that is either an

object identi�er or, as in this case, a list of object identi�ers depending on the

multiplicity of the association. As generic lists are in the E-LOTOS library, we

can de�ne a list of ProductId as:

1076 Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

type

ListProductId is List of ProductId

endtype

We use the navigability information in a class diagram to determine the

direction of an association. Hence, in our example, Inventory knows about

Product objects and so its process de�nition has an attribute that is a list of

ProductId, but Product does not know about Inventory and so the de�nition

of Product does not have an InventoryId attribute. We require a bi-directional

association to be represented as two unidirectional associations.

Public operations are o�ered as alternatives using the E-LOTOS choice op-

erator []. In E-LOTOS, we can use a loop in the process body to ensure that

once an operation has been carried out, the process is again ready to satisfy a

call of one of its operations. In LOTOS, we had to instantiate a new process

instance.

Operation inStock returns a Boolean value, but the class diagram does not

specify which value. We deal with this using the LOTOS construct any: Bool

which pattern matches with any value of type Bool. This can lead to value

generation in which an arbitrary value is chosen nondeterministically.

4.2 Message Passing

E-LOTOS processes communicate by synchronising on events o�ered at gates.

We model message passing (i.e. the call by a client object of an operation o�ered

by a server object) by event synchronisation. We use a stylised structure for the

events. They have the following form:

<gate>(<message name>, <object identi�er>, <optional parameters>)

Event synchronisation in E-LOTOS is symmetric, there is no concept of a

client and a server. However, we model the client and server processes di�erently.

The object identi�er, for example, always refers to the server object and all the

operations o�ered by a server class are represented by event o�ers at a single gate

(our convention is always to use the formal gate g in the process de�nition of the

server). When a client makes calls of operations o�ered by an object of a class

such as Product, the process de�nition of the client class shows this occurring

at formal gate gProduct.

For two process instances to communicate, they must be composed using

an E-LOTOS parallel operator. Our convention is that when a client object of

a class such as Inventory is composed with a server object of a class such as

Product, we name the actual gate agProduct. Hence the composition of an

instance of the client Inventory with an instance of the server process Product

has the form:

1077Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

Inventory[agInventory, agProduct](...)

|[agProduct]|

Product[agProduct](...)

The E-LOTOS parallel operator |[agProduct]| speci�es that the objects

communicate with each other on gate agProduct. Note that in the instantiation

of process Inventory, the actual gates agInventory and agProduct have been

substituted for the formal gates g and gProduct respectively.

When a server object receives a call, it may make subsequent calls to carry

out the required service. We therefore model an operation as two event synchro-

nisations. The call is modelled by an event that includes an operation name such

as addProduct, while the return is modelled by an event that includes the opera-

tion name rtn addProduct. Returning a value is modelled as a parameter of the

rtn addProduct event. The corresponding client object must have consecutive

addProduct and rtn addProduct events, i.e. it must not carry out any actions

between making the call and receiving the response.

4.3 Object Creation

Objects can be created dynamically using object generators. For example, an

object generator for class Product has the form:

process Products[g](max: Nat) is

var newId: ProductId := (class => theProduct, obj => max) in

g(!create, !newId);

(Product[g](newId)

|||

Products[g](max + 1)

)

endvar

endproc (*Products*)

The operator ||| is the E-LOTOS interleaving operator. A new process

Product is instantiated with a unique object identi�er of type ProductId and

process Products is reinstantiated so that it can handle the next creation re-

quest. Object identi�ers are modelled as extensible records with at least two

�elds. One �eld speci�es the class and the other speci�es the instance number

of an object. We model a null object reference by an object identi�er whose

instance number is 0.

The overall behaviour de�ned by an E-LOTOS object-oriented speci�cation

is de�ned by composing process instances in an E-LOTOS behaviour expression.

