
Data Driven Network Of Workstations (D2NOW)

Paraskevas Evripidou
(Department of Computer Science, University of Cyprus, P.O. Box 20537, 1678

Nicosia, CYPRUS, skevos@ucy.ac.cy)

Costas Kyriacou
(Department of Computer Science, University of Cyprus P.O. Box 20537, 1678

Nicosia, CYPRUS cskyriac@ucy.ac.cy)

Abstract: This paper presents the Data Driven Network Of Workstations (D2NOW),
a multithreaded architecture that is based on the Decoupled Data Driven model of
execution. This model decouples the synchronization from the computation portions of
a program and allows them to execute asynchronously. At compile time a Multithreaded
program is created with a Data-Driven thread synchronization graph superimposed on
it.
D2NOW is built using commodity control-ow microprocessors. The support for the
data driven synchronization of threads, is provided by the Thread Synchronization
Unit (TSU). The TSU is attached in the COAST (Cache On A STick) L2 Cache slot
of Pentium workstations and thus it has an implicit interface, using snooping, to the
Pentiummicroprocessor. Workstations are connected via a Telegraphos interconnection
network, which is a high throughput ATM-like switch. Telegraphos uses short packets
and guarantees no packet-drop, which is a must for �ne grain data-driven computation.
D2NOW exhibits the tolerance to long memory and communication latencies, of the
data-driven model, with very little overhead and also exploits short-term optimal cache
placement and replacement policies. In our prototype implementation the TSU is im-
plemented using FPGAs and it has very low hardware overhead.

Key Words: Multithreading, NOW, Distributed Shared Memory

Category: B.3.2, C.1.2, C.1.3

1 Introduction

Multithreading has emerged as one of the most promising and exciting ap-

proaches for the exploitation of parallelism. It utilizes techniques developed

in several independent research directions such as Data-Flow, RISC, compi-

lation for Instruction Level Parallelism (ILP) and dynamic resource manage-

ment [Iannucci et al. (94)]. Multithreading combines the exploitation of program

locality and latency tolerance via task switching. A thread of control is very

similar to the notion of process from multiprogramming. The main di�erence

is that a thread in a multithreaded machine is visible at the architecture level

[Dennis and Gao (94)]. Multithreaded architectures have been traditionally im-

plemented as tightly coupled multiprocessors.

In blocking multithreading a thread may begin execution before all of its

operands are available. A thread suspends whenever a missing operand is needed

or a synchronization is required, and the processor switches to another thread

ready for execution. The processor should provide hardware support for more

than one concurrent program counters and register �les and have the ability

Journal of Universal Computer Science, vol. 6, no. 10 (2000), 1015-1033
submitted: 11/4/00, accepted: 3/7/00, appeared: 28/10/00 Springer Pub. Co.

to switch among threads eÆciently [Iannucci panel (94)]. In non-blocking multi-

threading, a thread may begin execution only if all of its operands are available,

and run to completion without suspension. Simultaneous multithreading exploits

both instruction-level and thread-level parallelism by issuing instructions from

di�erent threads in the same cycle.

The Data-Driven Network of Workstations (D2NOW) has evolved from the

dataow model of computation. D2NOW is a multithreaded architecture that

utilizes conventional control-ow workstations, augmented to support dataow

sequencing based on the Decoupled Data-Driven (D3-model) [Evripidou (97),

Evripidou and Gaudiot (90)] model of execution. However, D2NOW di�ers from

other dataow machines in that instructions are not synchronized and scheduled

individually, but are combined into larger blocks of instructions, called threads.

A node in D2NOW consists of an of-the-shelf control-ow workstations with

an add-on card called the Thread Synchronization Unit (TSU) [Evripidou (97)].

The TSU provides data consistency and thread synchronization for non-blocking

multithreaded architectures built with conventional, single threaded, micropro-

cessors. A thread is scheduled for execution only if all of its operands are available

in the cache, thus no synchronization or communication or memory latencies will

be experienced. Hence there is no need for thread suspension and switching to

other threads, eliminating the need for multiple program counters and register

�les.

At compile time a program is partitioned into a number of threads of variable

granularity. Each thread is made out of the computation part and the synchro-

nization part. The TSU provides the thread synchronization of these threads

and feeds them to the microprocessor for execution. The guiding principle in the

generation of the threads is to fully exploit the ILP capabilities of the target

processor. During program execution, the TSU schedules each thread based on

data availability. Scheduling based on data availability exploits short term op-

timal cache placement and replacement policies: before scheduling a thread for

execution, it is made sure that all required code and data is already stored in

the cache, and that blocks related to threads scheduled for execution are not

removed from the cache, before the thread is executed.

In D2NOW, whenever a thread produces data for a remote workstation,

the producer workstation is responsible for transferring the data to the remote

workstation. Since a thread is scheduled for execution only if all required data is

available, there is no need for remote read operations. This reduces the overall

communication cost, since remote read operations are much more expensive than

remote write operations.

Scheduling based on data availability provides tolerance to long memory and

communications latencies inherent in large-scale multiprocessors, thus making

the proposed architecture truly scalable and easily programmed.

2 Data Driven Network of Workstations (D2NOW)

The block diagram of the D2NOW is shown in Figure 1. A number of TSU-

augmented workstations (Pentium based PCs) are connected through an inter-

connection network (Telegraphos Switch). The TSU is attached on the COAST

(Cache On A STick) slot. COAST is a slot found on many Pentium mother-

boards, that allows the replacement of the L2 cache, located on the motherboard,

1016 Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

T
el

eg
ra

ph
os

 S
w

itc
h

or
 N

et
w

or
k

IC-FORTH
Work

Our Work
Commodity

Workstations

Main
Memory

L2 Cache

Processor

Workstation

C
O

A
S

T
 S

lo
t

MotherboardAdd-on Card

TSU

TIUPPUNIU

Main
Memory

L2 Cache

Processor

Workstation

C
O

A
S

T
 S

lo
t

MotherboardAdd-on Card

TSU

TIUPPUNIU

Figure 1: Data Driven Network of Workstations

by an add-on cache card. Several experimental architectures are reported in lit-

erature where the network interface unit (usually refered as the Communication

Assist) is plugged into existing machines. In most cases the network interface

is plugged into the PCI I/O slot. Other architectures integrate the network in-

terface with the graphics bus [Minnich et al. (95)] ,or the SIMM attachment

[Banks (93)]. In D2NOW though, both the processor and the TSU need to ac-

cess the L2 cache, thus, dual ported RAM is required for the L2 cache. Thus, the

TSU should be attached on the motherboard in such a way to have direct access

on a modi�ed L2 cache. The use of the COAST slot allows the replacement of the

motherboard L2 cache, and the connection of the TSU directly on the processors

bus. The COAST slot is no longer provided on todays motherboards. The L2

cache is also integrated with the Pentium Pro chip. Our selection of the COAST

slot is justi�ed by the fact that our present goal is the proof of concept. Our

future goal is to integrate the TSU with the Pentium processor in a multimodule

chip.

