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Abstract: This paper presents the use of multithreaded processors in real-time
architectures. In particular we will handle real-time applications with hard timing con-
straints. In our approach, events (e.g. timer interrupts, signals from the environment,
etc) are distinguished into three classes according to the reaction times that have to
be met. Since two of these classes are well known in real-time systems, we will focus
on the new class, for which the special features of a multithreaded processor together
with a real-time scheduler realized in hardware are employed. Doing so enables us to
realize the handling of events from this new class in software while still meeting the
demands on reaction time. Additionally, the predictability of the application and the
ease of implementing them are increased. The processor, named MSPARC, which we
developed to support these features, is based on block multithreading and is outlined
in this paper, too. We then present an architecture, designed for rapid prototyping
of embedded systems, to show the feasibility of this approach. Finally, a case study
shows the potential of multithreading for embedded systems.
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1 Introduction

Embedded systems can be found in most of today’s technical products. A typ-
ical application field are safety critical functions with hard real-time constraints.
In order to make the design of such systems easier and more effective, we sug-
gest the use of multithreaded processors as the base processor of such embedded
systems.

In conventional embedded systems the answer to incoming events is produced
in two different ways: Hard timing constraints with very short answer times can
only be guaranteed by implementing the necessary computation directly in hard-
ware. All other computations are allocated on a processor. A real-time scheduler
guarantees that the deadlines of the application threads are met[7]. Today’s re-
quirements on computational power in combination with dynamic scheduling
strategies lead to the use of standard RISC processors in embedded systems as
well as in traditional computer systems. With more complex instruction set ar-
chitectures the disadvantage of longer context switch times wrt. microcontrollers
with the same clock frequency has to be accepted. Saving all registers (i.e. the
working set of a thread) of a SPARC for instance, costs many more cycles than
with conventional microcontroller-based architectures, due to many registers and
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— compared to processor speed — slow memory access time. To close this gap, we
suggest to use multithreaded processors. This approach combines powerful com-
putation due to the use of a RISC processor with fast context switches provided
by multithreading and an external scheduler realized in hardware.

One of the main problems during design of an embedded system is the pre-
dictability of application threads, since the time of execution affects the ability
to guarantee deadlines. During the development of a real-time application the
partitioning and scheduling of threads has to ensure that all threads allocated on
processors satisfy their timing constraints. Typical techniques to predict the ex-
ecution time of threads are dynamic simulation with a processor simulator like
MSPINTI[9] or static cache simulation[14]. These methods always suffer from
thread switches and interrupts, which change the cache behavior of the system
in an unpredictable way, i.e. it is a challenging task to estimate the timing be-
havior of threads wrt. cache behavior. One way to solve this problem is to switch
off the caches, another way is to partition the cache, as suggested in [13]. Our
approach using multithreaded processors follows the latter in a similar way.

Multithreaded processors[1] are well known in the context of multiprocessor
systems, like the Alewife[11]. The main goal of processors with multithread-
ing is to hide latencies caused by memory hierarchies or network accesses and
to provide a high processor utilization. Another approach to use multithread-
ing in embedded real-time architectures[6] essentially employ this technique to
replace interrupt service routines on a multithreaded Java microcontroller by so-
called interrupt service threads, which provide fast context switches due to the
multithreading architecture. By using the special hardware that provides mul-
tithreaded execution of threads, processor utilization is increased and therefore
overall execution time of the application is decreased. Similar to this approach,
our main goal is to improve task switching/scheduling operations by using the
hardware supported switch abilities of a multithreaded architecture with a RISC
processor and scheduling mechanisms realized in hardware. Additionally, task
execution times can be improved by using simultaneous execution of different
threads in multiple functional units [3, 4]. This is also possible in our approach,
but it is out of the scope of this paper and we did not implement it in our first
prototype.

This paper focuses on two important benefits provided by using multithreaded
processors: faster reaction times (shorter execution times) of real-time threads
and a better predictability of the worst case execution time.

The rest of the paper is organized in the following way: Section 2 combines the
principles of multithreading and real-time scheduling and outlines the MSPARC
processor. In section 3 we present the event classification and the architectural
concepts to increase predictability and speed of the threads, and section 4 de-
scribes an example architecture and a case study. Finally, section 5 concludes
this paper.

