
An Outline of PVS Semantics for UML Statecharts

Issa Traor�e
(University of Victoria

Department of Electrical and
Computer Engineering
PO Box 3055 STN CSC
Victoria BC V8W 3P6

Canada
itraore@ece.uvic.ca)

Abstract: The current UML standard provides de�nitions for the semantics of its
components. These de�nitions focus mainly on the static structure of UML, but they
don't include an execution semantics. These de�nitions include several "semantic vari-
ation points" leaving out the door open for multiple interpretations of the concepts
involved. This situation can be handled by formalizing the semantic concepts involved.
In this paper we present an approach for the formalization of one of the multiple
diagrams of UML, namely statechart diagrams. That is achieved by using the PVS
Speci�cation Language as formal semantics domain. We present also how the approach
can be used to conduct a formal analysis using the PVS model-checker.

Key Words: Open Distributed Systems, Formal Methods, Object-orientation, UML,
PVS, Speci�cation.
Categories: D.1.5, D.2.4, D.3.1

1 Introduction and Problem Statement

The increasing development of both local and wide area networking has made dis-
tributed processing one of the most important topics in computing. More specif-
ically, standardisation e�ort have been achieved in order to enable open distri-
bution [ISO-rmodp]. Among the new challenges, there is the ability to integrate
formal methods in the development cycle of open distributed systems. Most of
the techniques supporting the development of open distributed systems, such as
UML [OMG 1999], lack the formal semantics and mechanisms underlying formal
development methods. On the other hand, few of the existing formal methods
can be �tted well to open distributed systems. For instance in the RM-ODP doc-
uments [ISO-rmodp], several formal languages such as LOTOS [ISO-lotos 1988],
Z [Spivey 1989], SDL [ISO-sdl 1993] and Estelle [ISO-estelle 1989], are proposed
for the description of the various viewpoints involved. But as pointed out in
[Dahl 1998], these languages are only partly satisfactory. For instance one may
use Z for the description of the static parts of the information viewpoint, but Z
is not well-suited to deal with the dynamic aspects. Moreover, SDL and Estelle
give little support for formal veri�cation. Finally, due to its rather operational
nature, LOTOS is mainly suited for the design stage.

Hence, taking the previous remarks into account, one obvious solution is
to build-up a completely new method from scratch. However, this is extremely
costly and as mentionned in [Abadi 1994], "it would be unfortunate if every
new class of systems required inventing new semantics, along with proof rules,

Journal of Universal Computer Science, vol. 6, no. 11 (2000), 1088-1108
submitted: 16/6/00, accepted: 19/9/00, appeared: 28/11/00 Springer Pub. Co.

languages, and tools". An alternative would be to adapt and combine already ex-
isting technologies, more speci�cally graphical object-oriented notations, which
are semi-formal and formal notations, which provide a rigorous semantic foun-
dation.

Several works have attempted to provide a mathematical basis for the con-
cepts underlying object-oriented models. Some of these approaches consist of
adapting or extending a novel or existing formal description technique with
object-oriented concepts [Moreira 1994]. Others derive a formal speci�cation
from the semi-formal (or informal) model built with existing object-oriented
notations such as UML or OMT [Hayes 1991]. The main problem with these
approaches is that the user should have to deal with a certain amount of formal
artifacts, and that can be a barrier to an industrial use. A third approach that
has been adopted in this work consists of assigning a formal semantics to an
existing object-oriented notation [Evans 1998]. In this case, the formal "stu�" is
hidden behind the graphical one. The user deals with the graphical model, while
the formal "stu�" is processed automatically at the back-end.

We have decided to base our work on UML as an industrial-strength speci�ca-
tion language and the PVS Speci�cation Language (PVS-SL) [Owre et al. 1995],
which provides corresponding formal semantics. In previous work we dealt with
the formal semantics of UML class diagrams in PVS-SL [Demissie et al. 1999].
This paper focuses more speci�cally on the formal semantics of UML statecharts,
which represents with class diagrams one of the most important diagrams of
UML. Our objective in this work is twofold:

1. Produce a precise speci�cation of the system by removing any ambiguity
from the model.

2. Analyse the model by ensuring that any valid implementation of the system
guarantees the speci�cation.

Our �rst goal is achieved by providing in PVS-SL an abstract syntax for the
statechart diagram, and by generating and checking a set of corresponding well-
formedness rules. The second goal is achieved by de�ning a semantics model for
the diagram expressed in PVS-SL, and by checking the properties of the system
against this model. That is done using the model-checking and proof-checking
capability of the PVS toolkit. However, as mentioned in [Evans et al. 1999], un-
derstanding and formulating the need for proof is outside the experience of most
developers. Furthermore, most of them "will not, in the foreseeable future, be
willing to use abstract formal languages and notations to design software, re-
gardless of how theoretically desirable it might be to do so." Therefore, the only
way to get developers to be more precise is to provide tools that will help e�-
ciently in doing so. For this reason, we have decided to target model-checking as
our main analysis technique. Theorem proving may be used as a complementary
solution and only for speci�c applications. This allows us to provide a veri�cation
process that is fully automated.

The next section is a short overview of the notations involved in the frame-
work. Then, we present our formalization approach and few results. Finally, in
the subsequent sections, we develop a case study based on the requirements of
an elevator system, and make some concluding remarks. A complete list of the
de�nitions involved in the approach is given in [Traor�e 2000].

1089Traore I.: An Outline of PVS Semantics for UML Statecharts

2 Presentation of the Notations involved

UML is built on an object-oriented framework; therefore, it provides several ca-
pabilities such as encapsulation, data abstraction, extensibility, reusability and
exibility, which are useful for the description of open distributed systems. It
has been standardized and there are many tools available on the market today.
In addition, UML provides an underlying methodology for speci�cation and re-
�nement, and a diagramatic notation which contributes to communicativeness
and friendliness.