The interconnection network is built around the Telegraphos switch

[Markatos (96)], developed at ICS-FORTH of the University of Crete. It is a short

packet, low overhead, low latency ATM-like switch. Telegraphos guarantees no

packet-drop, which is a must for �ne and medium grain data-driven computation.

The TSU is interfaced with the Telegraphos interconnection network through

the Network Interface Unit (NIU). The NIU communicates with the TSU via

queues. A packet transfer is initiated whenever a packet is placed in the queue.

Communication is carried out solely by the hardware, thus the communication

1017Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

Graph
Memory

Computation
Memory

SE

Graph
Cache

Computation
Engine

Computation
Cache

Ready Queue

Ack. Queue

CacheSE

Ready Queue

Ack. Queue

Memory

Processor

 TSU

(b)(a)

Figure 2: (a) Decoupled Processing Element (b) Processing Element with TSU

system is free from any system call overheads.

In the D2NOW architecture each processor has its own local memory, which

aggregates to a single address space distributed shared memory. Shared virtual

memory is employed rather than shared physical address memory. The physical

memory space of each workstation is mapped into a global virtual memory space.

Remote memory references are directed to the NIU for further processing.

3 Execution Model

The abstract model of execution of the D2NOW has as its starting point the

dynamic Data-Flow D3 graphs. The basic unit of computation, however, is the

thread not the instruction. A key feature of the D3-model of execution is that

the synchronization part of a program is separated from the computation part.

The computation part represents the actual instructions of the program. The

synchronization part contains information about data dependencies among in-

structions and it is used for instruction scheduling.

The D3-model is depicted in Figure 2a. The D3-graph of the program is stored

in the Graph Memory hierarchy. The actual code is stored in the Computation

Memory hierarchy. Instruction synchronization and scheduling is carried out by

the Synchronization Engine (SE). The actual code of the program is executed

by the Computation Engine (CE). Instructions ready for execution, that is, all

of their inputs have already been produced, are placed by the SE in the Ready

Queue (RQ). The CE reads the instructions from the RQ, executes them, and

noti�es the SE about the executed instructions via the Acknowledgement Queue

(AQ).

In D2NOW a thread is a sequence of instructions that is executed sequentially

and produces a single output. A thread contains no jumps or suspension points,

with the exception of the Switch Actor, a thread that is used to implement

conditional branching. A producer/consumer relation exists among threads. The

data needed by a thread is produced by other threads, called the producers.

The data produced by a thread might be needed by other threads, called the

consumers.

1018 Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

A program is a collection of code blocks called the context blocks, represent-

ing functions or loops. Each context block comprises of several threads. Schedul-

ing of context blocks is done at by the compiler. Scheduling of threads within a

context block is done dynamically at run time by the TSU. Whenever the execu-

tion of a context block is completed, a unit within the TSU, called the garbage

collector is triggered to release the memory reserved by the block and activate

an interrupt to load the next context block.

Synchronization occurs only at the top of a thread. Each thread is associated

with a synchronizing parameter, called the Ready Count, that indicates the

number of inputs still needed to be produced, before the thread is ready for

execution. This count is decremented whenever an input value of the thread

is produced. A thread is enabled, that is, ready for execution, when its Ready

Count reaches zero.

A D2NOW processing node is shown in Figure 2b. Threads that are ready

for execution, that is, all of their inputs have already been produced, are placed

in the Ready Queue (RQ). Threads that have already been executed are placed

in the Acknowledgement Queue (AQ) for post processing, that is, after the pro-

cessor completes the execution of a thread, it stores in the AQ the status number

of the completed thread and then reads the next thread to be executed from the

RQ.

The SE fetches the completed threads from the AQ and updates the Ready

Count of the consumer threads. If any of these consumers is ready for execution,

it is placed in the RQ and waits for its turn to be executed. The RQ is divided into

two stages the Waiting stage and the Firing stage. The SE places a ready thread

in the Waiting stage. It then proceeds to determine if the required cache blocks

reside in the cache. If they are not in the cache, the SE triggers their placement

in the cache. A thread moves in the Firing stage only when all the cache blocks

it needs are in the computation cache. Thus the computation processor does not

encounter any cache misses or page faults. We call this cache policy: cache-ow

[Evripidou (99)].

We have developed extensions to the basic model, such as hierarchical match-

ing and variable resolution support, that makes it more suitable for Multi-

threaded execution [Evripidou (99)]. The entire dynamic data-ow graph is

mapped on the logical space (virtual-memory) of the machine. Therefore, for

each instantiation of a thread, we know at execution time where its data will

reside by using standard virtual memory translation techniques. For each thread

there is a synchronization point, in the logical space, that keeps track of the

number of inputs that have been produced. Therefore, all the data-driven syn-

chronization operation can be implemented by references/updates to the logical

space. These references are mapped into the physical space using conventional

virtual space mapping techniques.

Several simulation experiments have been conducted in order to test the abil-

ity of the D3-machine to tolerate latency and exploit parallelism and locality and

are presented in [Evripidou (97), Evripidou (99)]. In summary the results have

shown that the D3-machine can tolerate communication latency. Increasing the

communication latency from 1 to 5 (500%) cycles results to an increase in exe-

cution of as little as 25%. Going from 5 to 15 cycles increases the execution by

a factor of 37%. Furthermore, it does exploit locality: the experimental results

have shown that increasing thread length does indeed reduce execution time.

