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Abstract: While the existence of inverses is a natural condition in Algebra it is sel-
dom satis�ed in Computer Science applications. Since the group-theoretical orientation
has to be abandoned we consider an advantage when the non-conventional structures
needed are linked to an already existing knowledge. We propose semirings as a can-
didate and we aim at the Computer Science applications such as processes semantics,
parallel composition, Fuzzy Theory, images ordering or MV-algebras. After the de�ni-
tion of pa-ordered semiring four typical examples are given. Some results concerning
additively idempotent semirings are extended to monoids considered as their natural
background. A direct sum representation is given for lower semilattice-ordered Gelfand
semirings s-ordered. A su�cient condition is given for having the natural quasi-order
an s-order. A multiplicative ordering is built up and its application to Visual Data
is indicated. Wrt complements in pa-semirings we give su�cient conditions for the
existence of some sums and for commutativity.
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1 Introduction. Sources and Some Related Basic References

There is no lack of motivation for considering partially-ordered structures in
Computer Science. It is di�cult to provide even an introduction because of the
diversity of applications not yet uni�ed. We can only give some examples.

Two important recent monographs on semirings written by J.S.Golan [JG92]
and U.Hebisch and H.J.Weinert [HW99] refer extensively to Computer Science.
The algebraic approaches to semantics of E.G.Manes andM.A.Arbib [MA86] are
based on pa (partially additive)-monoids in which the semantics of a process is
viewed as a partially de�ned sum of functions with disjoint domains, the mul-
tiplication being de�ned as the functional composition. W.Kuich systematically
investigated formal power series over semirings. (see the reference book with
A.Salomaa [KS86] on the semiring approach to automata and languages).

Semirings have been applied to parallel composition of processes [GM96].
Multilattice-ordered monoids [MB] and semirings have been applied in the the-
ory of visual languages [JJ96], [PB97], [PB99]. It should be noted that an inter-
esting family of semirings has been recently introduced in studying trajectories
[MRS98]; their speci�c properties remain for a further research.

1 C. S. Calude and G. S�tef�anescu (eds.). Automata, Logic, and Computability. Special
issue dedicated to Professor Sergiu Rudeanu Festschrift.
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In his pioneering article L.A.Zadeh [LZ65] (reproduced in [YO87], p.30) ex-
plicitly suggested two possible extensions of his theory: (I) to have as codomain of
a membership function a suitable partially-ordered set (P;�) instead of I = [0; 1];
(II) to consider partially de�ned functions [JG81], [MF96]. Actually, the consid-
ered De Morgan's rules are typical for lattice-ordered groups [GB73]. Fuzzy logic
has been presented in the context of Lattice Theory, e.g., H.Rasiowa (see [LZ92],
p.5-25) and J.A.Goguen [JG81] with an additional link to semirings.

The fundamental result of D.Mundici [DM86] has opened an avenue of re-
search with rich literature. Substantial results are linking MV -algebras with
lattice-ordered groups or rings [GB73], [LF63] in many interesting ways [DN95].
Instead of being dedicated to these links, further notes present some results con-
cerning partially-ordered semirings and rings which might be of some interest in
the previously suggested contexts.

It is di�cult to provide even a general view on the rapid development of the
algebraic approach in di�erent �elds of Theoretical Computer Science [WW92],
[BP94], [GS90], [AM89].

2 Basic Terminology, Concepts, Notations and Introductory

Examples

Terminology The basic concept we consider in this part is that of a pa-
ordered semiring (see further de�nitions), i.e., a partially-ordered partially-
additive semiring being possible to have for some results only semirings-like
structures (see further explanations). A partial semiring or pa-semiring is a semir-
ing such that addition is only partially de�ned with the natural modi�cation of
some axioms.

In the following, order means partial order. If commutativity is not (explic-
itly) speci�ed then multiplication can be non-commutative. When not (explicitly)
stated we assume that multiplication is associative. If < M;+; 0;�> is a com-
mutative ordered monoid, we say that M is s-ordered (sum-ordered/di�erence
ordered (J.S.Golan [JG92])/naturally ordered (A.H.Cli�ord)) i� a � b with
a; b 2 M is equivalent to 9c 2 M such that b = a + c. We say that
< M;+; 0;^;�> is a lower semilattice-ordered i� < M;^ > is a lower semi-
lattice, < M;�> is the associated poset and the operation + is distributive wrt
to ^. The pre�x l� to an algebraic structure denotes that the structure is lattice-
ordered. The monoids and semirings additive operations are distributive wrt the
lattice operations when the involved sums are de�ned.

