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Abstract: Generalizations of Craig interpolation are investigated for equational logic.
Our approach is to do as much as possible at a categorical level, before drawing out
the concrete implications.

1 Introduction

The Craig interpolation lemma is a well known �xture of �rst order logic [Cra57].
It says that, given sentences ';  such that ' `  , there is some sentence �, called
an interpolant, such that ' ` � and � `  where j�j � j'j\j j, where j�j denotes
the set (or more precisely, the signature) of non-logical symbols in a sentence
�. Part of the original motivation for this result came from the methodology of
science, where the sentences4 would be logical theories of (e.g.) physical phe-
nomena. For a sample application, suppose that ' and  have no non-logical
symbols in common and that  is not a tautology; then the interpolant must
consist of only logical symbols, from which we conclude that ' `  is impossible.
This implies5 that a physical theory cannot be applied directly to yield results
about a completely di�erent domain. For applications of Craig interpolation to
the relationship between module algebra and information hiding, the reader may
see [BHK90, DGS93].

This paper focuses on Craig interpolation for equational logic. The situation
here is perhaps a bit delicate. In fact, Craig interpolation does not hold for
the usual formulation of equational logic, where sentences are simple equations.
However, as pointed out in [RvG88, Rod91], it does hold if we add conjunction
to equational logic, so that sentences are conjunctions of equations; this holds
for both �nite and in�nite conjunctions. This paper takes a similar point of
view, in which sentences may be arbitrary sets of equations, so that for us Craig
interpolation says that if E1 and E2 are sets of �1-equations and �2-equations,
respectively, such that E1 j=�1[�2 E2, then there is a set of (�1\�2)-equations
I (called an interpolant) such that E1 j=�1 I and I j=�2 E2.

1 C. S. Calude and G. S�tef�anescu (eds.). Automata, Logic, and Computability. Special
issue dedicated to Professor Sergiu Rudeanu Festschrift.

2 Supported by NSF grant CCR-9901002.
3 Also Fundamentals of Computing, Faculty of Mathematics, University of Bucharest,
Romania.

4 These are generally conjunctions of �nite sets of closed �rst order formulae.
5 Provided that one accepts some form of logical positivism, which relatively few
philosophers today are prepared to do.
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We generalize this in two directions. First, we show that it holds for more
general pushouts of signatures than those given by union and intersection, in fact,
for those pushouts where the morphism with target �2 is injective. A counter
example is given showing that the result does not hold in general when that
morphism is not injective. Second, we investigate di�erent kinds of equations as
sentences, and even more generally, formulae in universally quanti�ed �rst order
logic with equality. We show that the equations in E1 can be conditional, and
that the kind of equations in the interpolant is given by the kind of equations in
E2. For example, if E2 contains universally quanti�ed �rst order formulae6 then
the interpolant can contain only conditional equations, and if E2 contains only
unconditional equations then the interpolant can also contain only unconditional
equations.

Inspired by the elegant work of Rodenburg [Rod91], we use Birkho� ax-
iomatizability results [Bir35] for equational logic. This paper �rst gives a cat-
egorical formulation and proof, and then instantiates that to obtain various
forms of equational Craig interpolation. We assume a general familiarity with
the basics of algebraic speci�cation and category theory, for which see e.g.
[GM96, Lan71, EM85].

Acknowledgement This paper is dedicated to Professor Sergiu Rudeanu. The
�rst authour wishes to thank Professor Rudeanu for introducing him to Birkho�
axiomatizability at the University of Bucharest.

2 A Categorical Formulation

We formulate and prove the interpolation result categorically, in the spirit of the
algebraic proof by Rodenburg [Rod91]. It is worth mentioning that there also
exist constructive proofs of the classic equational interpolation in the literature,
for example [RvG88, Pig74].

In this section, consider categories that distinguish two classes of morphisms,
S and H, both including all identities. The morphisms in S can be thought as
subobject inclusions and those in H as surjections7. To simplify the writing, we
ambigously use the same symbols S and H for all categories. Given a class of
objects Q, S(Q) represents the class of objects which are sources of morphisms
in S of target in Q; it can be thought as closure under subobjects. Dually, H(Q)
represents the class of objects which are targets of morphisms in H with source
in Q; it can be thought as closure under quotients. We adopt the usual notation
P(Q) for closure under products. Let HSP(Q) be a shorthand for H(S(P(Q))),
and similarly for S(P(Q)), etc.

De�nition 1. A functor U : C ! D is H-source creating i� for every mor-
phism D ! U(C) in H there is an object C 0 2 jCj and a morphism C 0 ! C in
H such that D = U(C 0). Dually, U is S-target creating i� for every morphism
U(C) ! D in S there is an object C 0 2 jCj and a morphism C ! C 0 in S such
that D = U(C 0).