Finally the experiments have shown that the D3-machine in the most part neu-

1019Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

L2 Cache

Network
Interface Unit

Thread Synchronization Unit

Main
Memory

Processor

Transmit
Unit

Receive
Unit

RQ
Waiting

Queue (WQ)

Firing Queue

RqBuf

Post Processing Unit Thread Issue Unit

Graph Cache

Synchronization Engine (SE)

Ack.
Queue

AckBuf

Snooping Unit

SM Cache

Figure 3: The Thread Synchronization Unit

tralizes the overhead associated with the data-driven synchronization. A �ve-fold

increase in the processing time per thread in the SE resulted in an increase of

the overall execution time of as little as 15%.

4 The Thread Synchronization Unit (TSU)

The purpose of the TSU is to provide hardware support for data-driven thread

synchronization on conventional microprocessors. It integrates the functions of

the SE, RQ and the AQ of the D3-model. The internal structure of the TSU is

shown in Figure 3.

The TSU is made out of three units: the Thread Issue Unit (TIU), the Post

Processing Unit (PPU) and the Network Interface Unit (NIU). The SE acts as

the control unit of the TSU. The function of the TIU is to schedule threads

deemed executable. The PPU updates the Ready Count of the consumers of the

completed threads, and determines which are ready for execution. The cache-

ow policies for cache prefetching and replacement are implemented by both the

TIU and PPU. The NIU is responsible for the communication between the TSU

and the interconnection network. The Network Interface Unit (NIU) is made out

of two units: the Transmit Unit and the Receive Unit. The design of the NIU

depends on the interconnection network used.

At compile time a program is partitioned into a data-driven synchroniza-

tion graph and the code threads. Each node of the graph represents one thread

associated with its synchronization template. Each template contains the In-

struction Frame Pointer (IFP), the number of input variables or Ready Count

(CountIn), the Data Frame Pointers (DFP1 and DFP2), and the consumer

1020 Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

threads (Consumer1 and Consumer2). If a thread has only one input, the

value of DFP2 is set to 0000. If a thread has more than two inputs, then the

value of DFP1 is set to 0000 and DFP2 is a pointer to the DFP list, a mem-

ory block that contains a list of DFPs in the TSU. A similar approach is also

used for the consumers. If a thread has only one consumer then Consumer2 is

set to 0000, while if a thread has more than two consumers, then Consumer1 is

set to 0000 and Consumer2 is a pointer to the consumer's list, a memory block

that contains a list of consumers in the TSU. The program loader loads the

Graph Cache (GC) with the IFP, DFP1, DFP2, Consumer1 and Consumer2 of

the threads of a context block. The CountIn is stored in the Synchronization

Memory (SM) Cache. To reduce the size of the Synchronization Memory, only

four bits are allocated for the Ready Count parameter of each thread. This limits

the maximum number of producers for each thread to sixteen.

4.1 Interface between the TSU and the processor

The processor executes its instructions without any knowledge of the presence

of the TSU. Five addresses are reserved for the communication of the processor

and the TSU and are disabled from the cache. These locations are implemented

as memory mapped registers in the TSU. When there is a need to exchange

information between them, the microprocessor writes to one of these reserved

memory locations. The TSU uses a snooping unit to intercept these addresses

and process them accordingly. These locations are the following:

{ RqIptr (Ready Queue Instruction Pointer): This location holds the address
of the code of the next thread to be executed. The processor reads this

location using the instruction (mov eax,RqIptr) and then branches to the

next thread by executing the instruction (jmp eax)
{ RqCntx (Ready Queue Context Register): This location holds the context

or iteration number of the next thread to be executed. The processor copies

the thread's context into the index register esi using the instruction (mov
esi,RqCntx).

{ AqCntx (Acknowledge Queue Context Register): This location holds the

context or iteration number of the thread currently being executed. The

processor initializes this register at the beginning of each context block using

the instruction (mov AqCntx,esi).
{ AqStat (Acknowledge Queue Status Register): The processor writes in this

location a status word to inform the TSU about the status of the thread

been executed.

{ AqData (Acknowledge Queue Data): This location holds the data needed

for remote write operations. It is accessed by the page fault handler using

the instruction (mov AqData,eax)

4.2 Thread Issue Unit (TIU)

The function of the TIU is to schedule the threads deemed executable. Figure 4

shows the datapath of the TIU. After all inputs of a thread are evaluated by other

threads, the Post Processing Unit (PPU) places the thread's ID number and

context in the corresponding bu�ers of the Waiting Queue (WQ). The thread's

1021Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

ContextThread#

From Post
Processing Unit

Processor

Thread# Context

Waiting Queue
(WQ)

RqCntx RqIptrRqTNum

Firing Queue (FQ)

To Post
Processing Unit

RqBuf

Add

Hit

Hit

Write
Load

Load

Cache
Controller

DFP Select Unit

Data
Cache

Tag

Instruction
Cache

Tag

R
Bits

IFPContextThread#

DFP List

IFP DFP 1 Consumer1 Consumer2

Graph Cache (GC)

DFP 2

Figure 4: The Thread Issue Unit

ID number is used as the pointer to the Graph Cache that gives the Instruction

Frame Pointer (IFP) and the Data Frame Pointers (DFP1 and DFP2) of the

thread. The address of the data needed by the thread, is obtained by adding the

DFP with the context (or iteration number). Both, the code address and data

address of the thread, are compared with the contents of the Instruction Cache

Tag and Data Cache Tag, respectively, to determine whether the code and data

of the thread are already placed in the computation cache. If the result is a hit

for both the code and data, then the triplet (Thread#, Context and IFP) are

placed in the FQ, and the thread waits for its turn to be executed.

Four extra bits, the R-bits, are associated with the entry of each set or slot

in the computation cache tag. These bits act as a counter indicating how many

threads referencing that cache line are waiting in the FQ. If the value of the R-

bits is not zero, some threads are scheduled for execution and the corresponding

cache line can not be replaced. That line will not be replaced unless if the

corresponding threads are executed. Whenever a thread is placed in the FQ, the

values of the R-bits for both the code and instruction cache are incremented.