PVS-SL is used in this platform, as semantics foundation and not as a speci�-
cation language. As a result, the user will not need to have an in-depth knowledge
of the PVS formal notation and proof system. PVS-SL o�ers a very general se-
mantic foundation and a set of powerful tools. It is highly expressive and o�ers
several mechanisms for formal analysis. Compared to OCL, PVS-SL provides
stronger support for all kinds of operations (with or without side-e�ects). For
instance, in OCL, operations can be modeled by a recursive expression, but it
is the modeler's responsibility to ensure the well-de�nedness of the recursion.
In PVS-SL, however, this is handled by the built-in construct: the MEASURE
clause.

2.1 More About UML Statecharts

2.1.1 Comparison with Classical Statechart:

UML statechart is an object-based variant of Harel statecharts. It includes sev-
eral concepts derived from ROOMcharts, a variant of statechart de�ned in the
ROOM language. A statechart diagram is used to describe the behavior of model
element such as an object or an interaction. It consists of possible sequences of
states and actions through which the component may proceed during its life-
time. The behavior of a component is described by specifying reaction to discrete
events such as signals and operation calls.

The main di�erence between UML statechart and Harel statechart is that
the former represents behavior of a type whereas the latter specify behaviors of
processes: actually in UML statecharts the notion of process is not supported.
In UML statecharts, events are not considered as primitive signals since their
de�nition may include parameters. Event conjunction is not supported: the se-
mantics is not given with respect to a general system context; instead, only single
event dispatch is considered. Operations are not broadcast; instead, they can be
directed to an object-set. However, the notion of synchronous communication
between state machines is supported. Another di�erence worth mentioning is
that whereas in classical statechart the order of execution of actions associated
to transitions doesn't matter, in UML statecharts, they are executed in their
given order. It is also important to note that in classical statecharts, the execu-
tion of transitions takes zero time. The execution of the whole system is based
on synchronous steps; each step produces new events which are dealt with at
the following step. In contrast, UML statecharts are based on the software exe-
cution model based on threads of execution and the assumption that execution
may take time.

1090 Traore I.: An Outline of PVS Semantics for UML Statecharts

2.1.2 Overview of the notation:

We give in the following an overview of the UML statechart notation through
an example statechart diagram for an elevator system depicted in �gure 1.

FloorRequested

ListEmpty ListNEmpty
request/update(L)

arrival[length(L)=1]/update(L)
request/update(L)

arrival[length(L)>1]/update(L)

Dynamic

Standing

entry: stop

Moving

UP Down

OutOfService

cancel
ok

H*

arrival[c1]/
departure(up)

arrival[c1’]/
departure(down)

tm(stop,dts)/
departure(up)

arrival[c2]/stop

tm(stop,dts)/

departure(down)

arrival[c3]/stop

Elevator InService

Figure 1: Statechart Diagram of the Elevator System

A statechart diagram is a graph representing a state machine. The key com-
ponents of the graph are transitions, states and various other types of vertices
(pseudostates). States are rendered as a rectangle with rounded corners. Pseu-
dostates are rendered by appropriate pseudostate symbol. A state can be either
a simple state or a composite state. A simple state is a state that cannot be
further re�ned (i.e. that has no substate). A composite state is a state that can
be decomposed into two or more concurrent substates or into mutually exclusive
disjoint substates (also called a sequential state). Every statechart diagram has
a root state that contains all the other elements of the entire graph.

In the diagram of �gure 1, the root state is state Elevator, which consists
of two direct substates, namely, state InService and state OutOfService. State
OutOfService is a simple state whereas state InService is a concurrent compos-
ite state. State InService has two direct substates (called also regions), namely,
states Dynamic and FloorRequested, which are composite sequential states by
de�nition, decomposed in their turn into mutually exclusive disjoint substates.
A pseudostate is an abstraction used to connect multiple transitions into more
complex state transitions paths. It consists of various kinds, more speci�cally
initial, deepHistory, shallowHistory, join vertices, fork vertices, junction ver-
tices and choice vertices. ShallowHistory and deepHistory which are some of the
most used, are shorthand notations used to depict historical information. Deep-

1091Traore I.: An Outline of PVS Semantics for UML Statecharts

c1 = (first(L) > F) AND in(ListNEmpty)

c1’ = (first(L) < F) AND in(ListNEmpty)

c2 = in(ListEmpty)

c3 = (first(L) = F) AND in(ListNEmpty)

Standing: speed = 0
Moving: speed /= 0

ListNEmpty: (floorList /= EMPTY)
ListEmpty: (floorList = EMPTY)

(Elevator, InService, Dynamic, FloorRequested, Standing, ListEmpty)

(Elevator, InService, Dynamic, FloorRequested, Standing, ListNEmpty)

(Elevator, InService, Dynamic, FloorRequested, Moving, Up, ListNEmpty)

request

tm(stop,dts)

 A

B

C

Up: (speed /= 0) AND (direction = UP)

Figure 2: Conditions, state predicates and con�gurations

History represents the most recent active con�guration of the composite state
that directly contains it. ShallowHistory represents the most recent active direct
substate of its containing state. For instance, state InService contains a deep
history state for which the notation is a circle with an H� inside.

Transitions are rendered by directed arcs interconnecting the states involved.
A transition is a relationship between two states, describing the fact that an
object in the �rst state may evolve to the second state and perform speci�c
actions, at the occurrence of a speci�ed event and under speci�c conditions.
A transition may be labeled by a transition string using the following format:
event� signature[guard� condition]=action� expression. Several instances of
transitions are provided by the graph in �gure 1. For example, the transition la-
belled tm(stop,dts)[c1]/departure(up), which connects states Standing and Mov-
ing, means that at the occurrence of event tm(stop,dts), and if the condition c1
is true, state Standing is exited, whereas state Moving is entered, and action
departure(up) is executed.

An event represents a noteworthy occurrence. There are various kinds of
events (not necessarily mutually exclusive), namely change event, signal event,
call event and time event. A change event represents a designated condition
becoming true; a signal event describes an explicit signal received from one object
to another; a call event corresponds to the receipt of a call for an operation by
an object; a TimeEvent corresponds to the passage of a designated period of
time after a designated event. For instance, event tm(stop,dts) is a time event
that occurs dts time duration after the occurrence of event stop.