2 Multithreading and real-time scheduling
In this section we combine the principles of multithreading and real-time

scheduling. First the chosen multithreading approach is described, then the sim-
ilarities to real-time scheduling are outlined.
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2.1 Multithreading

Multithreaded processors[1] may contain a fixed number of threads at the same
time on chip. We only consider multithreaded processors, which employ a single
datapath, therefore the execution of these threads is sequential. The threads are
allocated in contexts, which typically include all important processor registers
(program counter, special state registers and operand registers). The processor is
able to switch between these contexts in a few processor cycles, without reload-
ing the entire task control block of a thread.

There are two main approaches to multithreaded execution: fine multithread-
ing and block multithreading. Fine multithreading (or interleaved multithread-
ing) processors execute an instruction of a different thread at each cycle, thus
the threads are executed instruction by instruction and every cycle a context
switch is necessary, as shown on the left of figure 1. Examples for such types
of processors can be found in [2, 5]. Another approach (e.g. [3]) assigns free
execution slots in architectures containing multiple functional units to different
threads, to attain simultaneous execution of these threads.

With block multithreaded processors the switch mechanism is usually activated
by a demand from the system environment, typically the memory hierarchy!. Be-
cause the duration between two switch demands depends on special actions (e.g.
remote memory accesses) and can be some ten to some hundred processor cycles,
the threads are executed block by block. On the right of figure 1 the principle of
block multithreading is outlined. Examples for block multithreaded processors
can be found in [10, 11]. Since switches are rare wrt. the switch frequency of fine
multithreading, the requirements for the duration of the switch mechanism are
not as hard as in the case of fine multithreading. Additionally, since the environ-
ment in this case can determine the context which is to be activated, complex
priority schemes can be applied to the selection of this context. Intuitively block
multithreading is much nearer to thread execution in scheduled real-time appli-
cation. However, the main hardware extensions are similar, both concepts need
the duplication of important registers and additional control logic.

2.2 Real-time scheduling and multithreaded processors

In real-time systems incoming events (usually new sensor values) must be han-
dled by threads. The event is usually passed to a scheduler which determines
the thread that is to be activated[7, 12] or it is handled by an interrupt service
routine (ISR), if no operating system is used. ISRs are employed for fast reac-
tions on incoming events and therefore use static scheduling algorithms like rate
monotonic scheduling, accepting the disadvantage of lower processor utilization
(see [7]).

By comparing the execution of threads in traditional systems with the exe-
cution of contexts on a multithreaded processor, one can see some similarities,
especially with the block multithreading approach: Both approaches are based
on the block by block execution of (parts of) threads. In embedded real-time
systems, scheduling is often done according to complex schemes, e.g. dynamic

! Nevertheless switches can be initiated by software in an operating system with cor-
responding higher costs.
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Figure 1: Fine and block multithreading can be distinguished by the manner of thread
execution. The similarity of block multithreading to typical task execution in real-time
architectures is apparent.

priority based ones like Earliest Deadline First [7]. Fine multithreaded proces-
sors often cannot take these schemes into account, because the selection of the
thread the next instruction is fetched from has to be done in a single processor
cycle. Even when operating system support is given (i.e. the operating system
scheduler selects a set of active threads between which the processor switches),
there are basically two possibilities: Either the active set contains a single thread,
in which case the performance of fine multithreaded processors often degener-
ates [1], or the set contains more than one thread, in which case the scheduling
scheme is more difficult to work out and deadlines are more difficult to guaran-
tee.

For this reasons, we have taken a block multithreading approach. Using mul-
tithreading, the scheduling can avoid long switch latencies, because of the short
switch mechanism provided by the processor. To support an arbitrary scheduling
approach, there are two main ways: First, one context of the processor contains
the scheduler and initiates context switches via software instructions or, second,
a scheduler can be implemented in hardware which becomes the master of the
switch demands. The first case is somewhat similar to ISRs or scheduling by an
operating system, but with the advantage of a faster scheduling due to the fast
switch mechanism, which is supported by multithreading (a task control block
need not be saved/restored).

To speed up the reaction on incoming events in our approach we suggest to
use the second way. The main idea is to move the scheduling algorithm from
software to hardware, e.g. as programmable logic, and utilize the mechanism of
block multithreading: Typically, the environment (memory hierarchy) in such
multithreaded systems can force the processor to switch to a new context. This
is exactly what a scheduler wants to do, hence we can employ this mechanism.
Additionally, schedulers must have control of the dedicated thread which is to
be executed. This fact necessitates some extensions of the switch mechanism, as
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we will see later.
Using multithreaded processors in real-time architectures in this manner has
some effects on the way we see events, as we will show in a later section.