These values are decremented by the PPU, when the corresponding thread is

executed. If a cache miss results for either the Instruction Cache or the Data

Cache, and the value of the R-bits for that entry is zero, the cache controller is

signaled to load on the cache the required lines. If the value of the R-bits is not

zero, the line can not be replaced, and the thread remains in the WQ.

Whenever the processor completes the execution of a thread, it reads the ad-

dress of the next thread from the ready queue instruction frame pointer register

(RqIptr) and its context from the ready queue context register (RqCntx). The
thread ID number and context are also send to the AckBuf of the PPU. The
top of the Firing Queue (FQ) is then shifted out in the RqBuf, to point to the
next ready thread for execution.

1022 Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

Mapping Unit

Consumer Select Unit

To Thread
Issue Unit

000
001
002
003

FFF

0 1 2 31Index Tag 0 1 2 31Tag
Synchronization Memory Cache

Tag (15) Index (12) Line (5)

+

From Thread
Issue Unit

AqTNum AqCntxAqStat

Ack. Queue (AQ)

Network
Interface

Unit

Snooping
Unit

Processor

Main Memory/
Cache

Garbage
Collector

ContextThread# Sw

IFP DFP2 Consumer 1 Consumer 2

Graph Cache (GC)

DFP1

Consumer
List

Data

Figure 5: The Post Processing Unit

4.3 Post Processing Unit (PPU)

The Post Processing Unit (PPU) is responsible for the processing of threads

that have already been executed by the processor. The datapath of the PPU

is shown in Figure 5. The AqTNum and AqCntx registers at the input of the

Ack Queue (AQ) contain the thread ID number and the context of the thread

currently being executed by the processor. When the execution of the thread is

completed, the processor writes a status number in the memory mapped register

AqStat. The address of this register is snooped by the Snooping Circuit so that
the SE is aware of the completion of the thread. The status number stored in the

AqStat register is made out of three �elds: the context �eld, the switch actor

�eld and the garbage collector �eld.

The context �eld indicates whether the context register has been modi�ed

during the execution of the thread. If the value of the context �eld is 00 then

the context register was not modi�ed. If the value of the context �eld is either

01 for incremented or 10 for decremented, then the Context register is modi�ed

accordingly and the triplet AqStat, AqTNum and AqCntx are shifted into

the AQ. The Thread ID number (Thread#) is a pointer to the Graph Cache

(GC). The Consumer Select Unit reads the �rst consumer thread number from

the GC. The consumer's number is then added with the context to determine

its address in the memory. The Mapping Unit uses this address to determine

whether it refers to a local or remote memory. If the address refers to a local

1023Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

memory, the corresponding entry of the Ready Count in the Synchronization

Memory (SM) is decremented. If the content of the SM becomes zero, the thread

is deemed executable and its ID number and context are send to the TIU for

further processing. The same procedure is followed for the rest of the consumers.

Whenever the address produced by the Mapping Unit refers to a remote

memory, the thread ID number, context and data are send to the NIU to be

send to the remote workstation. Whenever the NIU receives a packet from a

remote workstation, the thread ID number and its context are placed in the AQ.

The received data is placed in the main memory.

The garbage collector �eld is used to indicate the completion of a context

block. If the value of this �eld is 01, then the garbage collector is triggered to

release the memory used by the context block, and load the next block.

4.4 Network Interface Unit

The NIU is made out of two units: the Transmit Unit and the Receive Unit.

Both units have their own controller and their operation is independent from

each other. The design of the NIU depends primarily on the selection of the in-

terconnection network. Important issues in selecting the type of interconnection

networks for a NOW are the overheads introduced, the communication latency,

the quality of the interconnection, and the simplicity [Anderson et al. (95)]. The

Telegraphos switch is chosen to be used as the interconnection network for the

D2NOW.

4.4.1 The Telegraphos Switch

The Telegraphos [Katevenis et al. (95), Markatos (96)] switch is a high perfor-

mance switch that can be used in high speed networks, NOWs, and multiproces-

sor networks. It is a low latency, �xed size packet switch based on virtual circuit,

and it utilizes hop by hop credit-based ow control. Currently there are two im-

plementations of the Telegraphos switch: Telegraphos I, a board level prototype

implemented with FPGAs and RAM chips, and Telegraphos II, a standard cell

ASIC implementation. Telegraphos I is a 4 channel switch, with each channel

carrying in parallel 8 data bits and a ag bit. Each packet consists of 9 bytes:

one byte for the header and 8 bytes for the payload. The ag bit is used to iden-

tify the header of each packet, which identi�es the virtual circuit number. Each

link can support up to 256 virtual circuits. Due to the slow FPGAs used for

the implementation of Telegraphos I, the cycle time is 75 ns, giving a 107Mbps

throughput in each direction. The packet size in Telegraphos II is twice that of

Telegraphos I. The clock cycle time is reduced to 40 ns (using a 16 bit internal

datapath), giving a 400Mbps throughput. Preventive ow control is employed to

ensure that packets are never dropped, due to bu�er overow in the Telegraphos

switch. This is obtained by using a hop-by-hop credit-based ow control mecha-

nism. With this mechanism, a packet is transmitted to the next switch or node

only if there is available bu�er space. To implement this mechanism, Telegraphos

has an extra credit link associated with each data link. Each credit link carries

1 ag bit and 8 data bits per clock cycle. The ag bit is used to indicate that

the data bits contain a valid credit. The 8 data links contain the number of the

virtual circuit for which the credit refers to. In Telegraphos II the credit links

1024 Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

Credits In
from

Telegraphos

Data Out to
Telegraphos

9 8 WR
OE

S2

89

0

1

P
ro

ce
ss

or
 ID

Payload

Xmit Queue

8

Address
(A0..A7)

C
re

di
t's

 R
A

M
 (

25
6X

1)
S1 0

1

D in

RD

Dout

Transmit Control Unit

8 9
Empty

RD

OE

Credit
Flag

Data
Flag

RD

La
tc

h
La

tc
h

Sel1

Sel2

S3

Sel3

8

Address
(A0..A7)

WR

From
DFGE

S4

Sel4

VC Translation Table

VC# Processor ID

Figure 6: Transmitter Unit

are multiplexed with the data links. We chose to use the Telegraphos switch

because: (a) It has a short packet size. Each message of the D2NOW �ts exactly

in one Telegraphos II packet. (b) It uses static routing, thus less overheads and

in order delivery of packets is quarantined. (c) Packet delivery is quarantined

due to the preventive credit based ow control used. (d) It has only a 3 clock

cycles cut through latency, thus low communication latency. (e) It is fast. It has

40 ns cycle time, thus 400 Mbps throughput.