1092 Traore I.: An Outline of PVS Semantics for UML Statecharts

2.2 Short Overview of PVS-SL

PVS is a Prototype Veri�cation System for formal speci�cation and reasoning.
It consists of a speci�cation language, a parser, a typechecker, a prover, a model-
checker, speci�cation libraries and several browsing tools. A PVS speci�cation
consists of a collection of theories. A theory consists of type and constant de�ni-
tions, and related axioms, de�nitions and theorems. Parametric theories, using
types and values, are supported. The language is based on simply typed higher-
order logic. Types can be de�ned using base types (booleans, numbers, etc.),
functions, record, and tuple construction. Unintepreted base types and predi-
cate subtype of a given type are some of the signi�cant enhancements to the
type system.

bag[item: TYPE+]: THEORY
 BEGIN
 bag: TYPE+
 b: VAR bag
 i: VAR item
 empty: bag
 nonemptybag? (b): bool = b /= empty

 put: [item, bag -> (nonemptybag?)]

 empty_ax: AXIOM
 get(put(i,empty)) = empty

END bag

 get: [(nonemptybag?) -> item]

Figure 3: Example of PVS Theory

We give in �gure 3, an instance of parametric theory called bag. The theory
receives as parameter a type named item , which corresponds to the type of
the items contained by the bag. THEORY, BEGIN and END are the speci�c
keywords that de�ne a theory. Keywords TYPE, VAR, AXIOM and THEOREM
are used to de�ne respectively type, variable, axioms and theorems. For instance,
the axiom labelled empty ax states that the application to an empty bag of a
put function, followed by a get function will give rise to the same empty bag.

2.2.1 The PVS Model-checker:

The model checker of PVS is based on the branching time temporal logic called
Computation Tree Logic (CTL) [Shankar 1997]. CTL formulas consist of atomic
propositions, propositional combinations, universal path quanti�ed formulas (de-
noted byAGf| \along every computation path, always f",AFf| \along every
path, eventually f"), existential path quanti�ed formulas (EGf | \along some
path always f", EFf | \along some path eventually f"). In the PVS model-
checker, an invariant property in CTL is speci�ed in the form AG(trans; prop)(s)

1093Traore I.: An Outline of PVS Semantics for UML Statecharts

where trans is the transition starting state. The AG operator then means that
the property prop must be true of all states that can be reached from s by the
transitions of trans. The concept of state considered here is that of computation
state which is equivalent to the notion of global state de�ned later. The notion
of computations over a computation state is speci�ed by a parametric theory
state, provided in the PVS prelude, which receives a state (e.g. computation or
global state) as parameter (see �gure 4).

state[state: TYPE]: THEORY
 BEGIN
 IMPORTING sequences[state]

 statepred: TYPE = PRED[state] %assertions
 Action: TYPE = PRED[[state, state]] % transition relation
 computation: TYPE = sequence[state]

 ...
END state

 pp: VAR statepred

 action: VAR Action
 aa, bb, cc: VAR computation

 Init(pp)(aa): bool = pp(aa(0))

Figure 4: Theory state

A program represents a set of computations and can be characterized by
an initialization assertion (de�ning the initial state) and a binary transition
relation (e.g Action) which constrains the allowable transitions of a computation.
A computation is de�ned as a sequence of states and an assertion is modelled as
a predicate on states.

3 Formalization Approach

3.1 Overview of the General Approach

Our general approach consists of the following steps:

1. The UML statechart diagram is converted in an abstract syntax using PVS-
SL.

2. Then on the basis of that syntax which is speci�c to the model considered,
a set of well-formedness rules are provided under the form of PVS theorems.

3. The rules are checked and the model is updated accordingly.
4. Next, the formal semantics of the model in the PVS speci�cation language

is generated. The semantics model obtained is a combination of generic for-
mulas and additional formulas provided by the user in order to complete the
de�nitions of speci�c model features such as elementary states and events.

5. The semantics model obtained will serve as basis for the veri�cation of the
model using the PVS model-checker and the system properties speci�ed by
the user.

1094 Traore I.: An Outline of PVS Semantics for UML Statecharts

The whole formal model de�ned for a given UML statechart diagram con-
sists of three generic PVS theories each describing di�erent aspect of the model,
namely, the abstract syntax, the set of well-formedness rules and the formal se-
mantics, and called respectively AbstractSyntax, WellFormedness and FormalSe-
mantics. TheoriesWellFormedness and Semantics are parametric theories which
receive as actual parameter the abstract representation of the statechart. The key
abstraction of theory AbstractSyntax is the formal representation of a statechart
diagram which is given as a record listing the di�erent collections of features
(e.g. states, events, transitions etc.) involved in the speci�c diagram considered.
From this de�nition, we can derive a collection of �nite sets representing the
basic building blocks of the statechart (e.g. set of states, set of events etc.),
that actually describe the domain over which the well-formedness rules provided
by theory WellFormedness are de�ned. Since this domain is �nite, all the well-
formedness rules involved can be checked algorithmically. Theory FormalSeman-
tics provides input to the PVS model checker, by de�ning the features involved
in the formal semantics of the statechart. More speci�cally the formal semantics
of a statechart is de�ned as a triple (globalState, InitState, NEXT step), where
globalState represents the global states involved, InitState is the initial global
state, and NEXT step is the transition relation.

3.2 Basic Concepts and Abstract Representation of a Statechart
Diagram

The foundation of our formalization activity consists of de�ning a set of elemen-
tary predicates that describe relevant properties about the system state or the
system operation. The set of elementary predicates is then partitioned into ele-
mentary states and events. A state describes a condition of the system that has
a nonnull duration. The state of the whole system at a given time, identi�ed by
the term global state, is the conjunction of all elementary states that hold dur-
ing that time. An event describes conditions that can hold only at a particular
instant of time.

Another key aspect of our formalization approach is the fact that time is
explicitly taken into account as a system variable; this allows us to state time
constraints between the occurrence of di�erent events. Time is represented by a
single time value for events, which are instantaneous, and a pair of time values
for states, where the pair denotes the time interval during which the state holds.
Time intervals associated with state predicates are, by convention, closed at the
left and open at the right (e.g [t1; t2[). No assumptions are made in the UML
informal semantics about the time intervals involved in event communication;
this leaves open the possibility of di�erent semantics models. Hence, our seman-
tics model will assume zero decision times. We de�ne these features in the PVS
Speci�cation Language by providing appropriate type de�nitions.