De�nition 1. A pa-ordered semiring R = (R;+; 0; 1;�) is a nonempty set R
on which the operations of (partial) addition + and multiplication � (omitted as
usual) and a (partial) order structure have been de�ned such that the following
conditions are satis�ed:

1: (R;+; 0;�) is a partial(ly-additive) ordered monoid with identity ele-
ment 0 (see further);

2: (R; �; 1;�) is a (partially) ordered monoid with identity element 1 (see
further);

3: Multiplication distributes over (partial) addition from either side when
the involved sum exists;

4: 0r = 0 = r0, for all r in R.
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In (1) we assume that if one side of the associativity exists then the other
exists as well and we have the equality. Moreover, r+0 = 0+r = r always exists.
The compatibility between the partial addition and the order has the following
form: if a � b and if b + x 2 R exists then a + x 2 R exists as well and we
have a + x � b + x. Further if u; v 2 R+ = fw 2 Rjw � 0g, then a � b imply
uav � ubv.

Example 1. Let Pfn(X;X) be the set of partial functions from X to X
(it is possible to reduce the case Pfn(X1; X2) to the considered one with-
out loosing generality). We consider the pa-ordered semiring Pfn(X;X) =
(Pfn(X;X);+; 0; �; 1;�) in the following sense: f + g is de�ned i� dom(f) \
dom(g) = ; and in general

P
(fc : c 2 C) is de�ned i� the domains are disjoint

and in this case
P
(fc : c 2 C)(x) := if 9c0 2 C; x 2 dom(fc0) then fc0(x) else

unde�ned.
0 is the function with the empty domain, dom(0) = ;; � is the functional

composition; 1 = 1X is the identity function; f � g i� f is a restriction of g
(dually, g is an extension of f), i.e., dom(f) � dom(g) and f(x) = g(x), for any
x 2 dom(f).

Obviously, dom(
P
(fc : c 2 C)) = [(dom(fc) : c 2 C) (see [MA86], [AM89]

for the partially-additive monoids introduced by E.G.Manes and M.A.Arbib and
M.E. Steenstrup [MS85]).

Example 2. Let � be an alphabet, i.e., a nonempty set, and �� the free monoid
generated by � with the identity e. A language over � is a subset of ��. The set
of all languages over � is denoted by P (��). Let o be an associative operation
o : �� � �� �! �� such that e is an identity element, e.g., catenation, anti-
catenation or shu�e de�ned recursively by

(au bv) = a(u bv) [ b(au v):

The considered operation de�ned on words u 2 �� can be extended to languages
by taking

L1oL2 = [(u1ou2 : ui 2 Li; i = 1; 2):

The ordered system
S = (P (��);[; ;; o; feg;�)

is an upper complete semi-lattice semiring with least element ; with distributiv-
ity over in�nite sums (totally de�ned). This semiring is a (dditively)-idempotent,
zerosumfree, i.e., such that a + b = 0 implies a = b = 0, with last/in�nite ele-
ment (see [JG92] for the algebraic terms and [GM96] for the development of the
considered example and applications to parallel computation).

Example 3. For Fuzzy Theory (FT) we have the semiring of functions

(X �! Y = [0; 1];_; 0;^; 1;�; c)

where X is a crisp set, Y the real unit interval, _ = max, ^ = min and � are
de�ned component-wise. In addition we consider the functions f0 = 0, f1 = 1
and fc = 1 � f . The basic initial result of L.A.Zadeh [LZ65], [YO87] was that
the considered structure viewed as a De Morgan bounded distributive lattice
(DMBDLT) is the natural framework for FT.
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Example 4. The matrix theory over the semiring

(R+ [ f1g;^;1;+; 0;�)

is used when computing minimal paths over a �nite directed graph (for the
applications in Operations Research see the minimax algebra introduced and
studied by R.A.Cuninghame-Green, e.g., [CG91] and the applications of ordered
algebraic structures including semirings investigated by U.Zimmermann [UZ81]).

There are di�erent possible sources for extending the concept of a semiring or
partially-ordered semiring (po-semiring) by suppressing some of the conditions,
e.g., 0 is an annihilator, two-sided distributivity, the existence of an identity
element (a semiring without identity element is called hemiring), the result of
an operation is a single element (not a set as for hypersemirings) (see [JG92]
for basic notions and notations). The considered extensions will be still called
semirings.