4.4.2 Transmitter Unit

The block diagram of the transmitter unit is shown in Figure 6. The transmitter

unit performs two functions. The �rst one is to monitor the state of the inter-

connection network, by keeping a record of the credits for each virtual circuit.

The second is to assemble and transmit packets of data to the interconnection

network.

Information needed to be send to other processors is �rst stored in the Xmit

Queue by the PPU, in the form of a packet. Each packet contains the receiving

processors ID number, the base and context values of the receiving thread, as

well as the calculated value. The �rst entry of each packet is always the receiving

processor ID number. The Transmit Control Unit monitors the 'Empty' signal of

the Send Queue to check if a packet waits to be transmitted. In such a case the

�rst entry in the queue is used as the address for the Virtual Circuit Translation

1025Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

Table. The function of this look-up table is to determine the virtual circuit

number of the destination processor. This table is static because the Telegraphos

switch uses static (hardwired) virtual circuits. After �nding the virtual circuit

number (VC#), the Transmit Control Unit reads the corresponding entry in the

Credits RAM. Each entry in this RAM indicates whether there is an empty slot in

the Telegraphos switch for a speci�c virtual circuit. This is a 256X1 RAM, since

the Telegraphos switch can support up to 256 virtual circuits per link. If there is

an empty slot, the Transmit Control Unit sends �rst, the virtual circuit number

to the Telegraphos switch through the Data Out lines. The rest of the packet

is then transmitted, one byte per cycle. After sending a packet to the switch,

the Transmit Control Unit resets the content of the credit RAM for that virtual

circuit. This is required because only one slot is allocated for each virtual circuit

in the Telegraphos switch. If a packet is to be send through a virtual circuit that

has no empty slot, that is, its credit is zero, then that packet has to wait until the

corresponding slot is empty. In this case, the Transmit Control Unit has to wait

until it receives a credit for that virtual circuit, and then transmit the packet. If

the blocked packet remains in the queue, then all of the following packets in the

queue will be blocked as well. In order to avoid blocking the rest of the packets,

the packets that can not be send to the interconnection network, are recycled in

the Xmit Queue. The Transmit Control Unit also monitors the state of the Flag

bit of the Credits In lines. If the ag bit is at logic 1, then a credit is received for

the virtual circuit speci�ed by the data lines of the Credits In lines. In this case,

the Transmit Control Unit reads the data from the Credit In line and updates

the content of the Credit RAM for the speci�ed virtual circuit.

4.4.3 Receiver Unit

The block diagram of the Receiver Unit is shown in Figure 7. The Receiver

Control Unit monitors the Flag bit of the Data In lines send by the Telegraphos

switch. If the ag bit is at logic 1, then the packet contains valid data, and the

�rst byte represents the virtual circuit number. The positive edge of the Flag

bit of the Data In lines is used to trigger the clock synchronization circuit. The

clock synchronization circuit is required to ensure that data is read correctly,

since there might be a phase di�erence between the clock of the TSU and the

clock of the switch. The clock frequency of the receiver unit is three times the

frequency of transmission of the Telegraphos switch. The receiver reads each

byte from the switch on the positive edge of the second clock pulse of each cycle.

The Receiver Control Unit reads the next 18 bytes from the Data In lines and

stores them the Rcve Queue for further processing by the PPU.

Whenever the Telegraphos switch sends a packet, it automatically decrements

the credit counter for that speci�c virtual circuit. The switch can not transmit

any more packets through this virtual circuit, unless a credit for that circuit is

received. The Credit Unit monitors the Flag bit and the RD signal of the Rcve

queue. If both of these signals are activated, then the PPU is reading the virtual

circuit number from the Rcve Queue. In this case the virtual circuit number is

latched to the Credits Out lines, to inform the switch that it can send more data.

1026 Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

Rcve Queue

Payload

V
C

#

Data In

Credits Out

9 9

Clock
SynchronizationClock

Receiver Control Unit

Credit Unit

Flag
WR RD

To TSU

9

OE

La
tc

h

9

Flag bit

Figure 7: Receiver Unit

4.5 Mode of operation

The D3-graph for the implementation of the inner product example is shown in

Figure 8a. The graph represents one context block. Its inputs are the range or

number of iterations (Rnge), the starting index (Stindex) and the two vectors (R

and Q). Shaded boxes represent threads. Non shaded boxes represent instances

of values. For simplicity this example consists of very �ne threads (one or two

operations). This is a hand coded example used to illustrate the operation of the

system.

Figure 8b shows the dynamic data frames for the computation code. Each

frame consists of the data location for each value needed by one iteration of the

loop. This represents the data area of the context block. This memory block

is created when the block is loaded in the TSU, and released by the garbage

collector after the block has been executed. The content of the synchronization

memory cache is shown in Figure 8c, in this example we have 6 threads so we

need 6 synchronization points per iteration. The entries in this memory represent

the number of producers of each thread, or the number of input arcs in the graph

(CountIn �eld in the template). This memory block is also initialized when the

context block is loaded.

The templates and computation code are shown in Figure 8d. The box on

the left shows the graph template, and the box on the right shows the actual

code. The template of each thread has six entries: the pointer to the code of the

thread, the number of producers, two DFPs and two consumers.

Initiating a context block: The �rst thread initiates and triggers the

execution of the loop. The value of the index register esi is initialized to the

current context which is stored in the memory location stindex. The value of
the sum psum[esi] is initialized to zero.