AbstractSyntax : THEORY
BEGIN
V: TYPE
Time: TYPE FROM nat
Event: TYPE
Vertex: TYPE
State: TYPE FROM Vertex

1095Traore I.: An Outline of PVS Semantics for UML Statecharts

defer(s: State): set[Event]

We make a distinction between type State de�ned for elementary states and
type state de�ned in the PVS prelude for computation states. V represents an
uninterpreted datatype, which describes the instance variables involved in the
feature described by the model. For a class, that consists of the attributes and
relationships involved. It may be provided under the form of a record whose �elds
correspond to the instance variables involved. We de�ne a function defer, which
associates to a state a set of deferred event. A deferred event is retained until
the state machine reaches a state con�guration where it is no longer deferred.

Actually, we de�ne a state as a subcategory of a state vertex, which is an
abstraction of a node in a statechart graph. A state vertex can be one of the
following four subcategories: state, pseudostate, synch state and stub state. A
synch state is a vertex used for synchronizing the concurrent regions of a state
machine. A stub state is a state vertex used to reference a state machine within
another state machine. Hence we give the following de�nition:

PseudoState: TYPE FROM Vertex
SynchState: TYPE FROM vertex
StubState: TYPE FROM Vertex
ax vertex: AXIOM

FORALL (x: Vertex):
PseudoState pred(x) OR SynchState pred(x) OR
StubState pred(x) OR State pred(x)

Given a state, we de�ne the set of state vertices (possibly empty) directly
contained by the state, by providing a function called dsubvertex which de�nes a
tree structure on the set of states associated to a state machine. Using dsubvertex,
we de�ne recursively subvertex as the set of all the state vertices contained in a
given state.

s: VAR State
x: VAR Vertex
dsubvertex(s): set[Vertex]
ax dsubv: AXIOM

is �nite(dsubvertex(s)) AND
singleton?(f s j member(s',dsubvertex(s)) g

subvertex(s): RECURSIVE set[Vertex] =
union(dsubvertex(s),
f x: (subvertex(y)) j member(y,dsubvertex(s)) g)

MEASURE(LAMBDA(s): dsubvertexs /= emptyset)
subvertex1(s): set[Vertex] =

f Y: State j y=s OR member(y,subvertex(s)) g

subvertex1 provides a set including in addition to the subvertices of a state,
the state itself.

Composite states and simple states are de�ned by providing appropriate
predicates based on the previous de�nition:

compositeState?(s): bool = subvertex(s) /= emptyset
simpleState?(s): bool = subvertex(s) = emptyset

1096 Traore I.: An Outline of PVS Semantics for UML Statecharts

We de�ne also a function called container, which returns the state directly
containing a given state vertex.

container(x): State = s WHERE
(compositeState?(s) AND member(x,dsubvertex(s)))

We deduce from the previous de�nitions the set of substates and the set of
direct substates of a given state, as follow:

substate(s): set[State] = f x j member(x, subvertex(s)) AND State pred(x) g
dsubstate(s): set[State] = f x j member(x, substate(s)) AND container(x) = s g

Next we de�ne a transition as a record whose �elds correspond to its main
features (e.g. trigger, guard condition etc.).

Action: TYPE+
Condition: TYPE = pred[V]
Context: TYPE = f behavioral, classi�er g
Transition: TYPE = [# source: Vertex,

trigger: Event,
guard: Condition,
e�ect: Action,
target: Vertex #]

Context is an enumerated type that de�nes the kind of model element being
described by the statechart (either a behavioral feature or a classi�er).

Finally, we give an abstract representation for a statechart diagram itself by
de�ning a type named StateMachine as a record whose �elds correspond to the
collections of items involved in the diagram.

Statemachine: TYPE = [#
State: set[State],
StubState: set[StubState],
SynchState: set[SynchState],
Initial: set[Initial],
Choice: set[Choice],
DeepH: set[DeepH],
ShallowH: set[ShallowH],
Join: set[Join],
Fork: set[Fork],
Junction: set[Junction],
PseudoState: f v: set[PseudoState] j v=union(DeepH,

union(ShallowH,union(Choice,
union(Join,union(Fork,
union(Junction,Initial)))))) g,

Vertex: f v: set[Vertex] j
v =union(PseudoState,
union(StubState,
union(SynchState,State))) g,

CallEvent: set[CallEvent],
TimeEvent: set[TimeEvent],
ChangeEvent: set[ChangeEvent],

1097Traore I.: An Outline of PVS Semantics for UML Statecharts

SignalEvent: set[SignalEvent]
Event: f E:set[Event] j

E=union(CallEvent,
union(TimeEvent,
union(ChangeEvent,
SignalEvent))) g,

Action: set[Action],
Condition: set[Condition],
Transition: f T: set[Transition] j

FORALL (tr: (T)):
member(source(tr),Vertex) AND
member(target(tr),Vertex) AND
member(trigger,Event) AND
member(guard,Condition) AND
member(e�ect,Action) g,

Root: f s: (State) j
compositeState?(s) AND
(subvertex1(s) = Vertex) g,

Context: Context
]

3.3 Well-Formed Diagram

Well-formedness rules are de�ned within a parametric theory calledWellFormed-
ness, which receives as parameter the abstract representation of a speci�c stat-
echart diagram. We have identi�ed seven rules provided under the form of PVS
theorems. The complete listing of the theory can be found in [Traor�e 2000].
Before presenting in the following some of these rules, we de�ne some auxiliary
functions and introduce the concept of state con�guration. A state con�guration
is de�ned as a maximal set of simultaneous active states.