When a class has a single instance then it is created by an instantiation of its

de�ning process in the behaviour expression. When a class may have multiple

1078 Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

instances, the composition includes an instance of an object generator rather

than an individual process instance. In our simple example [see Fig. 1], the

composition might be:

Warehouse[agWarehouse, agInventory](...)

|[agInventory]|

Inventory[agInventory, agProduct](...)

|[agProduct]|

Products[agProduct](1)

When an object of class Inventory initiates the creation of a Product object

as, for example, part of its addProduct operation, the E-LOTOS de�nition of

addProduct will contain an event such as:

gProduct(!create, ?pId)

During synchronisation, the variable pId is set to the value of the new object

identi�er allocated in the object generator. In that way, the Inventory object

is informed of the identity of the new Product object so that it can take part in

future communication.

4.4 Aggregation and Composition

In our simple example, we could have decided to model the association between

Inventory and Product as a UML whole-part association, i.e. as an aggregation.

We model aggregation as the whole knowing about the part and so that would

have required no change in the E-LOTOS speci�cation. That is because de�ning

a UML association to be an aggregation gives conceptual information, but its

semantics remain the same as an ordinary association.

Composition, on the other hand, does change the semantics. Composition is a

strong form of aggregation in which a component object may be part of only one

composite object. If the composite object is destroyed then all its component

objects are destroyed with it. We model a composite class as an E-LOTOS

process whose body includes the instantiation of its components.

For example, consider the composition relationship depicted in Fig. 2. The

E-LOTOS process which speci�es that composition is:

process Product[g](id: ProductId) is

var pInfoId: PInfoId := (class => thePInfo, obj => 1),

pPartListId: ListPPartId := [] in

hide agPInfo, agPPart in

<definition of Product body>

|[agPInfo, agPPart]|

(PInfo[agPInfo](pInfoId, ...)

1079Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

...

...

...

...

...

...

Product

PInfo PPart

0..*

Figure 2: Composition

|||

PParts[agPPart](1)

)

endhide

endvar

where <definitions of component classes>

endproc (*Product*)

This captures the intended UML semantics. Component objects are either

created at the same time as the composite or they are created by the composite

object. Also, component objects can only be accessed by the composite object

of which they are a part. The object identi�ers of components within di�erent

composite objects do not have to be distinct as they are local to a particular

composite. Also, clients of class Product are not aware that it is a composite

class.

The E-LOTOS interleaving operator ||| shows that PInfo and PPart ob-

jects do not interact directly with one another. All their interactions are with

the composite through the hidden gates agPInfo and agPPart and these in-

teractions cannot be observed from outside the composite. Notice that due to

the multiplicity of the associations between the composite class and each of its

components, PInfo is directly instantiated while for PPart we need the object

generator PParts.

4.5 Dynamic Binding

Dynamic binding can be modelled in E-LOTOS using object identi�ers. Exten-

sible records are a feature of E-LOTOS that did not exist in LOTOS. The object

identi�er ProductId is de�ned as:

1080 Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

type ProductId is

(class => Product, obj => Nat, etc)

endtype

The presence of etc means that this is an extensible record type with at

least two �elds. E-LOTOS uses structural type equivalence and an extensible

record is the supertype of its extensions. The object identi�er of a subclass is an

extension of the object identi�er of its superclass, e.g.

type EdibleProductId is

(class => Product, obj => Nat,

subclass1 => EdibleProduct, etc)

endtype

A value of type EdibleProductId can be used anywhere that a value of type

ProductId is expected and so when, for example, an object of class Inventory

makes a call of operation deposit this is modelled in the E-LOTOS process

Inventory as:

gProduct(!deposit, !pId, !inf)

The type of the variable pId may be either ProductId or EdibleProductId.

Even when its type is ProductId, the current value of pId may be of type

EdibleProductId. Synchronisation can therefore occur with a server object that

is a subclass of Product and the decision is delayed until execution time and

depends on the current value of pId.

