
Simulating H Systems by P Systems1

Gheorghe P�aun
(Institute of Mathematics of the Romanian Academy

PO Box 1-764, 70700 Bucure�sti, Romania
Email: gpaun@imar.ro.)

Takashi Yokomori
(Department of Mathematics, School of Education
Waseda University, 1-6-1 Nishi-waseda, Shinjuku-ku

Tokyo 169-8050, Japan
Email: yokomori@mn.waseda.ac.jp.)

Abstract: H systems are DNA computing models, based on the operation of splicing.
P systems are membrane computing models, where objects can evolve in parallel in
a hierarchical membrane structure. In particular, the objects can be strings and the
evolution rules can be based on splicing. Both H systems with certain controls on the
use of splicing rules and P systems of various types are known to be computationally
universal, that is, they characterize the recursively ennumerable languages. So, they
are equivalent as the generative power.
The present paper presents a direct simulation of some controlled H systems by splicing
P systems. We achieve this goal for three basic regulation mechanisms: H systems
with permitting contexts, H systems with forbidding contexts, and communicating
distributed H systems. We can say that in this way we get a uniform \implementation"
of the three types of H systems in the form of a \computing cell".

Key Words: H systems, splicing rule, universal models of computation

Category: F.1.1.

1 Introduction

H systems and P systems are two di�erent classes of computing devices recently
introduced in the very active area of Molecular Computing.

An H system is a grammar-like device, based on the operation of splicing.
This operation, �rst considered in [4], is a model of the recombination operation
which takes place among DNA molecules which are cut by restriction enzymes
(such that we get sticky ends which match in the Watson-Crick sense) and the
fragments are pasted together by ligases. Thus, a splicing rule is a quadruple
(u1; u2; u3; u4) of strings, such that u1; u2 indicate the pattern recognized by an
enzyme and the place where the cut takes place, and u3; u4 indicates the pattern
where the second enzyme can cut. The pre�x of a string cut at u1u2 is pasted
with the suÆx of a string cut at u3u4 (see formal de�nitions below). Starting
from a set of strings and a set of splicing rules, by iteratively applying these
rules to the current set of strings we get a language. It is known that if the
sets of axioms and of rules are �nite, then in this way we generate only regular

1 C. S. Calude and G. S�tef�anescu (eds.). Automata, Logic, and Computability. Special
issue dedicated to Professor Sergiu Rudeanu Festschrift.

Journal of Universal Computer Science, vol. 6, no. 1 (2000), 178-193
submitted: 16/6/99, accepted: 2/11/99, appeared: 28/1/00  Springer Pub. Co.



languages, but if a \weak" control is imposed to the use of splicing rules, then
we get characterizations of recursively enumerable languages. Among the basic
restrictions of this type are the permitting contexts (a rule has associated two
sets of strings and it can be applied only to strings which contain as substrings
all the elements of the corresponding set of strings), the forbidding contexts
(exactly the opposite: the rule can be applied only to strings which contain
as substrings no element of the corresponding sets). The same increasing of
the power is obtained for many distributed H systems, where several usual H
systems cooperate in generating a common language; we consider here only the
so-called communicating distributed H systems (CD H systems, for short), where
the components send to each other strings obtained by splicing and these strings
are accepted by destination components only if they pass certain �lters (they
do not contain symbols from speci�ed sets, that is, we have a sort of forbidding
context �ltering). Details can be found in the monograph [8].

The P systems are a class of distributed parallel computing devices of a
biochemical type introduced in [6], which can be seen as a general computing
architecture where various types of objects can be processed by various opera-
tions.

In short, in the basic model one considers a membrane structure consisting of
several cell-membranes which are hierarchically embedded in a main membrane,
called the skin membrane. The membranes delimit regions, where we place ob-
jects.

The objects evolve according to given evolution rules, which are associated
with the regions. A rule is applied to objects in the region where it is placed and
can modify the objects, send them outside the current membrane or to an inner
membrane, and can also dissolve the membrane. When such an action takes
place, all the objects of the dissolved membrane remain free in the membrane
placed immediately outside, but the evolution rules of the dissolved membrane
are lost. The skin membrane is never dissolved. Note that the membranes are
both separators and channels of communication.

The application of evolution rules is done in a maximally parallel manner: at
each step, all objects which can evolve should evolve.

Starting from an initial con�guration and using the evolution rules, we get a
computation. In the basic model, a computation is considered completed when
it halts, no further rule can be applied. There are two possible ways of assigning
a result to a computation: by considering the multiplicity of objects present in a
designated membrane in a halting con�guration, or by concatenating the symbols
which leave the system, in the order they are sent out of the skin membrane (if
several symbols are expelled at the same time, then any ordering of them is
accepted). Thus, in the �rst case we compute vectors of natural numbers, while
in the second case we generate a language.