It was not possible to provide here more than a review of some results ob-
tained. It is recognized its partial character and consequently the di�culty in
getting the corresponding integrated image.

Some proofs are omitted because of the existing limitations.

3 Idempotent Monoids and Additivelly Idempotent Semirings

We extend the results from [JG92] on a-idempotent semirings showing that the
appropriate framework is that of idempotent monoids.

Proposition2. If (M;+; 0) is a partially-additive commutative idempotent
monoid then the relation a1 � a2 de�ned by a1+a2 = a2 is such that (M;+; 0;�)
is a pa-ordered.

Proof. Readily idempotence implies the reexivity. The antisymmetry follows
from commutativity. For transitivity suppose a1 � a2 and a2 � a3. Therefore
a1 + a2 = a2 and a2 + a3 = a3 and thus a3 = (a1 + a2) + a3 = a1 + (a2 + a3) =
a1 + a3.

Obviously, 0 � a, for any a 2M , i.e.,M is positive and therefore zerosumfree,
i.e., a+ b = 0 implies a = b = 0.

Let now a1 � a2, i.e., a1 + a2 = a2. If a+ a2 2M exists then we have

a+ a2 = a+ (a1 + a2) = a+ (a1 + a2) + a = (a+ a1) + (a+ a2):

2

See [JG92], pg. 205, proposition 18.18 concerning additively idempotent
semirings previously extended.

Proposition3. If (M;+; 0;�0) is a commutative pa-monoid idempotent and
positive then previous � and �0 coincide.

Corollary 4. A partially-additive commutative and idempotent monoid
(M;+; 0) can be ordered up to a positive pa-ordered monoid (M;+; 0;�) in an
unique way (de�ning a � b i� a+ b = b for a; b 2M). See [KS86].

204 Vaida D.: Notes on Partially-Ordered Structures in Computer Science ...



Corollary 5. A partially-additive a-idempotent hemiring (R;+; 0; �) - not nec-
essarily associative - can be ordered up to a positive pa-ordered hemiring
(R;+; 0; �;�) in an unique way.

The previous results provide extensions wrt [KS86] and [JG92] as indicated.

Proposition6. If (M;+; 0) is a partially-additive commutative idempotent
monoid and a; b 2 M then a + b 2 M exists i� 9c 2 M such that a; b � c
and in this case a+ b = sup(a; b) = a _ b.

See again [JG92], p. 205, proposition 18.18.

Note.We can prove a criterion for a-idempotency: for (R;+; �; 1) if (R;+) is
a semigroup, (R; �; 1) is a groupoid with identity 1 and if 1+r is an unit, 8r 2 R,
then n1 = m1, for some n;m 2 N , n > m implies a-idempotency (see [FS66] for
a particular case).

Proposition7. If R is a pa-hemiring - not necessarily associative - then for
any a 2 R m(multiplicatively)-idempotent, Sa = fs 2 R j 0 � s � ag is a
subhemiring of R such that Sa = (Sa;+; 0; �;�; a) is a bounded upper semilattice.

See [JG92], p. 209, proposition 18.28 on additivity idempotent partially-
ordered semirings.

4 Some Related Order Conditions and Structures

It is well known that the lattice of an l-group is (automatically) distributive
[GB73], [LF63]. We obtain the following extension in the commutative case.

Proposition8. If (G;+;_;^)is a commutative lattice-ordered grupoid (not nec-
essarily associative or with neutral element) with the cancellation property then
the support lattice is distributive.

An important identity used in Fuzzy Modeling - also Maxmin algebras
[CG91], [JG92] and assumed by G.Ciobanu [CD85] in his de�nition of the con-
sidered family of lattice-ordered semigroups - can be obtained in rather general
conditions.

Proposition9. If (S;+;_;^) is such that (S;+) is a commutative groupoid,
(S;_;^) is a lattice and such that (S;+;^;_) is lattice-ordered then

x+ y = (x ^ y) + (x _ y);8x; y 2 S:

The relevance of the previous identity has been noticed [CD85]. If (S;+;_;^)
is a lattice-ordered groupoid satisfying this identity then S is commutative. If S
is cancellative then (S;_;^) is distributive.

The next conclusion relates to orthogonality and therefore to decomposing
an f -ring or semiring into subdirectly irreducible factors.