WellFormedness [sm: StateMachine] : THEORY
BEGIN
IMPORTING AbstractSyntax
x: VAR Vertex
atleast2?(A: �nite set): bool = A /= emptyset AND

NOT singleton?(A)
atmostst1?(A: �nite set): bool = A = emptyset OR

singleton?(A)
incoming(x): set[Transition] = f tr: (Transition(sm)) j

x = target(tr) g
outgoing(x): setof[Transition] = f tr: (Transition(sm)) j

x = source(tr) g
con�guration: TYPE = fC: set[State] j

subset?(C,State(sm)) AND
member(Root(sm),C) AND
(FORALL (s:(C) j compositeState?(s)):
IF isConcurrent(s)
THEN subset?(dsubstate(s),C)
ELSE

1098 Traore I.: An Outline of PVS Semantics for UML Statecharts

singleton?(intersection(dsubstate(s),C))
ENDIF)
g

The �rst rule considered, labelled wf1, is related to composite states:

wf1: THEOREM
(FORALL (S: (State(sm)), R: (State(sm)) j

compositeState?(S) AND compositeState?(R)):
atmost1?(intersection(Initial(sm),dsubvertex(S))) AND
atmost1?(intersection(DeepH(sm),dsubvertex(S))) AND
atmost1?(intersection(ShallowH(sm),dsubvertex(S))) AND
(S /= R ,

intersection(dsubvertex(S),dsubvertex(R)) = emptyset) AND
(isConcurrent(S)) every(compositeState?,dsubstate(S)) AND
atleast2?(dsubstate(S))))

In other words, a composite state can contain at most one the following kinds
of vertices: initial vertex, deep history vertex and shallow history vertex. A state
vertex can be part of at most one composite state. A concurrent composite state
can only have composite states as direct substates, and the number of these
(direct) substates should be at least two.

The second rule labelled wf2, states that the top state of a state machine is
always a composite state, it cannot have any containing states and cannot be
the source of a transition. A state machine is aggregated within either a classi�er
or a behavioral feature.

wf2: THEOREM
compositeState?(Root(sm)) AND
outgoing(Root(sm)) = emptyset AND
NOT (EXISTS (S: (State(sm))): S = container(Root(sm))) AND
(context(sm) = behavioral OR context(sm) = classi�er)

Rule wf3 deals mainly with well-formedness of transitions and pseudostates.
It states that an initial vertex can have at most one outgoing transition and no
incoming transition. History vertices can have at most one outgoing transition. A
join vertex must have at least two incoming transitions and exactly one outgoing
transition. A fork vertex must have at least two outgoing transitions and exactly
one incoming transition. Junction and choice vertices must have at least one
incoming and one outgoing transition.

wf3: THEOREM
(FORALL (S: (PseudoState(sm))):

(member (S,Initial(sm)))
atmostst1?(outgoing(S)) AND
incoming(S) = emptyset)

AND
(member(S,union(Deeep(sm),ShallowH(sm))))

atmost1?(outgoing(S)))
AND
(member(S,Join(sm)))

atleast2?(incoming(S))

1099Traore I.: An Outline of PVS Semantics for UML Statecharts

AND singleton?(outgoing(S)))
AND
(member(S,Fork(sm)))

singleton?(incoming(S)) AND
atleast2?(outgoing(S)))

AND
(member(S,union(Junction(sm),Choice(sm))))

incoming(S) /= emptyset AND
outgoing(S) /= emptyset)

3.4 Formal Semantics of a Statechart Diagram

As mentioned above, we formally express a statechart as a transition system
de�ned by a triple (globalState; InitState;NEXT step). So the main goal of
our formalization task consists of de�ning these three elements. We de�ne a
parametric theory called FormalSemantics which encompasses all the de�nitions
involved. This theory receives two parameters: a value of type StateMachine,
and a type representing the instance variables involved (corresponds to type V
introduced earlier). We provide in this theory meaning functions for concepts
such as event, state, action and condition, which are de�ned as predicates.

FormalSemantics [sm : StateMachine, V: TYPE] : THEORY
BEGIN

meaningS: [State ! PRED[[V, Time, Time]]]
meaningC: [Condition ! PRED[V]]
meaningA: [Action ! PRED[V]]
meaningE: [Condition ! PRED[Time]]
EmptyE: Event
meaningE WITH[(EmptyE) :=
(LAMBDA(t: Time): true)]

nonemptyevent?(e: Event): bool = e/= emptyE

The meaning function of an action corresponds to its postcondition; the
meaning function of an event corresponds to a predicate describing its occurence.
For a condition, we use the condition predicate and for a state, a state predicate
describing the activation status of the state.

We de�ne a global state as a record type called globalState consisting of a
state con�guration and an event queue. The inital (global) state is de�ned as the
combination of the initial con�guration and a set of external events (i.e. gener-
ated by the environment). The initial con�guration of a statechart corresponds
to the set of default states involved.

globalState: TYPE = [# conf: con�guration, queue: �nseq(Event) #]
External: �nseq(Event)
InitState: globalState =

(# conf := C WHERE (C: con�guration,
FORALL(s: (C) j isSequential(s)): member(default(s),C)),

queue := External #)

1100 Traore I.: An Outline of PVS Semantics for UML Statecharts

When an event is received, it is placed on the event queue of its target. An
event is selected, dequeued and delivered for processing by an event dispatcher
mechanism. The semantics of a state machine is based on the run-to-completion
assumption. This means that events are dequeued and processed one at a time.
The processing of an event by a state machine is called a run-to-completion step.
A run-to-completion step brings the state machine from one stable con�gura-
tion to another stable con�guration. We describe completion steps execution by
de�ning a binary relation denoted NEXT step.