Many variants are considered in [3], [6], [7], [9], [10], [12]. In most of them,
the objects are described by symbols from a given alphabet.

In this paper we are interested in the case when the objects are not \atomic"
symbols, but they are described by strings. The case when the evolution rules
of such objects are based on the splicing operation was investigated both in [6]
and [11]. Characterizations of recursively enumerable languages were obtained
for various simple forms of such splicing P systems.

Thus, the two types of mechanisms, controlled or distributed H systems and
splicing P systems, are equivalent in power. We give here a direct proof of this

179Paun Gh., Yokomori T.: Simulating H Systems by P Systems



equivalence, by \implementing" the mentioned types of H systems as P systems.
This is a signi�cant \programming exercise" in the \language of computing
cells", showing not only the power, but also the versatility of the computing
architecture inherent to P systems.

2 H Systems

Let us �rst remind the splicing operation as introduced in [4]; we follow the
formalism from [8]. (For formal language theory elements we use below we refer
to the many monographs in the area, in particular to [14].)

Consider an alphabet V and two symbols #; $ not in V . A splicing rule over
V is a string r = u1#u2$u3#u4, where u1; u2; u3; u4 2 V � (V � is the set of all
strings over V ; the empty string is denoted by �). For such a rule r and for
x; y; w; z 2 V � we de�ne

(x; y) `r (w; z) i� x = x1u1u2x2; y = y1u3u4y2;

w = x1u1u4y2; z = y1u3u2x2;

for some x1; x2; y1; y2 2 V �:

(One cuts the strings x; y in between u1; u2 and u3; u4, respectively, and one
recombines the fragments obtained in this way.) When r is understood, we write
` instead of `r. For clarity, we usually indicate by a vertical bar the place of
splicing: (x1u1ju2x2; y1u3ju4y2) ` (x1u1u4y2; y1u3u2x2).

A pair � = (V;R), where V is an alphabet and R is a set of splicing rules
over V , is called an H scheme. With respect to an H scheme � = (V;R) and a
language L � V � we de�ne

�(L) = fw 2 V � j (x; y) `r (w; z) or (x; y) `r (z; w); x; y 2 L; r 2 R; z 2 V �g;

��(L) =
[

i�0

�i(L); for

�0(L) = L;

�i+1(L) = �i(L) [ �(�i(L)); i � 0:

An extended H system is a construct 
 = (V; T;A;R); where V is an alphabet,
T � V;A � V �, and R � V �#V �$V �#V �. (T is the terminal alphabet, A is the
set of axioms, and R is the set of splicing rules.) When T = V , the system is
said to be non-extended. The pair � = (V;R) is the underlying H scheme of 
.

The language generated by 
 is de�ned by L(
) = ��(A) \ T �: (We iterate
the splicing operation according to rules in R, starting from strings in A, and
we keep only the strings composed of terminal symbols.)

It is known that extended H systems with �nite sets of axioms and of splic-
ing rules characterize the regular languages, [2], [13]. This makes necessary to
consider controlled extended H systems, able to generate non-regular languages.

In an H system with permitting contexts, 
 = (V; T;A;R), the rules from R
are of the form p = (r;D1; D2), where r = u1#u2$u3#u4 is a usual splicing rule
over V and D1; D2 are �nite sets of strings over V . For x; y; w; z 2 V � we write
(x; y) `p (w; z) only if (x; y) `r (w; z), all strings from D1 appear as substrings
of x and all strings from D2 appear as substrings of y.

180 Paun Gh., Yokomori T.: Simulating H Systems by P Systems



In an H system with forbidding contexts the rules have the same form as
above, but (x; y) `p (w; z) only if (x; y) `r (w; z), no string from D1 appears as
a substring of x and no string from D2 appears as a substring of y.

We denote by pEH; fEH the families of languages generated by extended H
systems with permitting and with forbidding contexts, respectively.

A communicating distributed H system (CD H system) (of degree n; n � 1)
is a construct

� = (V; T; (A1; R1; V1); : : : ; (An; Rn; Vn));

where V is an alphabet, T � V , Ai are �nite languages over V , Ri are �nite sets
of splicing rules over V , and Vi � V , 1 � i � n.

Each triple (Ai; Ri; Vi); 1 � i � n, is called a component of � ; Ai; Ri; Vi are
the set of axioms, the set of splicing rules, and the selector (or �lter) of the
component i, respectively; T is the terminal alphabet of the system.

The pair �i = (V;Ri) is the underlying H scheme associated with the com-
ponent i of the system.

An n-tuple (L1; : : : ; Ln); Li � V �; 1 � i � n, is called a con�guration of the
system; Li is also called the contents of the ith component.