5 Behavioural Models

A UML speci�cation typically consists of a single class model to de�ne the static

structure, but uses di�erent dynamic models to specify behaviour. UML uses:

{ use case diagrams to describe users' expectations of the services that the

system will provide,

{ sequence and collaboration diagrams to describe object interactions,

{ state machines to describe the internal behaviour of single objects,

{ activity diagrams to show
ow of control.

As these diagrams can overlap in the information that they provide, they

can give contradictory information. Hence, as well as determining mappings for

constructs in each kind of diagram, we must ensure that the information provided

by each behavioural model is compatible both with the information provided by

the other behavioural models and with the class diagram. A further problem is

1081Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

that, to form a complete UML speci�cation, a signi�cant number of diagrams

must be constructed for each of the di�erent kinds of dynamic model. That can

lead to further inconsistency problems.

The di�erent kinds of UML model are very useful in providing di�erent views

to help us understand and model a problem. However, if we wish to be able to

reason about the overall behaviour of a speci�cation then it is much easier if we

have a single integrated formal model.

5.1 Use Case Model

A UML model not only describes the structure and behaviour of an object-

oriented system, it also describes how it is to be used, i.e. the environment in

which the system is to exist. It is the UML use case model which de�nes how a

system is to be used. We can formalise the UML use case model by building an

E-LOTOS speci�cation of the interaction between the actors, i.e. the external

users of the system, and the system itself. These interactions can be represented

in terms of events and so an event-oriented formal language such as E-LOTOS

is ideal. We call this speci�cation the user-centred model. We have shown how

this can be done in LOTOS [see Clark, Moreira (1999)].

The user-centred model can then be used in conjunction with the UML class

and interaction diagrams to help us create the formal object-oriented speci�ca-

tion. As both the user-centred model and the object-oriented speci�cation are

expressed in E-LOTOS, the two models can be composed to form a single formal

model. In that way, we can ensure that the behaviour expected by the use case

model is compatible with the behaviour o�ered by our �nal formal speci�cation.

5.2 Sequence Diagrams

In our object-oriented E-LOTOS model, a process instance de�nes the behaviour

of a single object. An important part of this behaviour is its interaction with

other objects. We do not just map from UML constructs to a set of E-LOTOS

process de�nitions, the overall behaviour of a UML model is speci�ed by the

composition of E-LOTOS process instances. We therefore produce a single in-

tegrated E-LOTOS model that de�nes static structure as well as the complete

dynamic behaviour.

Object interactions are de�ned in UML sequence or collaboration diagrams.

As these two kinds of diagram are equivalent, we will only consider sequence

diagrams. Typically in a sequence diagram, an object receives a message and, as

a consequence, may send one or more messages to other objects. This is shown

in Fig. 3. An object of class Inventory receiving the message addProduct from

an object of class Warehouse is modelled by the E-LOTOS process instances

that are modelling these objects synchronising on an event addProduct at gate

1082 Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

agProduct. The sequence diagram shows that as a consequence of receiving

message addProduct, the Inventory object �rst creates a Product object and

then sends a deposit message to it.

Earlier, we showed the outline process de�nition for Inventory generated

from the class de�nition. It included the outline code:

g(!addProduct, !id, ?inf);

...

g(!rtn addProduct, !id, any: ProductId)

Using the information in the sequence diagram, we can now expand this to:

var pId: ProductId in

g(!addProduct, !id, ?inf);

gProduct(!create, ?pId);

gProduct(!deposit, !pId, !inf);

gProduct(!rtn deposit, !pId);

...

g(!rtn addProduct, !id, !pId)

endvar

<<create>>

:Warehouse :Inventory

:Product
addProduct(inf)

deposit(inf)

Figure 3: Simple Sequence Diagram

Typically, a UML model does not specify particular values for attributes or

for the actual parameters of messages in sequence diagrams. This is dealt with

in E-LOTOS by either using symbolic values or by using value generation to

nondeterministically generate an arbitrary value. When tracing execution using

actual values, the number of possible paths becomes so large that the problem

becomes intractable. By using symbolic or arbitrary values, we concentrate on

1083Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

showing that the paths exist and that is the main need during analysis and high-

level design. An important point is that this can be done without requiring extra

detail to be added to a UML model. After all, the main advantage of UML is

that it enables the requirements to be organised and understood at a high level

of abstraction.