NEXT step (s1: globalState,s2: globalState): bool =
Eprocess(Edispatch(s1), s1, s2)

At the beginning of a step, an event is dispatched from the queue (operation
Edispatch), then processed (operation Eprocess). Since the order of event de-
queuing is not de�ned in the speci�cation, we have decided to use the sequence
order, �rst arrived, �rst served. The single restriction on this scheme concerns
deferred events. An event instance that does not trigger any transition in the
current state, will not be dispatched if it is de�erred in that state. That gives
the following de�nition for Edispatch:

Edispatch (s0: globalState): RECURSIVE Event =
IF queue(s0) = empty seq OR

(EXISTS (i: nat): EmptyE = nth(queue(s0),i))
THEN EmptyE
ELSEIF

(EXISTS (s: (conf(s0))): member(�rst(queue(s0)),defer(s)))
THEN Edispatch(x)

WHERE x: globalState, queue(x) := rest(queue(s0))
ELSE �rst(queue(s0))
ENDIF

MEASURE (LAMBDA (x: globalState): rest(queue(x)))

The processing of an event consists �rstly of selecting a maximal set of non-
conicting transitions among the enabled one. The selected transitions are then
�red, that consists for each of them of exiting from their source states, executing
the associated actions and entering their target states.

Eprocess (e: Event, s0: globalState, s1: globalState): bool =
(EXISTS (T: (f A: set[Transition] j subset?(A, Transition(sm))

AND MaxEnabled(A,conf(s0),e) g)):
conf (s1) = union (f s: (conf(s0)) j

intersection(outgoing(s),T)
= emptyset g,
f s: (State(sm)) j
intersection(incoming(s),T)
/= emptyset g)

Due to possible conicts among transitions, there are several maximal sets
of transitions that can be �red. The actual set that is �red is chosen non-
deterministically:

MaxEnabled(A: set[Transition] j

1101Traore I.: An Outline of PVS Semantics for UML Statecharts

subset? (A,Transition(sm)), c: con�guration,
e: Event(sm)): bool =

FORALL (tr: (A)):
enabled(e,tr,c) AND
(FORALL (tr': (A)): NOT conict(tr,tr'))
AND (FORALL (tr": (Transition(sm)) j
enabled(e,tr",c)
AND NOT member(tr",A)):

hasPriority(tr,tr") OR
samePriority(tr,tr"))

Two transitions conict if there is at least one state that they both exit. In
such situation, the selection of which transitions will �re is based on a priority
scheme. By de�nition, a transition originating from a substate has a lower prior-
ity than any conicting transition originating from any of its parent states. We
give in the following the de�nitions corresponding to all these notions. We de�ne
before that the notion of scope or least common ancestor state of a transition.
The scope of a transition is the lowest composite state that contains the explicit
source states and explicit target states of the transition.

scope(tr: (Transition(sm))): State =
s WHERE (s: (State(sm)),

isSequential(s) AND
member(source(tr),subvertex(s)) AND
member(target(tr),subvertex(s)) AND
(FORALL (s': (State(sm)) j

isSequential(s')
AND s /= s'):

(member(source(tr),subvertex(s')) AND
member (target(tr),subveretx(s'))

)

member(s,substate(s'))))

conict(tr: (Transition(sm)), tr': (Transition(sm))): bool =
(tr /= tr') AND
fs: (State(sm)) j
(s= mainSource(tr)
OR member(s,substate(mainSource(tr)))) AND
(s= mainSource(tr')
OR member(s,substate(mainSource(tr'))))
g /= emptyset

hasPriority(tr1: (Transition(sm)), tr2: (Transition(sm))): bool =
conict(tr1,tr2) AND
member(scope(tr2),substate(scope(tr1)))

samePriority(tr1: (Transition(sm)),tr2: (Transition(sm))): bool =
(scope(t1) = scope(t2)) OR
NOT (EXISTS (c: con�guration):

member(source(tr1),c) AND member(source(tr2),c))

1102 Traore I.: An Outline of PVS Semantics for UML Statecharts

A transition is enabled if all its source states are in the active con�guration,
its trigger matches the event speci�ed by the trigger and its guard condition is
true.

enabled(e: Event, tr: Transition, c: con�guration): bool =
member(source(tr),c)
AND match(e,trigger(tr)) AND
meaningC(guard(tr))

The complete de�nition of theory FormalSemantics including the de�nitions
of auxiliary functions and remaining semantic concepts is given in [Traor�e 2000].

3.5 Properties of the Formal Semantics

Our formalization activity is based on the informal semantics of UML standard
speci�cation [OMG 1999], which serves as requirements document. The formal
semantics provided as a PVS speci�cation is validated by drawing conjectures
from the requirements. We have identi�ed and proved number of conjectures
using the PVS prover. We present in the sequel two of these conjectures.

or state: CONJECTURE
(FORALL (s: (State(sm)) j isSequential(s))):
meaningS(s) , singleton?(fr: (dsubstate(s)) j meaningS(r) g)

and state: CONJECTURE
(FORALL (s: (State(sm)) j isConcurrent(s))):
meaningS(s) , (FORALL (r: (dsubstate(s)): meaningS(r))

The �rst conjecture states that a sequential state is active if and only if one
of its direct substate is active. The second conjecture states that a concurrent
state is active if and only if all its direct substates are active (simultaneously).

4 Case Study

4.1 An Elevator System

Our case study concerns an elevator system that has been proposed and used
in the literature as benchmark for several systems. The system consists of n
elevator to be installed in a building with m oors. Each elevator has a set of
buttons:

{ One button for each oor that illuminates when pressed and make the ele-
vator to visit the corresponding oor;

{ An emergency button which when pressed generates a warning signal.

Each oor has two buttons (except the �rst and last oor), one to request an
up-elevator and the other to request a down-elevator. When an elevator has no
request, it should remain at its �nal destination, and wait for further requests.
All requests for elevator from oors must be serviced eventually, with all oors
given equal priority. All requests for oors within elevators must be serviced
eventually, with oors being serviced sequentially in the direction of travel.

1103Traore I.: An Outline of PVS Semantics for UML Statecharts

4.2 UML Speci�cation

We de�ne in the UML class diagram, a control class representing the elevator
object. We describe the dynamic behavior of the elevator class by providing the
statechart diagram depicted by �gure 1. Initially the Elevator is considered to
be in service (state InService). The elevator may be put out of service (state
OutService) if a cancel event is generated. In this case the elevator may come
back to the working state if an ok event occurs.