2.3 MSPARC

Our implementation of a multithreaded processor (called MSPARC[18, 19]) is
based on the SPARC standard[20]. We adapted the SPARC specification in such
a way, that no application task running in user mode on the MSPARC is able
to notice the multithreaded features. Only operating system functions have this
knowledge, therefore context management is done in privileged processor mode.
Hence, compilation can be done by using state-of-the-art compilers for SPARC
architectures. A task created in this way can be associated to one of the four
hardware contexts, that are provided by the MSPARC.

To appear to user tasks as a standard SPARC we duplicate the whole register
set for each context. Additionally, the caches are partitioned statically (dynamic
partitioning is less predictable in real-time systems, as we will see later).

Context management, executed by the operating system, is done via a new
state register (Context State Register [CSR]). Figure 2 shows the basic princi-
ple: The operating system (running in one of the hardware contexts) can change
the data view by changing the associated value in the CSR. Hence, the OS task
runs in its context, but can access the registers (status and data) of another
context, determined by the CSR value. This enables us to initialize contexts and
to up- and downloads threads from/into a context?. To provide data commu-
nication between different data views, we add additional global data registers
(ASRs), visible to all contexts.

After initializing some contexts and marking them as active, the switches
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Figure 2: Context management is done by different views on data and instructions
in the MSPARC. Communication between different data views is realized through the
global ASR registers.

coming from the memory hierarchy are handled without the operating system:
If a switch demand is set by the environment, the MSPARC stops the currently
running task and immediately starts the next one (determined by an field in the

2 Especially, this mechanism supports the ability of switching contexts by software.
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CSR, which is calculated during a switch using a round robin algorithm). The
switch delay is one cycle. Since the thread in the new context starts with an
(almost) empty pipeline3, total context switch latency is five cycles in the worst
case.

As mentioned in the previous section, multithreading in real-time architec-
tures requires additional features, caused by the usage of a scheduler realized
in hardware: memory hierarchy is not the only origin of switch demands and
the processor acts as a slave in systems designed using this methodology. In or-
der to provide this feature, we developed the so called embedded control mode
(ECM)[22]. The MSPARC in ECM is controlled by an external scheduler, which
can start/resume and stop tasks at will. In figure 3 the basic principle is shown.
The external hardware scheduler sends the MSPARC via the ECM-interface a set

MSPARC

running

| active threads done bits
1

[2[of o 2] [o] 2] 2]o]

b

active threads done bits next  switch

context

MSPARC

vuwng

active thteads done bits
0

Lo 22 z] [o] o] o] o]
rrt

bbb 53

i 1 next
active threads done bits ~ next  switch

Figure 3: In ECM the MSPARC’s context switch mechanism is controlled by the envi-
ronment. In this example, context 0 is running (indicated by the point), context 3 is
enabled in the upper picture and a switch demand to context 2 occurs (indicated by
the values of the switch and the next-context inputs). Simultaneously contexts 1 and
3 are enabled (indicated by the active-thread input). In the lower picture the changes
in the next cycle are shown: DONE-Bits (signaling the termination) of threads marked
as active are reseted and context 2 is actually running.

of active conterts and a specific context, which has to be started immediately.
Active contexts are those contexts, which contain currently running threads.
They will be automatically activated in a round robin manner, if a switch oc-
curs, whose origin is not the external scheduler (e.g. termination of the actually

3 The current implementation needs an empty pipeline. In further implementations
this can be avoided. Nevertheless, when a new thread is activated the first time, the
pipeline will be empty. Hence for worst case analysis this is an important factor and
must be taken into account.
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running thread). Additionally, all contexts are able to indicate the termination
of their computation to the environment by using the ECM interface (in figure
3 the DONE-bits). If such a termination message occurs, the MSPARC automat-
ically initiates a switch and uses the set of active threads to choose the context
to switch to. The running thread identification is sent to the scheduler via the
ECM-interface, too (not shown in figure 3). If all tasks have terminated, the
processor will halt until the environment sends a new switch demand.

With the above described interface, the scheduler has full control over the
MSPARCs execution of threads. Details of the supported interface between envi-
ronment and MSPARC can be found in [22] and [17].