5.3 Dealing with Inconsistencies

Requirements are often inconsistent or incomplete and that will be re
ected in

the initial UML model. It is important that potential inconsistencies can be

modelled in our speci�cation language, but this should be done in such a way

that potential problems will be highlighted.

A simple example is where a second sequence diagram shows an Inventory

object responding di�erently to the receipt of an addProduct message, e.g. it

might show that it sends a howMany rather than a depositmessage to a Product

object. The choice could depend on the current state of Inventory or on the

value of an addProduct parameter, and this can be shown in a sequence diagram

by attaching a guard condition to the message. However, a UML model will not

always show that level of detail.

Alternatively, having two possible subsequent behaviours may be due to

an inconsistency in the requirements. When the reason for the alternative be-

haviours is given, it can be modelled using the E-LOTOS case operator, when

it is not, we can allow either behaviour by writing:

g(!addProduct, !id, ?inf);

gProduct(!create, ?pId);

(gProduct(!deposit, !pId);

gProduct(!rtn deposit, !pId);

...

[]

gProduct(!howMany, !pId);

gProduct(!rtn howMany, !pId, any: Int);

...

);

g(!rtn addProduct, !id, !pId)

An E-LOTOS construct of this nature indicates a possible problem. By inte-

grating the information from di�erent diagrams into a single process de�nition

we highlight such possible problem areas and this is a major help in enabling

possible inconsistencies to be identi�ed. The problem with a large UML model

is not in resolving inconsistencies, it is in identifying them.

1084 Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

Another example is where two sequence diagrams specify a di�erent order

in which a series of operations should be carried out. It may be that the order

is unimportant or that the order depends on the object state, but it is also

possible that it is due to an inconsistency in the requirements. The E-LOTOS

interleaving operator can be used to model this situation:

a; (b ||| c ||| d); e

Here, event a occurs �rst followed by b, c and d in any order and �nally fol-

lowed by e. Again, the presence of such a construct indicates a possible problem

area. Other inconsistencies or omissions will be less obvious, but will normally

lead to deadlocks in the E-LOTOS speci�cation. These can be detected using

simulation tools.

E-LOTOS is therefore an ideal tool for identifying and resolving contradic-

tions that arise from the use of di�erent UML models. By providing a single

integrated explanation of behaviour rather than having the explanation dis-

tributed over separate models, we are able to ensure that each possible path

of object interactions is complete and consistent thereby highlighting problems

of incompleteness or inconsistency in the UML model.

6 Concurrency

In the early stages of developing a UML model, we do not need to state whether

objects are active or passive and it can be useful to regard a UML model as the

description of a set of communicating autonomous objects. That is the approach

that we follow and, although an E-LOTOS model is expressed in terms of a set of

communicating concurrent objects, an eventual solution may be sequential. As a

UML model is re�ned, explicit decisions may be made that certain objects are to

be active, i.e. have their own thread of control. Many of the main problem areas

in UML semantics are concerned with active objects and, due to its concurrent

nature, E-LOTOS is well suited to resolving such di�culties.

In some situations, concurrent behaviour is part of the problem de�nition

rather than just a possible solution. An obvious example is where we are dealing

with a distributed system such as an Internet application. Modelling all objects

as E-LOTOS process instances, i.e. as potential active objects, allows us to delay

decisions about which objects should be active in an eventual implementation

and about the precise physical deployment of the objects.