Proposition10. If (M;+; 0;^;�) is a lower semilattice-ordered monoid then
a ^ b = 0 implies a ^ (b+ c) = a ^ c, for a; b; c 2M and c � 0.

205Vaida D.: Notes on Partially-Ordered Structures in Computer Science ...



A semiring R is called Gelfand [JG92] if 1 + r is an unit, i.e., (1 + r)�1 2
R;8r 2 R.

A �-algebra is an Archimedean Riesz space that is an l-ring with an identity
element 1 that is weak order unit, i.e., 1 ^ x = 0 implies x = 0. We have the
following su�cient condition.

Proposition11. If (S;+; 0; �; 1;�;^) is a partial structure such that (i)
(S;+; 0;�) is a partially-ordered groupoid with neutral element 0, (ii) (S; �; 1;�)
is a partially-ordered monoid with identity 1 > 0, (iii) every element 1 + u,
u � 0, is an unit and (iv) (S;�;^) is a lower semi-lattice then x^y = 0 implies
xy = 0.

J.S.Golan [JG92] de�nes the lattice-ordered semiring with the additional
conditions x+ y = x_ y and x � y � x^ y following the model of the ideal theory
for rings. We do not assume these restrictions. Results of the type previously
illustrated converge to an extension to the noncommutative case of a theorem
of F.A.Smith [FS66].

Notation. For a semiring R we de�ne the set

K(R) = fx 2 R j x+ a = x+ b =) a = bg:

If R is a lower semilattice-ordered semiring and A � R then the set

ort(A) = fx 2 R j x ^ a = 0;8a 2 Ag

is called the orthogonal complement of A.

Proposition12. If (R;+; 0; �; 1;^) is a lower semilattice-ordered Gelfand
semiring and if the order is s-order then R is the direct sum of K and ort(K)
i� the set

U = ft 2 R j 9k 2 K : t = 1 ^ kg

has a supremum k0 = sup(U) 2 K (K = K(R)).

The proof is omitted with excuses; it has some chapter-like length.

Proposition13. If R is a lower semilattice-ordered semiring such that 1+ r is
an unit, 8r 2 R+, 1 > 0 - not necessarily commutative wrt addition or with 0
annihilator - then R is an f-semiring (in the same form as for l-rings, i.e., i�
a ^ b = 0 and c � 0 then a ^ bc = a ^ cb = 0).

Proof. We have 0 � a ^ bc � (a ^ b)(1 + c). 2

5 Sum-Ordering

Proposition14. If (M;+; 0) is a commutative pa-monoid then the following
two conditions are equivalent:

(1) M is s-ordered;
(2) If a; b; c 2M satisfy the equality a = a+ b+ c, then a = a+ b.

See [JG92], p. 209, proposition 18.30 on semirings.
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Proposition15. Let R be a zerosumfree pa-semiring, not necessarily associa-
tive, with 0 annihilator and � its natural quasi-order.

If every element in R�f0g admits a left inverse in R then R is a pa-ordered
semiring wrt its natural quasi-order.

Proof. If a � b and b � a, 9c; d 2 R so that b = a+ c and a = b+ d. Since R
is zerosumfree if a = 0 then b = 0.

Assume now a 6= 0. Therefore 9a�1 2 R (left inverse) with

a�1b = 1 + a�1c and 1 = a�1b+ a�1d (�)

Consequently,
1 = (1 + a�1c) + a�1d = 1 + a�1c+ a�1d

by the associativity of partial addition. Let e = a�1c + a�1d (e exists in R).
From (�) follows 1 + e = 1. Let f 2 R with fe = 1 and therefore f + 1 = f .

We have
1 = f(a�1c+ a�1d) = f(a�1c) + f(a�1d) =

= (f + 1)(a�1c) + f(a�1d) = 1 + a�1c = a�1b (see (*)):

The natural quasi-order is therefore an order and it is easy to check the com-
patibility with the partial addition and multiplication. 2

See [JG92], pg. 207, proposition 18.24 on zerosumfree division semirings.

6 Complemented Elements and the Multiplicative Ordering

We provide an approach to building order structures by using the multiplicative
structure and the complemented elements. We extend the method given in [JG92]
in the sense of considering pa-semirings and eliminating the condition that they
are zerosumfree.