A first version of the MSPARC was implemented with the MIETEC 0.5um
standard cell process within the EUROPRACTICE program and is in fabrica-
tion process at the moment (expected to be delivered in September 2000). Key
data are: Five stage pipeline, four contexts, for each context 8 register windows
(544 registers at all) and 2 KByte on-chip instruction cache. The process data
are: 78 mm? die area, about 26,000 standard cells and five types of macro cells
with over 100 Kbit of memory. The processor in this version works at 30MHz.

This implementation is a feasibility study and we have no intention to com-
pete with today’s state-of-the-art processor technology. But we can show, that
the extension of a standard RISC processor with multithreading is feasible with
a penalty of less than 5% on the clock cycle. Hence, scaling our implementation
with today’s clock frequency for instance, leads to a new generation of pro-
cessors in embedded systems, which — in combination with external hardware
schedulers — are able to schedule threads in some ns, not in many us as today’s
real-time operating systems. Therefore the impact of multithreading on threads
and scheduling will be discussed in the next chapters.

3 Event classification

In typical embedded systems events occur asynchronously. They require
(mostly) fast and predictable reactions, which are restricted by timing con-
straints. Typically, events can be classified in two groups: control dominated
events and computation dominated events. Threads that handle events of the
first class do not require complex computation but merely cause updates of ac-
tuators or the system state. Additionally, the timing constraints usually span
only short timing intervals. Since software solutions are often not able to guar-
antee these timing constraints, the appropriate actions are usually implemented
in hardware. The latter class of events requires complex computation and is
mapped to software tasks on the systems processor. Hence, their timing con-
straints must be less stringent than the constraints of control dominated events.
However, due to the limited number of processors with regard to the potentially
great number of tasks, a real-time scheduling is necessary to guarantee the dead-
lines (see section 2).

If multithreaded processors are used instead of “normal” ones, two main ef-
fects can be noticed: First, if the scheduler is located in a specific context, the
reaction time can decrease if the next scheduled task is in one of the hardware
contexts. The main advantage of a system configuration like this is the missing
necessity of storing and reloading the task’s control block, including in worst
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case all registers of the processor. Instead, the multithreaded processor only
needs to switch to the hardware context the task is mapped to. Otherwise, if
the task is currently not allocated to a context, the reaction time does not differ
from the time such an action would take on a standard processor (due to the
reloading of the task control block). Second, if the scheduler is realized external
to the processor, as outlined in section 2, we can create a new class of events,
fast computation dominated events. In systems with a “normal” processor such
events can not be handled by software tasks due to the short time period they
require. Therefore in such systems they are implemented in hardware. With our
new class of events we can move such tasks to software. In order to do this,
two assumptions must hold: no other system component can initiate context
switches, and the scheduled task is allocated in a context and no other task is
mapped to the same context, thus no software scheduler in this context is neces-
sary. Reserving one context in each processor for multiple tasks (with the ability
of real-time scheduling) but putting this context under control of the hardware
real-time scheduler, allows us to provide all of the three event classes. Figure 4
shows the three classes.

The new class of events has the advantage of faster reactions and, as we will
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Figure 4: Our approach provides three classes of events. Control dominated events
only use parts of the hardware, fast computation dominated events use one statically
allocated context and computation dominated events use tasks which are located in
parallel with other tasks on a context of the processor. The multithreaded processor
shown in this example architecture supports four contexts.

see in the next section, is more predictable than other computation dominated
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events. The faster reaction is caused by three effects:

— Since the scheduler is implemented in hardware, it costs no processor time
to determine the next task; the scheduler works in parallel to the processor.

— Furthermore, the mapping of only one task to one context effects, that a
conflict on a context never occurs and neither the scheduling of other tasks
to this context is necessary, nor do other tasks induce conflicts in the cache,
which is mapped to this context.

— Additionally, in conventional systems, the event must be indicated via inter-
rupts[8]. If another interrupt is active, the detection of this special event can
last long. In particular, without special measures one is often not able to
accurately determine the time of initiation of such interrupts in traditional
systems. Using our approach, the event is immediately detected due to the
use of switches instead of interrupts, even if the processor serves an interrupt
request. In this case only the scheduler, which is implemented in hardware,
determines to start a task.

These factors will be discussed in detail in the next two sections.