For two con�gurations (L1; : : : ; Ln); (L
0
1; : : : ; L

0
n), we de�ne

(L1; : : : ; Ln) =) (L0
1; : : : ; L

0
n) i�

L0
i = ��i (Li) [

n[

j=1

(��j (Lj) \ V
�
i );

for each i; 1 � i � n:

In words, the contents of each component is spliced according to the asso-
ciated set of rules (we pass from Li to ��i (Li); 1 � i � n), and the result is
redistributed among the n components according to the selectors V1; : : : ; Vn;
each component also keeps from a step to the next one the strings that were
produced by itself by splicing. (This is a di�erence from the de�nition in [1]
and [8], but it is easy to see from the proofs in [8] that the results about CD H
systems are not changed by this change in the de�nition.)

Because we have imposed no restriction over the alphabets Vi, for example,
we did not suppose that they are pairwise disjoint, when a string in ��j (Lj)
belongs to several languages V �

i , then copies of this string will be distributed to
all components i with this property.

The language generated by � is de�ned by

L(� ) = fw 2 T � j w 2 L1 for some L1; : : : ; Ln � V �; such

that (A1; : : : ; An) =)
� (L1; : : : ; Ln)g:

That is, the �rst component of the system is designated as its master and the
language of � is the set of all terminal strings generated (or collected by com-
munications) by the master.

We denote by cdEHn the family of languages generated by CD (extended)
H systems of degree at most n; n � 1. When n is not speci�ed, the subscript n
is removed. By RE we denote the family of recursively enumerable languages.

Proofs of the following equalities can be found in [8] and the references given
there:

Theorem1. pEH = fEH = cdEH = RE:

181Paun Gh., Yokomori T.: Simulating H Systems by P Systems



3 Splicing P Systems

We de�ne here the splicing P systems in the restricted form considered in [11].
We identify a membrane structure with a string of correctly matching paren-

theses, placed in a unique pair of matching parentheses; each pair of matching
parentheses corresponds to a membrane. Graphically, a membrane structure is
represented by a Venn diagram. To each membrane we uniquely associate a re-
gion, that delimited by the membrane and the immediately lower membranes, if
any.

A splicing P system (of degree m;m � 1) is a construct

� = (V; T; �; L1; : : : ; Lm; R1; : : : ; Rm);

where:

(i) V is an alphabet;
(ii) T � V (the output alphabet);
(iv) � is a membrane structure consisting of m membranes

(labeled, with 1; 2; : : : ;m);
(v) Li; 1 � i � m; are languages over V associated with the regions 1; 2; : : : ;m

of �;
(vi) Ri; 1 � i � m, are �nite sets of evolution rules associated with the regions

1; 2; : : : ;m of �, given in the following form: (r = u1#u2$u3#u4; tar1; tar2),
where r = u1#u2$u3#u4 is a usual splicing rule over V and tar1; tar2 2
fhere; out; ing.

Note that, as usual in H systems, if a string is present in a region of our
system, then it is assumed to appear in arbitrarily many copies (any number of
copies of a DNA molecule can be obtained by ampli�cation).

Anym-tuple (M1; : : : ;Mm) of languages over V is called a con�guration of� .
For two con�gurations (M1; : : : ;Mm); (M

0
1; : : : ;M

0
m) of� we write (M1; : : : ;Mm)

=) (M 0
1; : : : ;M

0
m) if we can pass from (M1; : : : ;Mm) to (M 0

1; : : : ;M
0
m) by ap-

plying the splicing rules from each region of �, in parallel, to all possible strings
from the corresponding regions, and following the target indications associated
with the rules. More speci�cally (but not completely formal), if x; y 2 Mi and
(r = u1#u2$u3#u4; tar1; tar2) 2 Ri such that we can have (x; y) `r (w; z), then
w and z will go to the regions indicated by tar1; tar2, respectively. If tarj = here,
then the string remains in Mi, if tarj = out, then the string is moved to the
region immediately outside the membrane i (maybe, in this way the string leaves
the system), if tarj = in, then the string is moved to any region which is im-
mediately below in membrane i; if no such a region exists, then the rule cannot
be applied. If in a given region there are several rules which can be applied,
then each of them is applied to an arbitrarily large number of strings. If a string
can enter no splicing, then it remains unchanged in its region, but if a string
can enter a splicing, then all its copies are consumed by splicing. (Biochemically
speaking, this amounts to assume that when a reaction can take place, then it is
complete, we wait until all items which can be processed are actually processed.
This is a natural assumption, but it is also very powerful, because by using it we
can distinguish between the presence and the absence of a given string in a given
place, which is very much similar to { but not at all the same as { the way the
multisets are used in proving that H systems with multiplicities associated with

182 Paun Gh., Yokomori T.: Simulating H Systems by P Systems



strings are computationally universal, see [8].) Similarly, if a string is produced
by splicing and it is sent out of a region, then no copy of it remains in the region
where it is produced.