Switch to the next thread: The last two instructions of each thread (mov
eax,RqIfpr and jmp eax) branch to the instruction speci�ed by the RQ in-

struction frame pointer RqIptr register, that is, the address of the next thread

to be executed. Recall that the RqIptr is a memory mapped register that is

1027Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

1: 0100
0001
stindx
0000
0004
0005

0108 mov eax,Rnge
cmp eax,RqCntx
jeq True
mov al,02
jmp Eswt

True: mov al,01
Eswt: mov AqStat,al

mov eax,RqIptr
jmp eax

0100 mov esi,stindex
mov AqCntx,esi
mov eax,0
mov psum[esi],eax
mov eax,RqIptr
jmp eax

6: 0126
0002
psum
pindx
000X
000X

0126 mov esi,RqCntx
mov eax,psum[esi]
mov ebx,pindex
add eax,[ebx]

mov psum[esi],eax
mov eax,RqIptr
jmp eax

3: 0112
0003
rmul
qmul
0004
0000

0112 mov esi,RqCntx
mov eax,rmul[esi]
mov ebx,qmul[esi]
mul ebx
mov iadd[esi],eax
mov eax,RqIptr
jmp eax

4: 011B
0002
psum
iadd
0002
0004

011B mov esi,RqCntx
mov eax,psum[esi]
add eax,iadd[esi]
inc esi
mov psum[esi],eax
mov eax,RqIptr
jmp eax

Graph Computation Code

RqCntx=stindex
psum=0

Rnge

Inc

rmul qmul

mul
TF

2:

iadd
add

psum

Ret

5: 3:

1:

5: 0122
0001
0000
0000
0003
0000

0122 mov al,04
mov AqStat,al
mov eax,RqIptr
jmp eax

4:

6:

esi
qmul
rmul
iadd
psum

1 2 m m+1context

1:

2:

3:

4:

5:

1 2 3 4context

1

1 1 1 1

3 33

1

2 2

1

2

1

(b) Dynamic data frame for computation code

(c) Dynamic data frame for graph code

nxm

6:

3

2

1

m

1

1

3

2

1

(d) Templates and computation code

(a) D 3-Graph

stindex R QRnge

2: 0108
0001
Rnge
0000
0005
0006

Processor 1 Pr. 2 Processor nPr. n-1

Figure 8: The inner product example

disabled from the cache. When instruction the mov eax,RqIfpr is executed,

the Snooping Unit intercepts that address and sends the address of the next

thread to the processor.

Changing the context: Thread#5 is used to increment the context. This

is implemented by storing in the acknowledge queue status register AqStat the
number 04, which instructs the PPU to increment the content of the acknowledge

queue context register AqCntx. Incrementing the context register is done by

the hardware, before the AqCntx register is shifted in the AQ.

Switch Actors: Thread#2 is a switch actor. It compares the value of `Rnge'
with the present value of the context register, to determine whether the end of

the loop is reached. If the end of the loop is not reached, then the switch actor

triggers thread#5, otherwise thread#6 is triggered. This is shown in the graph

with dotted lines, indicating data dependencies rather than data movement. In

the computation code, this is implemented by storing in the registerAqStat the
number 01 if the condition is true, or 02 if the condition is false. The Consumer

Select Unit of the PPU uses the content of the AqStat to select one of the two
consumers.

1028 Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

Returning from a context block:The last thread in the block is Thread#6.
This thread sends the partial sum to the next processor and triggers the garbage

collector. This is implemented by writing in the AqStat register the number 10h
(garbage collector �eld = 01).

4.6 Shared Memory Implementation

Shared virtual memory is employed in the D2NOW. Each processor views the

global virtual memory as its own virtual memory. Remote memory references

are carried out implicitly through short messages.

Memory mapping is done according to the thread ID number and the con-

text, as shown in �gure Figure 8b. A remote memory write operation is issued

when Thread#4, in �gure Figure 8d, attempts to write the calculated result

in (psum[esi]) with context (m+1), where (m) is the last iteration assigned to

each processor for that speci�c context. The virtual address for (psum[m+1])

belongs to a remote processor, thus the instruction (mov psum[esi]) will cause
a page fault. The page fault handler will store the produced data in the AqData

�eld of the Acknowledge Queue in the PPU. This is done by executing a single

instruction (mov AqData,eax). Thus the cost of the page fault is very low.

A mapping unit within the TSU is responsible for determining the destination

workstation of the remote write, and initiate the write operation by shifting the

virtual address (Thread ID number, the context) and the data from the AQ to

the NIU for further processing. Please note that no page faults occur for local

memory references since we preallocate the pages and cache blocks before we

allow a thread to enter the �ring stage of the TSU.

The TSU is presented only with virtual addresses produced either at compile

time, contents of the Graph Cache, or at run time, contents of the Synchroniza-

tion Memory Cache. These addresses depend on the Threads ID number and

the context. There are two cases where the TSU needs to use physical addresses.

The �rst case refers to remote write operations where the receiving TSU needs

to know where to store the received data. In this case the TSU stores the data

into the appropriate physical address.

The second case is due to the need to check if the code and data required by a

thread are placed in the cache, before it is transferred in the Firing Queue. Since

the cache is addressed using physical addresses, it is required that the entries

in the Graph Cache that specify the Instruction Frame Pointer and the Data

Frame Pointers contain physical addresses. To facilitate the address translation

we incorporate a TBL within the TSU. In case of a TBL miss the TSU access

the virtual memory map that resides in the main memory.

5 Implementation Issues

The TSU is implemented using the Xilinx XL4005E Field Programmable Gate

Arrays (FPGAs) as well as standard components like SRAM and FIFO chips.

The components needed for the implementation of the TSU are listed in Table 1.

Nine FPGAs are used for the implementation of the TSU. These FPGAs are not

fully utilized. This is done in order to reduce the routing delays in the FPGAs

and thus obtain higher speeds. The hardware needed will be reduced signi�cantly

on future ASIC designs.