6 Note that these include the conditional equations.
7 We adopt this notation for historical reasons.
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Example 1. If ' : � ! �0 is an injective morphism of equational signatures, then
the usual forgetful functor �' : Alg�0 ! Alg� is both H-target and S-source
creating, where H and S contain the surjective homomorphisms and inclusions,
respectively.

The reader is referred to [Rod91] for a proof when ' is an inclusion of many-
sorted signatures. It is realatively easy to see that no major changes appear when
' is injective and we only sketch the construction of C 0. Given a �0-algebra C
and a �-algebra D, then intuitively C 0 is obtained from C \expunging C �'
and plugging in D instead". Technically, C 0

s0 is Ds whenever s
0 = '(s), and Cs0

otherwise, for all sorts s0 in �0, and C 0
�0 is D� whenever �0 = '(�). Suppose

that there is some surjective morphism e : D ! C�'; then for an operation �0 in
�0

'(s1):::'(si)s0i+1:::s
0

k
;s0

which is not in the image of ', C 0
�0 (d1; :::; di; ci+1; :::; ck)

is de�ned as C�0(es1(d1); :::; esi(di); ci+1; :::; ck) if s0 is not in the image of ',
and any element d in Ds with es(d) = C�0(es1(d1); :::; esi(di); ci+1; :::; ck) if
s0 = '(s). On the other hand, if there is some inclusion morphism C �',! D
then C 0

�0 (d1; :::; di; ci+1; :::; ck) is de�ned as C�0(c1; :::; ci; ci+1; :::; ck) if dj = cj 2
C'(sj) for all 1 � j � i, and any element in C 0

s0 otherwise. These constructions
are not ambiguous, because ' is injective.

De�nition 2. Given two functors V : A1 ! A and U : A2 ! A and classes of
objects Q1 � jA1j and Q2 � jA2j, then a (V ;U)-interpolant for (Q1;Q2) (or
simply an interpolant when V ;U ;Q1 and Q2 are clear from the context) is a
class of objects Q � jAj such that V(Q1) � Q and U�1(Q) � Q2.

Theorem3. Suppose that the following is a pullback in Cat

A0

U
0

~~| | |
| | |
| |

V
0

  B
BBB

BBB
B

A1

V !!B
BBB

BBB
B A2

U}}| | |
| | |
| |

A

such that V is product preserving and U is S-target creating, and that Q1 � jA1j
and Q2 � jA2j are classes of objects such that Q1 = P(Q1), Q2 = S(Q2) and
U 0�1(Q1) � V 0�1(Q2). Then

1. Q = SP(V(Q1)) is an interpolant; and
2. if in addition Q2 = H(Q2) and U is H-source creating, then the class Q =

HSP(V(Q1)) is also an interpolant.

Proof. Notice that V(Q1) � Q. Therefore P(V(Q1)) = V(Q1) because V is
product preserving and Q1 is closed under products.

1. HenceQ = S(V(Q1)). Let A 2 U�1(Q) and let A1 be an object inQ1 such that
there is a morphism U(A) ,! V(A1) in S. Since U is S-target creating, there are
an object A2 2 jA2j such that U(A2) = V(A1) and a morphism A ,! A2 in S. By
the pullback property in Cat, there is an object A0 2 jA0j such that U 0(A0) = A1
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and V 0(A0) = A2. Since U
0�1(Q1) � V 0�1(Q2), we get that A2 2 Q2, and since

Q2 = S(Q2), we get that A 2 Q2.

2. Hence Q = HS(V(Q1)). Let A 2 U�1(Q). Then there are some objects
A1 2 Q1, B 2 jAj and morphisms B ,! V(A1) in S and B ! U(A) inH. Since U
is H-source creating and S-target creating, there are objects B0; A2 2 jA2j such
that U(B0) = B, U(A2) = V(A1) and morphisms B0 ! A in H and B0 ,! A2

in S. By the pullback property in Cat, there is an object A0 2 jA0j such that
U 0(A0) = A1 and V

0(A0) = A2. Since U
0�1(Q1) � V 0�1(Q2), we get that A2 2 Q2,

and since Q2 = S(Q2) = H(Q2), we get that A 2 Q2.

Therefore U�1(Q) � Q2, and so Q is an interpolant.

3 Down to the Real World

A natural generalization of the Craig interpolation result for any pushout

�0

�1

'0

>>||||||||
�2

 0

``B B B B B B B B

�

 

aaB B B B B B B B '

==||||||||

of signatures would be

Given a set of �1-equations E1 and a set of �2-equations E2 such that
'0(E1) j=�0  0(E2), then there is a set of �-equations I (called inter-
polant) such that E1 j=�1  (I) and '(I) j=�2 E2.

Unfortunately, this is not true! The following counter-example shows that in
general it does not hold when ' is not injective.