There are two major concerns when the elevator is in the working state: the
update of the list of oor requested and the servicing of the individual requests.
These two concerns are addressed by dividing state InService into two concur-
rent regions: Dynamic and FloorRequested. A request for a oor is serviced by
updating the list and by moving at the same time the elevator in the appropriate
direction. For instance, �gure 2C depicts a sequence of stable con�gurations of
the systems when a request is made. The request is made when the elevator
is standing (state Standing) and the oor list is empty (state ListEmpty). This
brings the system in a new con�guration in which the elevator is still standing,
but the list is non empty (state ListNEmpty). Then after a time period dts,
marked by the occurrence of event tm(stop,dts), the system moves to another
con�guration in which the elevator is moving (state Moving).

The conditions related to the transitions involved in the diagram are de�ned
under the form of predicates of the instance variables in �gure 2A. The actual
meaning associated to the elementary states involved in the diagram are also
predicates on the instance variables. Some of these de�nitions are given in �gure
2B. For instance, state Standing is characterized by an elevator speed which is
permanently null (e.g. speed = 0).

4.3 Formal Analysis

We de�ne a theory called Analysis, in which the formal analysis takes place. This
theory imports theory AbstractSyntax and instantiates the remaining theories
(i.e. WellFormedness, FormalSemantics). Before instantiating the theories, we
need to de�ne the value of the StateMachine data corresponding to the Elevator
statechart diagram. We also need to provide an actual type for type parameter
V. We de�ne V as a record type whose �elds correspond to the instance variables
involved (i.e. attributes and relationships).

Analysis : THEORY
BEGIN
IMPORTING AbstractSyntax

% Instance variables
Direction: TYPE = f DOWN, UP g
Status: TYPE = f On, O� g
m: VAR nat % number of oors
Floor:below[m]
EMPTY: set[Floor] = emptyset
V: TYPE = [# speed: nat,

direction: Direction,
oorList: set[Floor],
status: Status #]

v: VAR V

1104 Traore I.: An Outline of PVS Semantics for UML Statecharts

We de�ne in detail all the elements (e.g. events, conditions, states etc.) in-
volved in the diagram and their related set. We give for instance in the following
the de�nition of states ListEmpty and ListNEmpty, and SmStates the set of all
the states involved in the elevator statechart diagram. All these de�nitions are
in principle generated automatically.

ListEmpty: State
dsubvertex WITH [(ListEmpty) := emptyset]
defer WITH [(ListEmpty) := emptyset]
meaningS WITH [(ListEmpty) := (lambda(v): oorList(v) =EMPTY)]
ListNEmpty: State
dsubvertex WITH [(ListNEmpty) := emptyset]
defer WITH [(ListNEmpty) := emptyset]
meaningS WITH [(ListNEmpty) := (lambda(v): oorList(v) /= EMPTY)]

...
SmState: set[State] = fs: State j s= ListEmpty OR

s=ListNEmpty OR s= UP OR
s=DOWN OR s=Standing OR
s=Moving OR s= OutOfService OR
s=Dynamic OR s= FloorRequested OR
s= InService OR s= Elevatorg

Then, we de�ne the StateMachine value and instantiate the generic theories
remaining.

sm: StateMachine =
(# State:= SmState

StubState:= SmStub
SynchState := SmSynch

...
Root:= SmRoot

#)
IMPORTING WellFormedness[sm], IMPORTING FormalSemantics[sm,V]

By invoking the prover, the well-formedness rules de�ned in theory Well-
Formedness are checked. As mentioned above, that can be handled automatically
because the domains involved are all �nite. Then, we de�ne the properties of the
system (within the same theory) and invoke the PVS model-checker. Model-
checking in PVS requires the instantiation of theory state (see �gure 4), which is
already de�ned in the PVS prelude. We use as actual parameter for that state,
the type globalState. We give also an initialization predicate Init, which is a state
predicate de�ning the initial global state.

IMPORTING state[globalState]
s: VAR state
Init(s): bool = (s = InitState)

One of the most important properties for the elevator system is a liveness
property stating that all requests will eventually be served. That corresponds
to a state con�guration in which the list of oor requested is emptied and the
elevator is standing; we describe that by an assertion called service. The property

1105Traore I.: An Outline of PVS Semantics for UML Statecharts

itself is de�ned as a lemma stating that from an initial state, it is always possible
to reach a state satisfying assertion service.

service(s): bool = member(ListEmpty,conf(s)) AND
member(Standing,conf(s))

live: LEMMA Init(s))
AF(NEXT step,service)(s)

This property is automatically proved by using the model-check command of
the PVS toolkit.

5 Concluding Remarks

In this paper we de�ned a formal semantics for a large subset of UML state-
charts that serve for model-checking using the PVS toolkit. The advantage of
model-checking over theorem proving is that model-checking is largely auto-
matic. Moreover, model-checking technology has reached where it is possible to
handle quite large state spaces. The size of the state space corresponding to the
formal model proposed in this paper is function of the size of the �elds of the
abstract data corresponding to the statechart diagram. The elevator case study
yields a state space with about 4:107 possible states. The formal model proposed
can also serve for proof-checking. Actually, model-checking and theorem proving
are both complementary techniques. Model-checking can be used to �nd coun-
terexamples before starting some costly and time-consuming proof-checking.

We are currently developing an environment called PrUDE that automates
the key steps of our formalization approach. PrUDE is a software veri�cation and
validation environment providing support for model execution, model-checking
and proof-checking. Model-checking and proof-checking are based on the PVS
toolkit. The automation of proof-checking will be enhanced by selecting and
customizing suitable proof strategies provided by the PVS toolkit. The interface
of PrUDE with UML is based on XMI, which provides an explicit interchange
format for UML based tools. Since all UML tools export the UML model in
XMI format, the platform will be independent of any tool vendors. It will then
be possible to adapt it easily to existing software development environment.
The main strength of PrUDE will rely on the fact that a user will have to deal
only with graphical notations which are friendly, easy to learn and to use. All
the formal "stu�" (related to PVS) will be processed at the back end. Another
characteristic of PrUDE is the promotion of reusability by providing a library
of formal models corresponding to existing frameworks and patterns.