3.1 Estimating speedup

To estimate the speedup provided by our approach, the run-time of tasks
with arbitrary size has to be calculated for both architectures, the conventional
(with signaling task switches by interrupts and a software scheduler) and the
multithreaded. Generally, the speedup depends on the type of applications (its
run-time) and the cost of scheduling and detecting events. The speedup of bench-
mark B is determined by:

_ Di(B) _ DB)+I
speedup(B) = Du(B) ~ D(B) +5,

where Dy(B) is the run-time of benchmark B on a normal and Dj/(B) on a
multithreaded architecture using the features described in the previous sections.
D(B) is the pure run-time of the benchmark without operating system and task
switch costs. I stands for the cost of detecting and switching via RT-operating
system?, whereas this factor in the multithreaded architecture is fixed to 5 cycles
(filling the MSPARC pipeline in the worst case, see section 2).

The formula contains two simplifications: First, in our MSPARC implemen-
tation we have seen, that the cost of multithreaded versus non multithreaded
processors results in a small overhead on the clock cycle. That is not taken into
account in our speedup formula. Second, assuming a rate of interruptions of the
analyzed benchmark (which is typical in real-time systems due to higher prior-
itized threads), the pure run-time of B on the multithreaded and the standard
processor is not the same due to different cache behavior: Interruptions on a
standard processor will potentially remove cache contents according to the ana-
lyzed benchmark and therefore the speed on the multithreaded processor will be
improved. For simplicity we assume, that both effects equalize each other as a
first approximation. Further simulations are necessary to analyze these factors,
because the effect of improving speed on multithreaded processors through cache
behavior is application dependent and cannot be determined in general.

* including event detection, scheduling costs and also pipeline effects
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Context switch times with state-of-the-art real-time operating systems vary
and depend on several parameters, like the type of processor. Due to high con-
straints on the computational power in modern embedded systems, the use of
standard high-performance microprocessor instead of micro-controllers will be
necessary. To compare our approach with a standard system, we must know the
context switch time of state-of-the-art real-time operating systems for SPARC
processors. Typical values are between one hundred and a few thousand clock
cycles (see [23]). Since these values are always quoted as typical, further simu-
lations/measurements on running systems are necessary to find a worst case of
context switch times. In [24] the authors measure a system based on the oper-
ating system RTEMS, which is quoted with a typical switch cost of above 150
cycles (see e.g. [26]). The results of this analysis show, that worst case switch
costs are a few thousand. Worst case values for I typically range between 5000
and 7000 cycles (see [24] and [25]). These values also depend on the clock fre-
quency: The average number of cycles for memory accesses in systems with high
clock frequency is greater than in systems with lower frequency (even if caches
are used) due to the slowness of today’s memory devices. Figure 5 shows the es-
timated speedup on benchmarks with various sizes and three values for I. Tasks
with run-times far beyond 10,000 cycles do not profit from multithreading, hence
these tasks can be mapped to the third class of events, as described in the pre-
vious section.

Tasks with very small run-time profit especially from multithreading. This

speedup

| | | f— instruction
5000 10000 15000 20000

Figure 5: The speedup of applications on a MSPARC based real-time architecture de-
pends on the run-time of the application and the scheduling costs I in a standard
architecture.

leads to another important effect: a higher interruptability. Assume a task T'g
with a given deadline. Interruptability of Ts is the rate of interruptions by smaller
or faster tasks with higher priority, which still guarantees T's’s deadline. Figure 6
clarifies interruptability. In conventional architectures each interrupt will waste
a large amount of time (determined by factor I) of the deadline of task T's. In
our approach the task switch costs are minimal and we can allow a much higher
rate of interrupting T's.
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Figure 6: Task Ts with deadline T is interrupted by task Tr with deadline t. The
higher the scheduling costs (black area), the less the number of interruptions which are
possible without violating T's’s deadline T.

3.2 Increasing predictability

In embedded systems high demands for computational power result in the
same problems as in traditional computer systems. The use of standard RISC
processors for instance makes architectures with caches necessary, but caches al-
ways complicate the predictability of applications running on the system. Using
multithreading can help to get better results in application prediction, as we will
see in this section.