Example 2. Let all the signatures involved contain one sort S and the indicated
unary operations� = fa; b : S ! Sg,�1 = fa; b; c : S ! Sg, �2 = fd : S ! Sg,
�0 = fd; c : S ! Sg; also let E1 = f(8x) b(x) = c(a(x)); (8x) a(b(x)) = c(b(x))g
and E2 = f(8x) d(d(x)) = d(x)g, let  ,  0 be inclusions, and let ' and '0 both
take a and b to d. It is easy to see that the four morphisms form a pushout
and that '0(E1) j=�0  0(E2). We claim there is no interpolant for this pushout
of signatures since any interpolant would contain only �-equations which are
consequences of E1, that is, equations involving only operations a and b which
can be deduced from E1. But notice that there are no such equations except
identities (equations (8X) t = t) because there is no way to get rid of c. Therefore
there is no interpolant.

Now we give a su�cient condition, namely that ' is injective.

Corollary 4. Given a pushout of equational signatures as above with ' injective,
given a set of conditional �1-equations E1 and a set of universally quanti�ed �rst
order �2-formulae E2 such that '0(E1) j=�0  0(E2), then
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1. there is a set of conditional �-equations I such that E1 j=�1  (I) and
'(I) j=�2 E2; and

2. if E2 contains only unconditional �2-equations then I can be taken to also
contain only unconditional �-equations.

Proof. We use Theorem 3 as follows:

{ The pushout of equational signatures translates to the following pullback of
categories of algebras:

Alg�0

�'0

zzu u u
u u u

u u u � 0

$$II
III

III
I

Alg�1

� $$II
III

III
I

Alg�2

�'zzu u u
u u u

u u u

Alg�

{ � is product preserving, because it is a right adjoint.
{ By Example 1, �' is both S-target and H-source creating.
{ Let Q1 and Q2 be the classes of algebras satisfying E1 and E2, respectively.
Then Q1 is closed under products. On the other hand, it is known that
Q2 is closed under subalgebras; moreover, if E2 contains only unconditional
�2-equations, then Q2 is additionally closed under quotients.

The rest follows from the well known fact (Birkho� [Bir35]) that quasivarieties
and varieties can be de�ned by conditional and unconditional equations, respec-
tively.

Notice that if E2 contains only unconditional equations and is �nite, then by
the equational completeness the interpolant can be taken to be also �nite. An
important special case is when the pushout is given by union and intersection of
signatures, and all morphisms are inclusions (special injections). We reformulate
Corollary 4 for this situation:

Corollary 5. Given signatures �1 and �2, a set of conditional �1 equations E1

and a set of universally quati�ed �rst order �2-formulae E2 such that E1 j=�1[�2
E2, then

1. there is a set of conditional (�1 \�2)-equations I such that E1 j=�1 I and
I j=�2 E2; and

2. if E2 contains only unconditional �2-equations then I can be taken to also
contain only [unconditional] (�1 \�2)-equations.

If in addition we add the (unnecessary) condition that E1 contains only
unconditional equations, then we obtain the (usual) equational interpolation:

Corollary 6. If E1 and E2 are sets of unconditional �1-equations and �2-
equations, respectively, such that E1 j=�1[�2 E2, then there is a set of uncondi-
tional (�1 \�2)-equations I such that E1 j=�1 I and I j=�2 E2

See [DGS93] for a detailed study of this and closely related formulations at the
level of institutions [GB92], using inclusion systems for union and intersection
of signatures.
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4 Summary and Future Work

Generalizations of equational Craig interpolation are investigated in the present
paper. We look both at more general pushouts of signatures than the union
intersection ones, and at di�erent kinds of sentence, including unconditional and
conditional equations, and universally quanti�ed �rst order formulae.

A �rst result is that equational Craig interpolation can be generalized to any
pushout of signatures for which the morphism with target �2 is injective, and
that the result does not hold in general if that morphism is not injective.

A second result is that the kind of equation in E1 does not in
uence the kind
of equation in the interpolant; actually the only requirement for the sentences in
E1 is that they generate classes of models that are closed under products, which
means the door is open to generalize the result even further.

A third result is that even if E2 contains formulae more complex than con-
ditional equations, namely, universally quanti�ed �rst order formulae, the inter-
polant can still contain only conditional equations; actually only closure under
submodels is required for the class of models of E2.

Another result is that if E2 contains only unconditional equations, then the
interpolant can also contain only unconditional equations even if E1 might con-
tain conditional equations or other sentences generating classes of models closed
under products.

We think an interesting direction for further research would be to dualize
the results of this paper to coalgebra. The fact that our main technique was
the Birkho� axiomatizability, which also holds for coalgebra and coequations
[Gum98] supports the feasibility of this project.

The methodological approach of this paper may also be of interest, in that
we avoid the details of equational logic until the end, by using a very general
categorical formulation. Although this paper has mainly discussed the case of
unsorted equational logic, it is an advantage of our apporach that it applies
equally well to many other forms of equational logic that have been developed,
such as the many sorted and various order sorted variants [GD94], and indeed,
to non-equational logics.
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