Proposition16. If c(S) � S are such that
(i) re 2 S;8r 2 S and e 2 c(S),
(ii) 8r 2 S; 9er 2 c(S) with rer = r,
(iii) If e 2 c(S) then e2 = e,
(iv) If e; f 2 c(S) then ef 2 c(S),
(v) If e; f 2 c(S) then ef = fe

and such that
(vi) r(ef) = (re)f;8r 2 S and 8e; f 2 c(S),

then the relation r � s in S de�ned by 9e 2 c(S) satisfying r = se is a partial
order on S.

Proof. The expression of the form se with s 2 S and e 2 c(S) are meaningful
because of (i). The relation � is reexive because of (ii). For transitivity suppose
r � s and s � t, i.e., r = se and s = tf with r; s; t 2 S and e; f 2 c(S). Hence
r = (tf)e and because of (vi), r = t(fe). Since f; e 2 c(S) we have r = tg with
g = fe 2 c(S) because of (iv).

For antisymmetry assume r � s and s � r, i.e., r = se and s = rf , with
r; s 2 S and e; f 2 c(S). We have r = (rf)e. Because of (v) and (vi) we can write
r = (re)f . Because of (iii) and (vi) since r = se we have r = re and therefore
r = rf . But s = rf and therefore r = s. 2
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Proposition17. If R is a pa-semiring and comp(R) = fe 2 R j 9�e 2 R with e+
�e = 1; e�e = �ee = 0g is the center of R and if ef�e = 0, 8e; f 2 comp(R), then
c(R) = comp(R) satis�es the previous (i)� (vi) conditions.

Proof. (partial) Consider e; f 2 c(R) and 1 = e1+ �e = e(f + �f) + �e = ef + g,
with g = �e+ e �f (proving that g 2 R exists).

Further 0 = ef�e + efe �f = (ef)g and similarly g(ef) = 0. To obtain the
commutativity we proceed as following:

ef = 1(ef) = (f + �f)ef = f(ef) + �f(ef) = f(ef)

fe = (fe)1 = (fe)(f + �f) = (fe)f + f(e �f) = (fe)f = f(ef) = ef:

2

The center comp(Pfn) coincides with the unit interval (I� = [0; 1];�).

The given method for building up order structures by using complemented el-
ements in comp(R) was used in [PB99] for unifying the di�erent order structures
introduced and studied by P.Bottoni et al. [PB97] for visual images (VIs) on a
bi-dimensional media. The basic idea of [PB99] consists in an attempt to have
VIs handled as a new data type called Visual Data (VD) and in enabling VD
with an order structure following the method of the D.S.Scott's theory [DS76],
[GS90] and its application in pattern recognition [RB88].

7 Complements in Partial Semirings: Existence of Sums and

Commutativity

De�nition 18. For a pa-semiring - not necessarily commutative or associative
and without supposing that 0 is an annihilator - we de�ne

C1 = fr 2 R j 9r0 2 R; r + r0 = 1g

(r0 is called an a(additive)-complement of r).

Proposition19. Let R be a pa-semiring - not necessarily commutative or as-
sociative and without supposing that 0 is an annihilator. For n 2 N , n � 2, let
r1; : : : rn be in C1 such that rhri = 0, for any h 6= i. Then s = r1 + : : : rn exists
and is in C1.

Proof. The proof is by induction on n 2 N , n � 2.
Let r1; r2 2 C1, i.e., r1 + r01 = r2 + r02 = 1.
Hence

r1 = r1(r2 + r02) = r1r2 + r1r
0
2 = r1r

0
2;

r02 = (r1 + r01)r
0
2 = r1 + r01r

0
2:

One has
1 = r2 + r02 = r2 + (r1 + r01r

0
2) = (r1 + r2) + r01r

0
2:

which proves that r1 + r2 exists in C1 (and r01r
0
2 is an a-complement for r1 + r2

as well as r02r
0
1).

The inductive step should be obvious. 2
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Proposition20. Let R be a pa-semiring - not necessarily commutative - a 2
comp(R) and

Ca = fr 2 R j 9s = r0a; r + s = ag

such that 8r1; r2 2 Ca,

r1�a+ r2�a = 0 implies r1�a = r2�a = 0;

and dually (right/left)

�ar1 + �ar2 = 0 implies �ar1 = �ar2 = 0:

In these conditions,

aw = wa = w and �aw = w�a = 0;8w 2 Ca

and
ax = xa;8x 2 C1:

Remark. Obviously, 0; 1 2 comp(R) (one needs 0 to be an annihilator) and 0; a 2
Ca;8a 2 R. The previous proposition extends a result of [MS85] concerning
the center of a so-ring (a sum-ordered partial ring with an in�nitary addition
partially de�ned). The detailed comparison of the present results wrt [MS85]
remains outside present limits.