Predictability of real-time applications is important for guaranteeing, that the
given real-time constraints are met in every case. Particularly, the timing be-
havior of caches is always difficult to predict, because calling scheduler code or
serving interrupts can always induce conflicts in the cache. Additionally, the oc-
currence of events is often unpredictable, thus no hit ratio of the system caches
can be estimated. Therefore, to estimate the duration of a real-time application,
either the caches of a system will be switched off in the analysis, or the inter-
ruptability is restricted in such a way that parts of the application code cannot
be interrupted. The latter case is somehow unrealistic, because tasks with a high
priority typically should have the ability to be executed before low prioritized
tasks terminate. The drawback of this first method is an inaccurate timing in-
terval of the task’s execution time, especially the upper bound can in reality be
much nearer to the lower bound than shown in the analysis. Hence, this method
will possibly reject an architecture, because the analysis shows that the perfor-
mance is not adequate even though in reality the architecture’s performance is
adequate.

One promising approach is the partitioning of the caches[13]. Thus, the prob-
lems with interrupts and scheduling code as described above don’t exist and
the analysis of the timing behavior is more accurate. However, both previous
discussed approaches are not able to avoid the influence of ignoring interrupts.
An accurate estimation of the execution time from signaling the event to thread
termination, especially the initiation of the task, therefore is not possible.

To estimate the execution time of a task wrt. the instruction cache behavior,
an approach using static cache simulation is outlined in [14, 15, 16]. In order to
use the results produced by methods like static or dynamic cache simulation (or
similar methods), the task is required to run uninterrupted until its termination.
Otherwise arbitrary program fragments could induce conflict situations in the
instruction cache. If for example, one thread is interrupted by another thread,
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not only the code for the scheduler has to be executed which can invalidate parts
of the thread’s cache but also the newly started thread potentially replaces the
cache’s contents. Especially in cache systems with virtual addressing this is a
quite probable effect. In conventional scheduled real-time systems uninterrupted
execution of threads is unusual, because tasks can be suspended at every point
of their execution. Additionally, the fact of ignoring events (via interrupts) com-
plicates the predictability of the execution time of a task, because they cannot
easily be taken into account by simulation methods. For data caches similar ar-
guments hold.

Using multithreaded processors with a direct mapping of one task to one con-
text can avoid the unrealistic requirement of uninterrupted execution on the one
hand, and can prevent ignoring events on the other hand. One important point
is the partition of the caches in fixed portions®, i.e. each processor context has
its own part of the cache. Additionally, we have no task migration between di-
rect mapped tasks. Hence, we support a high level of locality in the caches. The
predictability® of fast computation dominated events will be increased by two
facts:

- If the cache is partitioned in a fixed portion for each context, no cache
interference is able to cause conflict situations. This means, whenever a
task is interrupted due to a switch to another task and eventually this task
continues its execution after an additional switch, the cache behavior is the
same as if no interruption would have taken place. Hence, from the task’s
point of view its execution is uninterrupted wrt. hit ratio and a stand-alone
static or dynamic cache simulation of this task can be used to estimate the
timing bounds to a realistic interval.

- Only interrupts may disturb the locality, but if on each processor one context
is reserved for interrupt handling and the other contexts ignore interrupts,
the locality is only destroyed in this context. Particularly, this context can
include the tasks of the computation based events, as outlined in the previous
section. On the other hand, by using multithreading to start/resume and stop
tasks we can avoid the usage of interrupts at all, since we do not use ISRs
to detect events.

With this improved predictability, the estimation of the timing interval of fastest
execution time to worst execution time is closer to the real execution duration
and therefore makes the design process of an embedded system more effective.
Thus, our approach not only allows faster reactions, but also guarantees real-
time constraints of smaller time intervals due to better predictability and better
locality of tasks. Finally, our system provides three classes of events with different
answer times and, particularly, different predictability: the execution time of the
“slower” events are less predictable than the execution time of the “faster” ones.
The approximation of the run-time of tasks is work in progress at the moment.

How such a system looks like in real hardware is presented in the next section
of this paper.

® similar to the suggestion in [13]
6 Particularly, the use of results created by static or dynamic simulation to determine
timing bounds
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4 An example: the EVENTS architecture

4.1 Architecture overview

As an example of the described concepts we present an architecture, developed
at our group in the EVENTS project[17]. The two main goals of the EVENTS
project are, first, to develop a rapid prototyping system, that can be used as
a ’'universal prototype’ for those embedded control applications, which require
fast reaction to external asynchronous events and, second, to develop a software
environment that enables users to automatically generate, synthesize and down-
load code for this system automatically starting from graphical specification
with real-time constraints. As specification languages we use Statemate[27] and
symbolic timing diagrams with real-time constraints. Our focus in this paper is
the hardware architecture.