A sequence of transitions between con�gurations of a given P system � ,
starting from the initial con�guration (L1; : : : ; Lm), is called a computation with
respect to � . The result of a computation consists of all strings over T which
are sent out of the system at any time during the computation. We denote by
L(�) the language of all strings of this type. We say that L(�) is generated by
� .

Note two important facts: if a string leaves the system but it is not terminal,
then it is ignored; if a string remains in the system, even if it is terminal, then
it does not contribute to the language L(�). It is also worth mentioning that
we do not consider here halting computations. We leave the process to continue
forever and we just observe it from outside and collect the terminal strings which
leave it.

We denote by SPL the family of languages L(�) generated by splicing P
systems as above.

Proofs of the following equality (even with restrictions on the number of
membranes and their arrangement: linear tree or star tree) can be found in [11].

Theorem2. SPL = RE:

4 Simulating Permitting H Systems by Splicing P Systems

We now pass to proving the three simulation results we have announced above.
We start with the case which turned out to be easier to solve:

Theorem3. Each permitting H system can be simulated by a splicing P system.

Proof. Consider a permitting H system 
 = (V; T;A;R), with

R = fri = (ui;1#ui;2$ui;3#ui;4;Di;1; Di;2) j

Di;1 = fsi;1; : : : ; si;pig; Di;2 = fti;1; : : : ; ti;qig;

1 � i � n; ui;1; ui;2; ui;3; ui;4 2 V �; si;j 2 V �; 1 � j � pi;

ti;j 2 V �; 1 � j � qi; and pi; qi � 1g:

(Because the empty string, �, is a substring of any string, if it appears in a set
Di;1; Di;2, then it imposes no restriction on the use of the rule. Thus, if one of
Di;1; Di;2 above would be empty, then by introducing the permitting string �
we can set up Di;1 = f�g or Di;2 = f�g, which does not change the generated
language. In this way, it was possible to assume that each of pi; qi are greater
than or equal to one.)

We construct a P system � as follows. Instead of a completely formal con-
struction, we present its idea and only parts of the system are given in full
details.

The total alphabet of � is

V [ fc1; c2; c
0
1; c

0
2; d1; d2; g; g

0g [ fei;1; ei;2; fi;1; fi;2 j 1 � i � ng;

183Paun Gh., Yokomori T.: Simulating H Systems by P Systems



the terminal alphabet is T , and the membrane structure has the shape suggested
in Figure 1.

Figure 1. The shape of the membrane structure
of the splicing P system from the proof of Theorem 3.

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

skin

rule r1 rule ri rule rn
ligator

D1;1 D1;2 Di;1 Di;2 Dn;1 Dn;2

. . . . . .

In the skin membrane we place n + 1 membranes, one associated with each
rule in R, and a \ligator". In the membrane associated with ri we place two
membranes, one associated with the set Di;1 and one with the set Di;2, of the
strings which regulate the application of the splicing rule ui;1#ui;2$ui;3#ui;4
from ri. In these two membranes we introduce strings which come from the skin
membrane and we check whether or not they contain all the substrings indicated
by Di;1; Di;2, respectively. If this is the case, then, in the left membrane we also
cut the string at the pattern ui;1ui;2 and we mark the ends of the fragments in
such a way to know that this operation was done, while in the right membrane
we cut the string at the pattern ui;3ui;4 and also mark the ends of the string, in
a way di�erent from the marking in the left membrane. Thus, we know which
is the �rst term of the splicing to be done and which is the second term. The
fragments produced in this way are sent out to the skin membrane and from
here they are sent to the \ligator"; here the ligation is performed, the resulting
strings are sent back to the skin membrane and the process can be iterated.

Initially, in the skin membrane we introduce the language

fc1wc2 j w 2 Ag [ fgc2; g
0g [ fgei;1; gfi;1; ei;2g; fi;2g j 1 � i � ng:

Therefore, we start with the strings in A marked at the ends with the new
symbols c1; c2; these symbols or primed variants of them will mark the strings
during all their path through the system.

The rules present in the skin membrane are:

(#c2$g#c2; in; here)

(we send to any of the immediately lower membranes all the strings present in
the skin membrane and ended with c2; note that from the \ligator" each such
string can be sent back, which means that after two steps we can dispose again
of all strings which were initially placed in the skin membrane),

184 Paun Gh., Yokomori T.: Simulating H Systems by P Systems



(#c2$g#;here; here);
(c1#$#g0;here; out)

(using these rules we can remove the non-terminal symbols c1; c2 and send the
remaining string out of the system; if it is a terminal string, then it is an element
of the language generated by � , otherwise the string is \lost"),

(#ei;1$g#ei;1; in; here);
(#fi;1$g#fi;1; in; here);
(ei;2#$ei;2#g;here; in);
(fi;2#$fi;2#g;here; in), for all 1 � i � n

(by these rules we send to the \ligator" the strings prepared by the membranes
associated with the splicing rules; if these strings arrive again in membranes
associated with rules in R, then they are immediately sent back to the skin
membrane).