Proof. For w 2 R, we have

w = w(a+ �a)(a 2 comp(R)) = wa+ w�a:

Since w 2 Ca; 9w0 = w0a 2 R, such that w + w0 = a. Hence

0 = a�a = (w + w0)�a = w�a+ w0�a

which implies w�a = 0 and therefore w = wa and similarly �aw = 0 and w = aw.
Further if x 2 C1 then 9x0 = x01 2 R such that x + x0 = 1 and therefore

a = x1 + ax0 with x1 = ax, x1 2 Ca (for r = x1, 9s = ax0 2 R, such that
r + s = a). Similarly, a = x2 + x0a with x2 = xa, x2 2 Ca. We have

xa = x2 = ax2( since x2 2 Ca) = a(xa) =

= (ax)a = x1a = x1( since x1 2 Ca) = ax:

2

In the previous conditions, a2 = a; ab = ba and ab�a = 0;8a; b 2 comp(R): If
the complement exists then it is unique.

Acknowledgement I express my gratitude to: Prof. S. Rudeanu who had
explicitly expressed the interest for a monograph study on the semirings at the
Computer Science Conference INFO'85 (Romanian. University A.I. Cuza Iassy,
1985) attracting my sympathy for the �eld; late Prof. Gr. C. Moisil who in an oral
communication (1955) and afterwards in an article in Romanian (Com. Rom.
Acad.) has shown that the three problems of determining the existence of paths,
shortest/longest paths are particular cases of a matrix calculus over suitable
semirings (A. Wongseelashote)(1979); Prof. J.S. Golan and Prof. A. Mateescu
for our cooperation for the joint work (the monograph of the �rst quoted author
remaining a most useful source); Prof. F.A. Smith for a stimulating exchange of
views and ideas.

209Vaida D.: Notes on Partially-Ordered Structures in Computer Science ...



References

[MB] M. Benado, Les ensembles partiellement ordon�ees et le th�eor�eme de ra�nement
de Schreier, (Th�eorie des multistructures) Czechoslovak Math. Jour., vol. 5 (80),
no. 3, pp. 308-344.

[GB73] G. Birkho�, Lattice Theory, vol. XXV of Colloquium Publications. Providence
Rhode Island: American Mathematical Society, 3rd Edition (First edition in 1940),
3rd Edition, 2nd printing, 1973.

[RB88] R.E. Blake, The use of Scott's lattice theory as a basis for combining items of
evidence, Pattern Recognition Letters, pp. 151-155, March 1988.

[PB97] P. Bottoni, M.F. Constabile, S. Levialdi and P. Mussio, Looking for Order
in Visual Interaction, in TVL97 International Workshop on Theory of Visual
Languages. In conjuction with VL97, 27 September 1997, Capri, Italy.

[PB99] P. Bottoni, S. Levialdi and D. Vaida, Order Structures for Visual Data: An
Algebraic-oriented Approach to Visual Interaction, Department of Computer Sci-
ence, University of Rome 1 La Sapienza, 1999, preprint.

[CD85] G. Ciobanu and M. Deaconescu, On certain lattice-ordered semigroups, Semi-
group Forum, vol. 31 (1985) 367-371.

[CG91] R.A. Cuninghame - Green, Minimax Algebra and Applications, Fuzzy Sets and
Systems 41(1991), 251-267.

[MF96] M. Fedrizzi, A.G.S. Ventre and D. Vaida, Structures related to Fuzzy Logic
approach in modelling, in Proc. of WILF'95-Italian Workshop on Fuzzy Logic
1995, Napoli, Italy, 21-22 September 1995, A. Bonarini, D. Mancini, F. Masulli
and A. Petrosino, Eds., Singapore, World Scienti�c, 1996.

[LF63] L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, 1963 (Internat.
Series of Monographs on Pure and Applied Mathematics), vol. 28, I.N. Sneddon,
S. Ulam and M. Stark, Eds.

[JG81] J.A. Goguen, Concept representation in natural and arti�cial languages: ax-
ioms, extensions and fuzzy sets, in Fuzzy Reasoning and its Applications, E.H.
Mamdani and B.R. Gaines, Eds. pp. 67-115, London, Academic Press, 1981.