The architecture currently developed in the EVENTS project is shown in
fig. 7. It is a multiprocessor system (NUMA) with four nodes connected via
a local network. We want to deal with HW/SW codesign applications, thus
in this cluster the nodes are connected with programmable hardware, realized
by a field of FPGAs, particularly the WEAVER-FPGA-Board developed at the
University of Tiibingen [21] . If the complexity of an application overstrains this
cluster, more nodes can be added.

Each node contains a MSPARC-processor[18, 19] and some portion of local
memory. The dual ported RAM (DPR) of the cluster is used to transfer data
between processors and FPGAs. The FPGAs serve two purposes: They commu-
nicate with external devices and they are used to schedule the multithreaded
processors. Unlike other architectures we view the FPGAs as the system’s
master and the processors as coprocessors to the FPGAs.

As a first step towards this architecture, we developed a single processor
system without any caches. Therefore the clock frequency is restricted to 8
MHz. The other concepts are implemented: Dual ported RAM is used for
data communication between software threads and hardware threads and the
ECM interface is used directly by the FPGA field, which contains the systems
scheduler.

To estimate the worst case execution time of tasks we use dynamic cache
simulation with the MSPINT[9] as a first step. MSPINT is a processor simulator
for the MSPARC processor developed at our working group, which can take
executable files and arbitrary memory models to compute the real memory
behavior and the execution time of processor instructions (cycle accurate). It
is equipped with an open back end, so different environments, e.g. memory
hierarchies or the FPGA field controlling the ECM interface, can be modeled
and linked to the simulator kernel. Since we only consider Statemate designs,
software and hardware parts of the application can be handled similarly. Hence,
we are able to compile the FPGA parts into software code for simulations with
the MSPINT system. This is done for the described first architecture and we
will see the results in a case study presented in the next section. Extending the
architecture with caches is a task we are currently working on.

In general, if the worst case parameters for an application task are given, the
simulation will produce a worst case execution time for this run. In the next
version our design framework will be able to schedule — if necessary — the task
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Figure 7: The hardware architecture of EVENTS.

in question to a free context via back-annotation.

Using this MSPINT environment, we have simulated first benchmarks on the
EVENTS architecture to evaluate design decisions and to prove that multi-
threaded in real-time architectures causes the speedup predicted in section 3.
In [29] we have presented a set of benchmark programs and their execution in
our architecture in relation to an execution on non multithreaded architectures,
based on the formula presented in chapter 3.1.

In [28] an ignition control system is implemented and simulated. The simu-
lation results show that even if the processor runs with a low frequency, the
architecture is able to handle realistic real-time applications with deadlines in
the range below one msec. We summarize the results of [28].

4.2 Case study: Ignition Control System

The ignition control system is used to give ignition times to the four spark-plug
of a car engine. It’s main task is to set the ignition angle as close as possible to the
knock region, while actual knocking has to be avoided as much as possible. The
top level view — specified in Statemate — is shown in figure 8. The application has
four inputs and two outputs. BI and WI are one bit signals coming from sensors
monitoring crank- and camshaft motion. BI is raised on every complete turn of
the camshaft and thus provides a reference point for the four-stroke operation.
For each turn of the crankshaft, WI is raised sixty times. These inputs are used by
the task PB to compute the actual position of cam- and crankshaft and by task
DZB to compute the current rotational speed DZ. PB also computes the number
of the spark-plug to be ignited next and controls a one bit signal MESSEN that
causes the external component KB to begin or end integration of engine sound
recorded by the knock sensor. By computing this integral, engine knock can be
detected (see e.g. [30]), which KB signals via the one bit signal KLOPFEN to task
KEZ. The 8-bit input FRW indicates the amount of air flowing through the intake
manifold and thus, after being normalized by task NUG, serves as an indication
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Figure 8: Top level view of the ignition control system

of the current engine load. Engine load and rotational speed are used by task
KF to compute a base ignition angle by using a look up table and interpolat-
ing between values. This base angle is modified by task ZZB_BERECH. For each
cylinder and each ignition cycle in which no engine knock occurs, ZZB_BERECH
increases the base angle, thus moving ignition time closer to the knock region.
Should engine knock occur, ZZB_BERECH decreases the angle used for the current
cylinder yielding earlier ignition. This mechanism lets ignition time adapt to
knock properties that may change over time and are different for each cylinder,
at the “expense” of an occasional knocking.