In the membrane associated with rule ri; 1 � i � n; we introduce the initial
strings fgc2; gc

0
2; c

0
1gg; as well as the following rules:

(#c2$g#c2; in; here)

(we send the strings received from the skin membrane to any of the two imme-
diately inner membranes),

(#c02$g#c
0
2; out; here);

(c01#$c01#g;here; out)

(the strings prepared by the membranes associated with Di;1 and Di;2 are sent
out to the skin membrane).

The membrane associated withDi;1 has inside 2pi+1membranes arranged hi-
erarchically, in a linear mode, as indicated in Figure 2. For each string si;j we have
two membranes. In the �rst one we initially place the strings fd1d2; gd2; gc

0
2; c

0
1gg

and the rules

(si;j#$d1#d2; in; in)

(if a string c1x1si;jx2c2 arives here, then we can splice (c1x1si;j jx2c2; d1jd2) `
(c1x1si;jd2; d1x2c2), and both the obtained strings are sent to the lower mem-
brane),

(#d2$g#d2;here; here)

(this rule just reproduce the axiom d1d2, to be used at subsequent steps),

(#c02$g#c
0
2; out; here);

(c01#$c01#g;here; out)

(the strings prepared by the innermost membranes are sent up).
In the second membrane associated with si;j we place no axiom, but only the

rules

(#d2$d1#; in; here)

(the strings c1x1si;jd2; d1x2c2 are pasted together and the string c1x1si;jx2c2
goes to the next membrane, for checking the presence of the substring si;j+1),

185Paun Gh., Yokomori T.: Simulating H Systems by P Systems



(#c02$g#c
0
2; out; here);

(c01#$c01#g;here; out)

(the strings prepared by the innermost membranes are sent up).

Figure 2. The membrane sub-structure associated with Di;1:

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%
�
�

�
�

check Di;1

check si;1 (2 membranes)

check si;j (2 membranes)

. . .

. . .

check si;pi (2 membranes)

cut at ui;1; ui;2

priming

. . .

. . .

Note that if a string does not contain a substring si;j , then it remains forever
in the �rst membrane associated with si;j , because it can enter no splicing which
sends it further. Thus, if a string arrives in the second central membrane, that
around the innermost one, then we know that all conditions imposed by Di;1 are
ful�lled. In this membrane we initially introduce the strings fei;1ei;2; gc

0
2; c

0
1gg

and the rules

(ui;1#ui;2$ei;2#ei;1; in; in)

(from a string c1x1ui;1ui;2x2c2 we pass to the strings c1x1ui;1ei;1; ei;2ui;2x2c2,
which are sent to the innermost membrane),

(ei;1#ei;2$ei;1#ei;2;here; here)

(for reproducing the axiom ei;1ei;2),

186 Paun Gh., Yokomori T.: Simulating H Systems by P Systems



(#c02$g#c
0
2; out; here);

(c01#$c01#g;here; out)

(the strings with the markers c1; c2 primed in the innermost membrane are sent
out).

In the central membrane we put the initial strings fgc02; c
0
1gg and the rules

(#c2$g#c
0
2; out; here);

(c1#$c01#g;here; out)

(we change c1; c2 with c01; c
0
2, respectively, and we send the obtained strings to

the upper membrane),

(g#c02$g#c
0
2;here; here);

(c01#g$c
0
1#g;here; here)

(the axioms are reproduced).
The membrane sub-structure associated with the set Di;2 has exactly the

same contents as that associated with Di;1, but we now check the presence of
the substrings ti;j ; 1 � j � qi, and, in the successful case, we use the markers
fi;1; fi;2 instead of ei;1; ei;2, respectively. Using these markes, the strings are sent
from the skin membrane to the \ligator".

The \ligator" is a structure of the form [1[2[3 ]3]2]1 (we have labeled the
three membranes for reference below).

In membrane 1 we introduce the rules

(ui;1#ei;1$fi;2#ui;4; in; here)
(ui;3#fi;1$ei;2#ui;2; in; here)

(we ligate the fragments prepared in the membrane sub-structure associated
with the rule ri; the resulting strings are sent to membrane 2, where c02 will be
replaced with c2),

(#c2$g#c2; out; here)

(the string coming from the inner membrane is sent out to the skin membrane).
In membrane 2 we introduce the string fgc2g and the rules

(#c02$g#c2; in; here);
(#c2$g#c2; out; here);

while in membrane 3 we introduce the string fc1gg and the rules

(c01#$c1#g;here; out);
(c1#g$c1#g;here; here)

(the marker c01 is replaced by c1, the initial string is reproduced).
From the previous explanations one can see that the system � simulates,

indeed, the work of 
: all terminal strings produced by 
 are also produced by
� (and sent out of the system), while nothing else than the terminal strings
produced by 
 can be produced by � . That is, L(
) = L(�). ut

We stress the fact that the interest of the previous theorem is not the fact that
pEH � SPL, as simply concluded at the end of the proof, but the construction
itself from the proof, and the way the P system behaves. We may say that we
have encoded in the form of a splicing P system the algorithm itself of functioning
of an extended H system with permitting contexts.