7 Conclusions

Our work describes mappings from UML constructs to the formal language E-

LOTOS and describes situations where E-LOTOS improves on LOTOS. In par-

ticular, it shows the e�ectiveness of E-LOTOS in integrating the static UML

1085Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

model with the di�erent dynamic UML models so that inconsistencies between

the di�erent models can be identi�ed. We concentrate on how UML is actually

used in analysis and high-level design and so our work is centred on use case,

class and interaction diagrams. The strength of UML is that it abstracts away

from detail and that it provides an architecture from which an eventual solution

can be developed. Our E-LOTOS speci�cations provide the same architectural

framework and deal with behaviour at the symbolic level to ensure that the

required collaborations are possible rather than dealing with particular values.

While UML constructs several models to deal with dynamic behaviour, our

E-LOTOS speci�cation integrates, in a single model:

{ the interactions between the actors and the system (given in UML by the

use case model),

{ the static structure (given in UML by the class diagram) and

{ the dynamic aspects of a system (given in UML by several interaction dia-

grams).

By obtaining a single formal model, we can identify inconsistencies in UML

models that would be very hard to identify otherwise.

A major advantage of a formal description technique such as LOTOS or E-

LOTOS is that the speci�cations they provide are executable. Therefore, rapid

prototyping tools can be used to validate the �nal result. However, although

there is good tool support for LOTOS, currently a major drawback in using

E-LOTOS is the lack of tool support.

References

[Brinksma (1988)] Brinksma, E.: \LOTOS - A Formal Description Technique Based
on the Temporal Ordering of Observational Behaviour"; ISO 8807, 1988.

[Clark, Moreira (1999)] Clark, R.G., Moreira, A.M.D.: \Formal Speci�cations of User
Requirements"; Automated Software Engineering, 6, 3 (1999), 217-232.

[Eertink, Wolz (1993)] Eertink H., Wolz D.: \Symbolic Execution of LOTOS Speci�-
cations"; Formal Description Techniques V, North-Holland (1993), 295-310.

[Evans, Kent (1999)] Evans, A., Kent, S.: \Core Meta-Modelling Semantics of UML:
The pUML Approach"; Proc. 2nd Int. Conf. on the Uni�ed Modeling Language,
LNCS 1723, Springer-Verlag (1999)

[France (1999)] France, R.: \A Problem-Oriented Analysis of Basic UML Static Mod-
eling Concepts"; Proc. OOPSLA'99, ACM Sigplan, 34, 10 (1999), 57-69.

[Hoare (1985)] Hoare, C.: \Communicating Sequential Processes"; Prentice-Hall
(1985)

[ISO/IEC (2000)] ISO/IEC: \Enhanced LOTOS"; ISO/IEC 15437 (2000)
[Jacobson (1992)] Jacobson, I.: \Object-Oriented Software Engineering"; Addison-
Wesley (1992)

[Kent et al. (1999)] Kent, S., Evans, A., Rumpe, B.: \UML Semantics FAQ"; Object-
Oriented Technology, LNCS 1743 (1999), 33-56.

[Milner (1989)] Milner, R.: \Communication and Concurrency"; Prentice-Hall (1989)

1086 Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

[Moreira, Clark (1994)] Moreira, A.M.D., Clark, R.G.: \Combining Object-Oriented
Analysis and Formal Description Techniques"; Proc. ECOOP '94, LNCS 821,
Springer-Verlag (1994), 344-364.

[Moreira, Clark (1996)] Moreira, A.M.D., Clark, R.G.: \Adding Rigour to Object-
Oriented Analysis"; Software Engineering Journal, 11, 5 (1996), 270-280.

[Rumbaugh et al. (1991)] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.,
Lorensen, W.: \Object-Oriented Modeling and Design"; Prentice-Hall (1991)

[Rumbaugh et al. (1999)] Rumbaugh, J., Jacobson, I., Booch, G.: \The Uni�ed Mod-
eling Language Reference Manual"; Addison Wesley (1999)

[Warmer, Kleppe (1999)] Warmer, J., Kleppe, A.: \The Object Constraint Language";
Addison-Wesley (1999)

1087Clark R., Moreira A.: Use of E-LOTOS in Adding Formality to UML