Future work will deal with issues speci�c to object orientation such as in-
heritance, sub-behavior etc. We will mainly focus our work on statechart re-
�nement policies (i.e. subtyping, behavioral compatibility and implementation
reuse) which are still not clearly de�ned in the standard semantics document.
We will also provide a detailed semantic for speci�c features of statecharts such
as actions which have been de�ned in this work as uninterpreted types. Actu-
ally, there are no de�ned semantics for actions in the current UML speci�cation.
An accepted standard may be provided by 2000, as a result of the request for
proposal (RFP) made by the OMG in November 1998 for a de�nition of the
semantics of actions. Most works available in the litterature are dealing with

1106 Traore I.: An Outline of PVS Semantics for UML Statecharts

the formalization of classical statechart. For instance, in [Hooman et al. 1992],
a compositional semantics is provided for Harel Statecharts. Another approach
proposed in [Chan et al. 1998] is based on a variant of Harel Statecharts, called
Requirements State Machine Language (RSML) [Leveson et al. 1994] and tar-
gets symbolic model-checking. The behavior of the system is �rst represented in
RSML, and then translated into input to the Symbolic Model Veri�er (SMV)
[McMillan 1993]. Closer to our work is the approach followed by Latella et al. in
[Latella et al. 1999] where an operational semantics is provided for UML state-
chart diagrams by mapping them to an intermediate format of extended hierar-
chical automata. They also aim at model-checking as main veri�cation technique,
more speci�cally the model checking tool SPIN [Holzmann 1997].

References

[Abadi 1994] M. Abadi, L. Lamport, "An old-fashioned recipe for real-time", ACM
Transactions on Programming Languages and Systems, 16:1543-1571, 1994.

[Chan et al. 1998] W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, D.
Notkin, J. D. Reese, "Model-Checking Large Software Speci�cations", IEEE Trans.
Soft. Eng., Vol. 24, No. 7, July 1998.

[Dahl 1998] O.J. Dahl, O. Owe, "Formal Methods and the RM-ODP", Technical Re-
port 261, IFI, University of Oslo, May, 1998.

[Demissie et al. 1999] D.B. Aredo, I. Traor�e, K. St�len, "An Outline of PVS Semantics
for UML Class Diagrams", Research Report No. 272, University of Oslo, Norway.
NWPT'99, Nordic Workshop on Programming Theory, Oct. 6-8, Uppsala, Swed-
den.

[Evans et al. 1999] A. Evans, S. Cook, S. Mellor, J. Warmer, A. Wills, "Advanced
Methods and Tools for a Precise UML", 2nd International Conference on the Uni-
�ed Modeling Language. Editors: B.Rumpe and R.B.France, Colorado, LNCS 1723,
1999.

[Evans 1998] A. Evans, \UML class diagrams - �lling the semantic gap (draft)", Tech-
nical Report, York University, 1998.

[Hayes 1991] F. Hayes, D. Coleman, "Coherent Models for Object-Oriented Analysis".
In OOPSLA conference proc., Phoenix, AZ, October 1991. Communications of the
ACM.

[Holzmann 1997] G. Holzmann, "The Model checker SPIN", IEEE Trans. on Soft.
Eng., 23(5):279-295, 1997.

[Hooman et al. 1992] J. Hooman, S. Ramesh and W.P. de Roever, "A compositional
axiomatization of Statecharts, journal Theoretical Computer Science, 1992, vol.
101, pp. 289-335.

[ISO-lotos 1988] "LOTOS-A formal Description Technique Based on the Temporal Or-
dering of Observational Behavior", International organisation for standard, in-
formation processing Systems, open Systems Interconnection, geneva, Switzer-
land,Sept 1988. ISO Standard 8807.

[ISO-estelle 1989] ISO-IEC 9074: " ESTELLE - A Formal Description Technique based
on an Extended State Transition Model", Geneva, Switzerland, 1989.

[ISO-sdl 1993] ITU Recommendation Z.100-CCITT, "Speci�cation and Description
Language (SDL)", 1993.

[ISO-rmodp] ISO-IEC JTC1/SC21/WG7, "The Reference Model of Open Distributed
Processing", http://www-cs.open.ac.uk/ m newton/odissey/RMODP.html

[Kneuper 1997] R. Kneuper, " Limits of Formal Methods", Formal Aspects of Com-
puting (1997) 9: 379-394.

1107Traore I.: An Outline of PVS Semantics for UML Statecharts

[Latella et al. 1999] D. Latella, I. Majzik, M. Massink, "Towards a Formal Operational
Semanics of UML Statechart Diagrams", FMOODS'99, February 1999, Florence,
Italy.

[Leveson et al. 1994] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, J.D. Reese, "Re-
quirements Speci�cation for Process Control Systems", IEEE Trans. Soft. Eng.,
Vol. 20, no. 9, Sept., 1994.

[McMillan 1993] K.L. Mc Millan, "Symbolic Model Checking", Kluwer, 1993.
[Moreira 1994] A. Moreira, R. Clark, "Combining Object-oriented Analysis and Formal

Description Techniques", In ECOOP'94, volume 821 of LNCS, Bologna, Italy, July
1994. Springer-Verlag.

[OMG 1999] "OMG UML Speci�cation v.1.3", (OMG document ad/99-06-08),
http://uml.shl.com/artifacts.htm

[Owre et al. 1995] S. Owre, J. Rushby, N. Shankar, F.V. Henke, "Formal Veri�cation
for Fault-tolerant Architectures: Prolegomena to the design of PVS", IEEE tran.
on Soft. Eng., 21(2):107-125, February 1995.

[Shankar 1997] N. Shankar, "Machine-Assisted Veri�cation Using Theorem Proving
and Model Checking", Mathematical programming Methodology, (ed.) M. Broy,
Springer-Verlag, 1997.

[Spivey 1989] J.M. Spivey, "The Z Notation: A Reference Manual", Prentice-Hall In-
ternational, 1989.

[Traor�e 2000] I. Traor�e, "Making the UML More Precise: A Formal Framework for
UML Statechart", Technical Report No. ECE 00-4, Department of Electrical and
Computer Engineering, University of Victoria, October 2000.

1108 Traore I.: An Outline of PVS Semantics for UML Statecharts