1029Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

Function

VC Translation table

Xmit Queue

Credits RAM + Transmit
Controller + Multiplexers

Device

KM68257CJ15

Am7202A-15

XL4005E FPGA

Comment

32KX8 SRAM with 15 ns access time. Only a small fraction
of the memory area is used. Fast and cost effective

1KX9 FIFO with 15 ns access time. Can hold up to 58
packets. (18 bytes per packet)

Frequency: 50 MHz (cycle time = 20 ns)
CLB used = 108 (55% of resources), I/O pins = 39

Rcve Queue

Receiver Control + Credits
Circuit + Clock Synchronization

Am7205A-15

XL4005E FPGA

8KX9 FIFO with 15 ns access time. Can hold up to 256
packets. (One packet for each virtual circuit)

Frequency: 50 MHz (cycle time = 20 ns)
CLB used = 94 (48% of resources), I/O pins = 24

Thread Issue Unit

Network Interface Unit

Post Processing Unit

Waiting Queue + Thread# and
Context Registers

Ack. Queue

Firing Queue + RqBuf

Graph Memory (IFP, DFP1 and
DFP2) + DFP List

TIU controller + DFP Select Unit +
Adder

XL4005E FPGA
Frequency: 50 MHz (cycle time = 20 ns)
CLB used = 180 (95% of resources), I/O pins = 102

XL4005E FPGA
Frequency: 50 MHz (cycle time = 20 ns)
CLB used = 176 (95% of resources), I/O pins = 104

XL4005E FPGA
Frequency: 50 MHz (cycle time = 20 ns)
CLB used = 120 (60% of resources), I/O pins = 96

Frequency: 50 MHz (cycle time = 20 ns)
CLB used = 160 (80% of resources), I/O pins = 74

XL4005E FPGA

Ack. Registers + Snooping Circuit
+ Garbage Collector

XL4005E FPGA
Frequency: 50 MHz (cycle time = 20 ns)
CLB used = 60 (30% of resources), I/O pins = 84

PPU controller + Consumer Select
Unit + Adder

XL4005E FPGA
Frequency: 50 MHz (cycle time = 20 ns)
CLB used = 80 (40% of resources), I/O pins = 70

Synchronization Memory Cache

Graph Cache (Consumer1 and
Consumer 2) + Consumer List

Four MT58LC64K16 64K X 16 Sync. Burst SRAM (10 ns access time)

Three MT58LC64K16 64K X 16 Sync. Burst SRAM (10 ns access time)

64K X 16 Sync. Burst SRAM (10 ns access time)
Four MT58LC64K16
One XL4005E FPGA

Table 1: Component List

The cycle time for all units of the TSU is 20 ns. The timing analysis for

the operation of the TSU is given in Table 2. The minimum time needed by the

TIU to process one thread is 120 ns. This is the case of threads that have only

one DFP and their code and data is already placed in the cache. The minimum

time needed by the PPU to process one thread is 100 ns. This is the case of

threads that have only one consumer that refers to local memory. At least 20 ns

must be added for any extra consumer or DFP. The TIU and the PPU operate

asynchronously, and concurrently. Thus the synchronization latency is reduced

to the maximum latency introduced by either the TIU or the PPU. Furthermore

the synchronization latency in most cases (RQ not empty) does not a�ect the

critical path of the computation.

We coupled the TSU with a 100 Mhz Pentium microprocessors. Based on the

simulations results we got for the D3-machine we expect that even for moderate

number of instructions per thread the scheduling overhead of the TSU is neg-

ligible. The current trend for designing high performance microprocessors is to

place them with the L2 cache in a multichip module (MCM). We envision that

the TSU could also be placed in the same MCM. Thus, our work on the TSU

could be easily adapted by such microprocessors.

1030 Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

Function

Write into Ack. Queue

Read Consumer1 and Consumer2

Read extra Consumers

Number of Cycles

1

2

Time

20 ns

40 ns

Get Address from Mapping Unit

Update Synchronization Cache

6

Read a byte

Read a packet (18 bytes)

2

36

40 ns

720 ns

Network Interface Unit (Cycle Period = 20ns)

Read Waiting Queue

Read IFP and DFPs

Read extra DFPs

1

2

1

20 ns

40 ns

20 ns (each DFP)

Check Cache Tag (1 IFP and 2 DFP)

Write into Waiting Queue of Firing Queue

3

1

60 ns

20 ns

Post Processing Unit (Cycle Period = 20ns)

Form a Header (read VC and check credits RAM)

Send a byte

Send a packet (18 bytes)

2

6 + 18 X 2 = 42

120 ns

40 ns

840 ns

1

1

2

20 ns

20 ns

40 ns (for each Consumer)

Thread Issue Unit (Cycle Period = 20ns)

Table 2: Timing Analysis

6 Related Work

D2NOW is a non blocking Multithreading machine that has its origins in the

dynamic data-ow sequencing. There have been several multithreading projects

that use data-ow sequencing. The Monsoon departed form the idea of associa-

tive memory for token matching and introduced the concept of Explicit Token

Store (ETS). A memory location, within the activation frame of each func-

tion allocation is established where each synchronization takes place. In gen-

eral, the allocation of activation frame has to be done dynamically at run time.

The successor of the Monsoon is the Start (or *T) project [Boon et al. (94),

Boon et al. (98a), Boon et al. (98b)] that utilizes o� the shelf microprocessors

while maintaining the latency hiding features of the Monsoon.

Commercial multithreaded machines such as the Tera [Alverson et al. (94)]

have been around for some years now. Tera is a pipelined multithreaded multi-

processor that enables multithreaded execution at al levels of parallelism. The

compiler and run time system exploit parallelism at �ne and medium grain levels,

while the operating system exploits parallelism at coarse grain level. The main

di�erence between Tera and the D2NOW machine is that Tera is using blocking

multithreaded processors with multiple register �les, while the D2NOW machine

is implemented with Pentium processors running in a non blocking multithread-

ing mode. In the Tera machine, a thread suspends if it encounters a long latency.

In the D2NOW machine a thread is scheduled for execution only if all required

data is available in the cache. Threads run to completion in the D2NOW ma-

chine. Another di�erence is that in the Tera machine, medium and coarse grain

thread scheduling is done by the software, while in the D2NOW machine thread

scheduling is done by the hardware.