187Paun Gh., Yokomori T.: Simulating H Systems by P Systems



5 Simulating Forbidding H Systems by Splicing P Systems

Somewhat unexpected (because the forbidding context H systems are just the
dual of permitting context H systems, so the proofs of their computational uni-
versality are quite similar, see [8]), the simulation of an H system with forbidding
contexts is more diÆcult than the simulation of a system with permitting con-
texts. Still, this can be done:

Theorem4. Each extended H system with forbidding contexts can be simulated
by a splicing P system.

Proof. Consider an H system 
 = (V; T;A;R) with forbidding contexts, with the
set R exactly as in the previous proof:

R = fri = (ui;1#ui;2$ui;3#ui;4;Di;1; Di;2) j

Di;1 = fsi;1; : : : ; si;pig; Di;2 = fti;1; : : : ; ti;qig;

1 � i � n; ui;1; ui;2; ui;3; ui;4 2 V �; si;j 2 V �; 1 � j � pi;

ti;j 2 V �; 1 � j � qi; and pi; qi � 1g:

We construct a splicing P system � with the membrane structure of the
same shape as that in Figure 1, with the same strings and rules in the skin
membrane and in the \ligator" membrane sub-structure, but with di�erences in
the membrane sub-structures associated with the rules ri in R.

For each rule ri we consider again a membrane which contains two mem-
branes, one associated with Di;1 and one with Di;2. In these membranes we
place sub-structures which check the non-appearance of strings in Di;j ; j = 1; 2,
as substrings of strings of the form c1wc2 received from the skin membrane.

Consider the case of Di;1. For each string si;j ; 1 � j � pi, we consider three
membranes { let us label them by (j; 1); (j; 2); (j; 3) { in the order
[ (j;1)[ (j;2)[ (j;3) ] (j;3)] (j;2)] (j;1). All these membranes are again arranged in a linear
tree manner.

In membrane (j; 1) we place the strings fgg; fc2; �f�c2g and the rules:

(si;j#$g#g;here; here);
(f#c2$ �f#�c2;here; here);
(�#c2$ �f#c2; in; in); for all � 2 V ,
(f#�c2$ �f#c2;here; here):

(Suppose that a string c1wc2 arrives in membrane (j; 1) when we have here the
strings fc2; �f�c2. This is the case at the beginning of the computation, because
from the skin membrane to membrane (1; 1) we make two steps, exactly the time
for the rules (f#c2$ �f#�c2;here; here); (f#�c2$ �f#c2;here; here) to be applied.
Because �fc2 is not present, the string c1wc2 can be spliced at most with the
rule (si;j#$g#g;here; here). If this rule is applied, then we get two strings of
the form c1w1g; gw2c2 which will never lose the non-terminal symbol g. If w
does not contain the substring si;j , then the string c1wc2 has to wait. At the
same time, the rule (f#c2$ �f#�c2;here; here) is applied, producing the string
�fc2. Using this string, at the next step c1wc2 is passed unchanged to membrane
(j; 2).

In membrane (j; 2) we introduce the string fgc2g and the rule

188 Paun Gh., Yokomori T.: Simulating H Systems by P Systems



(#c2$g#c2; in; here)

(the strings which end with c2 are passed unchanged to membrane (j; 3)), where
we introduce the string fc1gg and the rule

(c1#$c1#g;here; in)

(the strings starting with c1 are passed unchanged to the next membrane, of the
type (j + 1; 1); note that the possible strings gw2c2 can be sent to membrane
(j; 2), but they cannot go further).

Consequently, the string c1wc2 \survives" if and only if it does not contain the
substring si;j . It is important to note that in the positive case, that is when c1wc2
is passed to membrane (j+1; 1), the operations in membranes (j; 1); (j; 2); (j; 3)
take four steps.

We do not mention here also the rules which have only the role of passing
unchanged from a step to the next one the strings initially placed in membranes.
Such details are similar to those in the previous proof.

When we have checked all strings in Di;1 and none of them is a substring of
w, the string c1wc2 arrives in the second innermost membrane (again like in the
previous proof, we have two further membranes in the center of the sub-structure
associated with Di;1; in these membranes we cut the string at the pattern ui;1ui;2
and mark accordingly the ends of the fragments). Here we introduce the strings
fei;1ei;2; gc

00
2 ; c

00
1gg and the following rules:

(ui;1#ui;2$ei;1#ei;2; in; in)

(we cut the string and we send the fragments to the innermost membrane, where
the markers c1; c2 are replaced by c01; c

0
2, respectively, and the strings are sent

out again),

(#c02$g#c
00
2 ;here; here);

(#c002$g#c
0
2; out; here);

(c01#$c001#g;here; here);
(c001#$c01#g;here; out):

(the strings are sent out, in the form c01w1ui;1ei;1; ei;2u2w2c
0
2).