[JG92] J.S. Golan, The Theory of Semirings with Applications in Mathematics and
Theoretical Computer Science, vol. 54 of Pitman Monographs and Surveys in Pure
and AppliedMathematics, Longman House, Burnt Mill, Harlow, Essex CM20 2JE,
England: Longman Scienti�c & Technical, 1992.

[GM96] J.S. Golan, A. Mateescu and D. Vaida, Semirings and Parallel Composition of
Processes, Journal of Automata, Languages and Combinatorics, 1, 3 (1996), pp.
199-217.

[GS90] C.A. Gunter and D.S. Scott, Semantics Domains (chpt. 12), pp. 633-674, Hand-
book of Theoretical Computer Science, Elsevier Sci. Publ., 1990, J. van Leeuwen,
Ed.

[HW99] U. Hebisch and H.J. Weinert, Semirings-Algebraic Theory and Applications in
Computer Science, Singapore, World Scienti�c, 1999 (Series in Algebra, vol. 5).

[JJ96] J.A. Jorge and D. Vaida, Towards an Algebraic Approach to Adjacency Lan-
guages, Research Report INESC Lisboa preprint, January, 1996.

[KS86] W. Kuich and A. Salomaa, Semirings, Automata, Languages, EATCS Mono-
graphs on Theoretical Computer Science, Berlin, Springer-Verlag, 1986.

[MA86] E.G. Manes and M.A. Arbib, Algebraic Approaches to Program Semantics,
New York, Springer-Verlag, 1986 (series in Theoretical Computer Science, A sub-
series of Texts and Monographs in Computer Science, D. Gries, Ed.)

[MRS98] A. Mateescu, G. Rozenberg and A. Salomaa, Shu�e on trajectories: Syntactic
constraints, Theoretical Computer Science 197 (1998) 1-56 (Fundamental Study).

[AM89] A. Mateescu and D. Vaida, Discrete Mathematical Structures. Applications,
Bucharest, Romanian Academy Publ. House, 1989, in Romanian.

[DM86] D. Mundici, Interpretation of C�-algebras in Lukasiewicz sentential calculus,
J. Functional Analysis, 65 (1986) 15-63.

210 Vaida D.: Notes on Partially-Ordered Structures in Computer Science ...



[DN95] A. Di Nola, MV-algebras in the treatment of uncertainty, in Fuzzy Logic, J.
van Leeuwen and M. Roubens, Eds. pp. 123-131, P.O.Box 17, 3300 AA Dordrecht,
The Netherlands; Kluwer Academic Publishers, 1995.

[BP94] B. Plotkin, Universal Algebra, Algebraic Logic and Databases, vol. 272 of Math-
ematics and Its Applications, P.O.Box 17, 3300 AA Dordrecht, The Netherlands;
Kluwer Academic Publishers, 1994, M.Hazewinkel, Manag. Ed.

[DS76] D.S. Scott, Data Types as Lattices, SIAM J.Comp. 5, 522, 1976.
[FS66] F.A. Smith, A structure theory for a class of lattice ordered semirings. Fund.

Math. 59 (1966), pp. 49-54.
[MS85] M.E. Steenstrup, Sum-ordered Partial Semirings, University of Massachusetts,

February 1985 (PhD directed by E.G. Manes).
[WW92] W. Wechler, Universal Algebra for Computer Scientists, vol. 25 of EATCS

Monograph on Theoretical Computer Science, Springe-Verlag, 1992.
[YO87] R.R. Yager, S. Ovchinnicov, R. M. Tong and H. T. Nguyen, Eds. Fuzzy Sets

and Applications: Selected Papers by L.A. Zadeh, New York, John Wiley & Sons,
1992, A Wiley - Interscience Publications, 1987.

[LZ65] L.A. Zadeh, Fuzzy sets, Information and Control, no. 8, pp. 338-353, 1965.
[LZ92] L.A. Zadeh and J. Kacprzyk, Eds., Fuzzy Logic for the Management of Uncer-

tainty, New York, John Wiley & Sons, 1992.
[UZ81] U. Zimmermann, Linear and Combinatorial Optimization in Ordered Algebraic

Structures, Amsterdam, North-Holland Publishing Company, 1981.

211Vaida D.: Notes on Partially-Ordered Structures in Computer Science ...