SimultaneousMultithreading (SMT) [Eggers et al. (97), Lo et al. (97)] is used

in superscalar processors to allow multiple threads to issue instructions at each

cycle. SMT uses multiple threads to compensate for low single-thread ILP, by

keeping busy all units of a superscalar processor all times. The main di�erence

1031Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

between SMT and D2NOW is that D2NOW is based on non-blocking multi-

threading, while SMT is based on blocking multithreading. Another di�erence

is that in D2NOW there is no need for hardware modi�cations on the internal

structure of the processor.

The run time system employed by the D2NOW machine is similar to that of

the Threaded Abstract Machine (TAM) [Culler et al. (93)]. TAM is a software

approach to tolerate latency. In this model all synchronization, scheduling and

storage management are placed under the compiler control. TAM is implemented

for a variety of existing processors.The di�erence between TAM and D2NOW

is that in the D2NOW machine thread scheduling is done by the hardware,

according to data availability, while in the TAM is done by the compiler.

7 Concluding Remarks

The TSU is a hardware mechanism that supports the design of Multithread-

ing platforms with conventional microprocessors. Its mode of operation is based

on the Decoupled Data-Driven (D3-model) of execution. The decoupling of the

synchronization and computation of a multithreaded program and their asyn-

chronous execution allows us to concentrate in designing the synchronization

module and readily adopt the state-of-the-art microprocessor technology for the

computation.

The TSU provides a minimal hardware approach in designing Multiproces-

sors based on the D3 model of execution. We are developing a prototype imple-

mentation of a TSU-based multithreaded platform: the Data-Driven Network of

Workstations (D2NOW). The TSU is designed using FPGAs. It has cycle time of

20 ns and it takes about 5-6 cycles to performed the preprocessing and as many

for the post processing of each thread. We coupled the TSU with a 100 Mhz

microprocessors. Thus, for even moderate number of instructions per thread the

scheduling overhead of the TSU is expected to be negligible. The current project

serves as proof of concept. The next generation of the TSU will be designed with

ASIC methodology and incorporated with the processor and the L2 cache in a

multichip module MCM.

References

[Alverson et al. (94)] Gail Alverson, Bob Alverson, David Callahan, Brian Koblenz,
Allan Porter�eld, and Burton Smith. Integrated Support for Heterogeneous Paral-
lelism. Kluwer Academic Publishers, 1994. Edited by Robert Iannucci et al.

[Anderson et al. (95)] T. Anderson, D. Culler, and D. Patterson. A case for now (net-
works of workstations). IEEE Micro, 1995.

[Banks (93)] D. Banks and M. Prudence. A high performance network architecture
for a PA-RISC workstation. IEEE Journal of Selected Areas in Communication,
1993.

[Boon et al. (94)] Boon Seong Ang, Arvind, and Derek Chiou. Start the next gener-
ation: Integrating global caches and dataow architecture. In Proceedings of the
International Conference on Computer Systems and Education, IISc, Bangalore,
India, 1994.

[Boon et al. (98a)] Boon S. Ang, Derek Chiou, Larry Rudolph, and Arvind. The
startT voyager parallel system. In Proceedings of the International Conference

1032 Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

on Parallel Architectures and Compilation Techniques (PACT98), Paris, France,
October 1998.

[Boon et al. (98b)] Boon S. Ang, Derek Chiou, Daniel Rosenband, Mike Ehrlich, Larry
Rudolph, and Arvind. The startT voyager: A exible platform for exploring scal-
able smp issues. In Proceedings of SuperComputing 98, Orlando, Florida, Novem-
ber 1998.

[Culler et al. (93)] D. Culler et al. Tam: A compiler controlled threaded abstract ma-
chine. JPDC, June 1993.

[Dennis and Gao (94)] Jack Dennis and Guang Gao. Multithreaded Architectures:
Principles, Projects and Issues. In R. Iannucci et al., editor, Multithreaded Com-
puter Architecture a Summary of the State of the Art. Kluwer Academic Publishers,
1994.

[Eggers et al. (97)] Eggers at al. Simultaneous multithreading: A platform for next
generation processors. IEEE Micro, pages 12{18, September/October 1997.

[Evripidou (97)] P. Evripidou. Thread Synchronization Unit (TSU): A building block
for High Performance Computers. In Proceedings of the International Symposium
on High Perfomance Computing, Fukuoka, Japan, Nov. 1997.

[Evripidou (99)] P. Evripidou. D3-machine: A Decoupled Data-Driven Multithreaded
Architecture with Variable Resolution Support. Parallel Computing. In Press.

[Evripidou and Gaudiot (90)] P. Evripidou and J-L. Gaudiot. A Decoupled
Graph/Computation Data-Driven Architecture with Variable Resolution Actors.
In Proceedings of the 1990 International Conference on Parallel Processing, August
1990.

[Iannucci et al. (94)] Robert A. Iannucci et al. Multithreaded Computer Architecture
a Summary of the State of the Art. Kluwer Academic Publishers, 1994.

[Iannucci panel (94)] Panel Discussion. Architectural implementation issues for mul-
tithreading. In R. Iannucci et al., editor, Mutlithreaded Computer Architecture a
Summary of the State of the Art. Kluwer Academic Publishers, 1994.

[Katevenis et al. (95)] M. Katevenis, P. Votsalaki, A. Efthymiou, and M. Stratakis.
Vc-level ow control and shared bu�ering in the telegraphos switch. In IEEE
Hot Interconnects III Symposium, 1995.

[Lo et al. (97)] J. Lo at al. Converting thread level parallelism into instruction level
parallelism via simultaneous multithreading. ACM Transactions on Computer
Systems, pages 322{354, August 1997.

[Markatos (96)] E. Markatos and M. Katevenis. Telegraphos: High-performance net-
working for parallel processing on workstation clusters. In Symposium on High
Performance Computer Architectures, 1996.

[Minnich et al. (95)] R. Minnich, D. Burns, and F. Hady. The memory integrated net-
work interface. IEEE Micro, 1, 1995.

1033Evripidou P., Kyriacou C.: Data Driven Network of Workstations ...