In the innermost membrane, we introduce the strings fgc02; c
0
1gg and the rules:

(#c2$g#c
0
2; out; here);

(c1#$c01#g;here; out).

Again, we have left to the reader the task of completing the sets of rules with
rules for passing the axioms from a step to the next one.

Note that we need four steps from the moment when we get the string c1wc2
until producing the strings c01w1ui;1ei;1; ei;2ui;2w2c

0
2.

In all membranes placed above the two innermost membranes, including the
membrane associated with the rule ri, we also introduce the strings fgc002 ; c

00
1gg,

as well as the folowing four rules:

(#c02$g#c
00
2 ;here; here);

(#c002$g#c
0
2; out; here);

(c01#$c001#g;here; here);
(c001#$c01#g;here; out)

189Paun Gh., Yokomori T.: Simulating H Systems by P Systems



(the strings marked with c01; c
0
2 are sent out, in two steps).

The membrane sub-structure associated with Di;2 is similar, but we check
the appearance of strings ti;j ; 1 � j � qi, as substrings of the strings c1wc2 sent
here, and, when no such substring is present in w, we cut at the pattern ui;3ui;4
and we mark the produced fragments with fi;1; fi;2 instead of ei;2; ei;2.

From the skin membrane, these fragments are sent to the \ligator" sub-
structure, where the simulation of the splicing is completed. It is important to
note that from sending the strings from the skin membrane to the \ligator" �rst
membrane until sending back to the skin membrane strings of the form c1zc2 we
need six steps.

Thus, always we accomplish a task in an even number of steps. This is impor-
tant for checking the presence of strings si;j ; ti;j , in membranes of the type (j; 1)
as discussed above: at odd steps there is no string �fc2 present in this membrane,
so the only rule which can involve the string c1wc2 to be checked is that of the
form (si;j#$g#g;here; here). Thus, if this rule can be applied, then it must be
applied, which ensures the correct checking of the forbidding context condition.

Thus, we can conclude that the P system � precisely simulates the function-
ing of the H system 
 and that L(
) = L(�). ut

6 Simulating a Communicating Distributed H System by a

Splicing P System

The condition imposed by a �lter associated with a component (Ai; Ri; Vi) of a
CD H system is similar to that imposed by the forbidding contexts: a string x is
accepted by the previous component only if it contains no symbol from V � Vi.
Thus, we can simulate a CD H system by using the techniques already developed
for forbidding context H systems. That is, the following result is as expected:

Theorem5. Each communicating distributed H system can be simulated by a
splicing P system.

Proof. For a CD H system � = (V; T; (A1; R1; V1); : : : ; (An; Rn; Vn)), we con-
struct the splicing P system � as follows. In a skin membrane, we place n
membrane sub-structures, associated with each of the components of � . The
shape of the membrane structure is as indicated in Figure 3 (we have given no
detail for membranes associated with other components than the ith one).

The checking of the non-appearance of symbols from V � Vi in the string
under inspection is done exactly as in the previous proof. Essential di�erences
appear when simulating the rules in Ri.

First, at the beginning we introduce all strings of the form c1wc
0
2 in the

innermost membrane, that called \simulator" in Figure 3. For all rules r =
u1#u2$u3#u4 2 Ri, we introduce here the rules

(u1#u2$d1#d2;here; here);
(u3#u4$d3#d4;here; here);
(u1#d2$d3#u4;here; here);
(u3#d4$d1#u2;here; here);
(u1#d2$d3#u4; out; here);
(u3#d4$d1#u2; out; here).

190 Paun Gh., Yokomori T.: Simulating H Systems by P Systems



In this way, in the simulator we can perform any number of splicing opera-
tions exactly as in � , where we compute ��i (Li), for the current set of strings
Li. At any moment, any string can be sent out. (Such strings are of the form
c1xc

0
2.) However, because we can perform any number of splicings and because

we have both rules (u1#d2$d3#u4;here; here); (u3#d4$d1#u2;here; here) and
rules (u1#d2$d3#u4; out; here); (u3#d4$d1#u2; out; here), copies of all strings
remain in the simulator (and this is permitted by the mode of work of � ). This
is important for the strings which are not accepted by any other component and
must remain in the component which has produced them.

Figure 3. The shape of the membrane structure
of the splicing P system from the proof of Theorem 5.

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%
�
�

�
�

skin

component 1 component i component n

check � 2 V � Vi (3 membranes)

. . .