The computed ignition time is sent to task ZZB_KONVERT which converts this
value into a position offset and a time offset. It sends these values to task ZIE,
which first waits until the indicated position is reached (by comparing the po-
sition offset to the current position computed by PB), then waits for the time
offset and thereafter signals ignition to one of the four cylinders via the 4-bit
signal ZI. Finally, task ZIS_CTRL is responsible for scheduling of the tasks.

The ignition control system has been synthesized for our target architecture
using the GRACE-environment, which is also developed in the EVENTS project.
Tasks KF, ZZB_BERECH and ZZB_KONVERT were compiled into software code and
assigned to one MSPARC context each. The other tasks are implemented in hard-
ware and thus FPGA-code is generated for them. Communication code and a
run-time environment containing basic operating system functionality are auto-
matically added to the system and the Statemate constructs for controlling tasks
(used by ZIS_CTRL) are automatically mapped to the context switch mechanism
of the MSPARC.

4.3 Preliminary results

The case study was simulated using the simulation environment described in
section 4.1. As our single processor system will be running at a clock frequency
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Figure 9: Software task execution at 7200 rotations per minute

of 8 MHz, this speed was set for the simulation, too. A maximum rotational
speed of 7000 rotations per minute was required by the specification of the ig-
nition control system. At this speed, an ignition occurs every 4.28 msec and for
the ignition to occur with an accuracy of 0.5° the allowed jitter is 12 usec. We
modeled a simple environment that monitors the generated ignition impulses
and compares them to the expected values. Additionally the environment sig-
nals engine knocking as appropriate.

Simulated rotational speed was constantly increased during the simulation.
The ignition control system behaved correctly up to 7200 rotations per minute,
after which there occurred knocking two times in a row for the same cylinder.
Closer inspection revealed this “error” to be caused by an implicit assumption
made while modeling the case study, namely, that rotational speed would never
exceed the 7000 rotations per minute set as a maximum by the specification.
Although the observed behavior already was sufficient for the specification, we
removed this assumption from the code and measured the maximum attainable
rotational speed, which turned out to be roughly 28000 rotations per minute.
This indicates that even with as low a clock frequency as 8 MHz the architecture
is more than sufficient for this kind of application.

Software tasks execution times were measured and yielded 223 usec, 352 usec
and 335 pusec on average for tasks KF, ZZB_BERECH and ZZB_KONVERT respec-
tively, with a maximum deviation of 5 usec for all tasks. These numbers reflect
the time from the context switch signal of the controller to the reception of the
“DONE” signal by the FPGA. Since context switch time is negligible due to
the multithreaded MSPARC, the actual execution times of the tasks are almost
identical. Figure 9 shows task execution times between the ignition of two con-
secuting cylinders at 7200 rotations per minute. As can be seen, CPU capacity
is below 25%, even at an 8 MHz clock frequency. Closer analysis shows the po-
tential of multithreading: Task ZZB_BERECH, which is triggered by the “DONE”
signal of task KF on the left hand side of figure 9, is actually running 7 processor
cycles (875 nsec) after the “DONE” signal is received. On the right hand side
of the figure, ZZB_ BERECH is triggered by the knock signal of hardware task KEZ
and again runs after 7 cycles. The AKT_ZYL signal changed by hardware task
PB triggers ZZB_KONVERT, which is running after 8 cycles. The additional cycles
above the 5 cycles guaranteed by the MSPARC for a context switch are caused by
task ZIS_CTRL which has to analyze triggers and signal the appropriate context
switch to the processor. Nonetheless, those times are still far below anything
that could be reached with a conventional microcontroller.
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5 Conclusion

This paper has presented an approach that attains faster reactions on events
with hard real-time constraints and also allows better predictability of the exe-
cution time. Hence, we can not only guarantee smaller time intervals than the
conventional approach of computation dominated events, but also our estimated
bounds of execution times of the new class of events is more realistic and can help
to simplify the development of a real-time architecture. Cache simulation can be
used to determine these timing bounds accurately. Furthermore we have outlined
an example architecture, including the multithreaded processor MSPARC, that
implements our concepts and is currently under construction. Modeling this ar-
chitecture in our MSPINT simulation environment allows us to evaluate design
decisions using example applications. Ongoing work is accomplishing the archi-
tecture and creating a tool set for run-time analysis in given system architectures
to help automatize application development. Finally, we will have a system for
all three event classes, that will provide a design framework with the ability of
guaranteeing hard timing constraints.
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