. . .

simulator

. . .

. . . . . .

. . .

Note also that each splicing operation with respect to � is simulated in two
steps in � , one when we introduce the symbols d1; d2; d3; d4 and one when these
symbols are removed. Remember that we have to be careful with the parity of
the number of steps in order to check correctly the non-appearance of symbols
in the examined strings. In all upper membranes, we provide rules which sends
up the strings, in two steps in each membrane.

In this way, all strings obtained after an arbitrary number of splicing oper-
ations in any component can be brought together in the skin membrane. From
the skin membrane, all these strings are sent back to the lower membranes, those
associated with the components of � (we can arrange to do this in two steps, to
keep the parity). The strings are now checked whether or not they are accepted
by the �lters and, if they arrive in a simulator, new splicings are performed on
them.

In the simulator associated with the component (A1; R1; V1) we also consider
rules which replace c2 with �c2. In all upper membranes we introduce rules which
send up strings of the form c1w�c2. In the skin membrane we remove c1 and �c2,
and we send out of the system the produced strings. If they are terminal, then
they are accepted in the language L(�).

From the above explanations and details, from the construction in the proof

191Paun Gh., Yokomori T.: Simulating H Systems by P Systems



of Theorem 4, and completing the missing details (the initial strings in each
membrane, rules for passing the axioms from a step to another one { when
necessary {, or parity preserving tricks), the reader can see that the system �
simulates the work of � in the proper way and that L(� ) = L(�): ut

7 Final Remarks

We have illustrated here the power of the membrane computing paradigm by
simulating the functioning of three basic types of H systems { with permitting
contexts, with forbidding contexts, and communicating distributed H systems
{ by means of splicing P systems. We stress the fact that the focus was the
simulation itself, not the equivalence of the two mechanisms (in the linguistics
terminology, we are not interested in their weak generative capacity). In other
words, through the simulation by P systems one can expect to get a uni�ed view
to understand the di�erences (e.g., di�erent shapes of membrane structures)
among the variations of controlled H systems and related models.

Of course, it is possible to simulate other types of H systems by splicing P
systems, but this will only emphasize the versatility of P systems, a fact already
convincingly proved.

Acknowledgement

Research supported by \Research for Future" Programno. JSPS-RFTF 96I00101,
from the Japan Society for the Promotion of Science.

References

[1] E. Csuhaj-Varju, L. Kari, Gh. P�aun, Test tube distributed systems based on splic-
ing, Computers and AI, 15, 2-3 (1996), 211{231.

[2] K. Culik II, T. Harju, Splicing semigroups of dominoes and DNA, Discrete Appl.
Math., 31 (1991), 261{277.

[3] J. Dassow, Gh. P�aun, On the power of membrane computing, J. Univ. Computer
Sci., 5, 2 (1999), 33{49.

[4] T. Head, Formal language theory and DNA: an analysis of the generative capacity
of speci�c recombinant behaviors, Bull. Math. Biology, 49 (1987), 737{759.

[5] Gh. P�aun, Computing with membranes. An introduction, Bulletin of the EATCS,
67 (Febr. 1999), 139{152.

[6] Gh. P�aun, Computing with membranes, submitted, 1998 (see also TUCS Research
Report No. 208, November 1998, http://www.tucs.�).

[7] Gh. P�aun, Computing with membranes. A variant, submitted, 1999 (see also
CDMTCS Report No. 098, 1999, of CS Department, Auckland Univ., New Zealand,
www.cs.auckland.ac.nz/CDMTCS).

[8] Gh. P�aun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing
Paradigms, Springer-Verlag, Heidelberg, 1998.

[9] Gh. P�aun, G. Rozenberg, A. Salomaa, Membrane computing with external out-
put, submitted, 1999 (see also TUCS Research Report No. 218, December 1998,
http://www.tucs.�).

[10] Gh. P�aun, Y. Sakakibara, T. Yokomori, P systems on graphs of restricted forms,
submitted, 1999.

192 Paun Gh., Yokomori T.: Simulating H Systems by P Systems



[11] Gh. P�aun, T. Yokomori, Membrane computing based on splicing, Preliminary
Proc. of Fifth Intern. Meeting on DNA Based Computers (E. Winfree, D. Gi�ord,
eds.), MIT, June 1999, 213{227.

[12] Gh. P�aun, S. Yu, On synchronization in P systems, Fundamenta Informaticae, 38
(1999) (see also CS Department TR No 539, Univ. of Western Ontario, London,
Ontario, 1999, www.csd.uwo.ca/faculty/syu/TR539.html).

[13] D. Pixton, Regularity of splicing languages, Discrete Appl. Math., 69 (1996), 101{
124.

[14] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Springer-Verlag,
Berlin, 1997.

193Paun Gh., Yokomori T.: Simulating H Systems by P Systems


