
Extractors for the Real World
1

Kundi Xue
(School of Computer and Information Sciences

Georgia Southwestern State University, Americus, GA, USA
Email: kx@canes.gsw.edu.)

Marius Zimand
(Department of Computer and Information Sciences

Towson University, Towson, MD, USA
and

Department of Computer Science
University of Bucharest, Bucharest, Romania

Email: mzimand@towson.edu)

Abstract: Extractors are a special type of binary graphs that can be utilized to
improve the quality of randomness sources that generate strings with small entropy. The
paper explores constructions of extractors that are practical and easy to implement.
Randomized and deterministic constructions are presented and compared with some
previously known constructions that achieve very good asymptotical performances.
One of our methods is shown to have a better behavior for reasonable values of the
involved parameters.

Key Words: Random bits, source of randomness, extractors, hash functions.

Category: F.2.2, G.2.2, G.3

1 Introduction

It is commonly accepted that random bits are a valuable computational resource.

Randomness has been increasingly utilized in many important areas of computer

science such as simulations, algorithms, network constructions, cryptography,

distributed computing, and others. Randomized algorithms may be faster, or use

less memory, less processors, or less network bandwidth, or they may be simpler

to implement. One major problem is the acquisition of random bits. In general

the applications assume the use of perfect random bits, that is a sequence of

independent bits each of them having an equal chance of being 0 or 1. In practice

programmers use pseudo-random number generators and what they get has no

randomness at all. There have been reports of algorithms giving quite di�erent

results under di�erent pseudo-random generators (e.g., see [FLW92]). This has

happened even for applications that do not seem to be too demanding about the

quality of random bits (e.g., simulation). In some areas, such as cryptography,

the quality of random bits is critical and the use of pseudo-random number

generators is not considered acceptable (see [ECS94]). A better alternative is to

1 C. S. Calude and G. S�tef�anescu (eds.). Automata, Logic, and Computability. Special
issue dedicated to Professor Sergiu Rudeanu Festschrift.

Journal of Universal Computer Science, vol. 6, no. 1 (2000), 212-225
submitted: 15/6/00, accepted: 2/11/00, appeared: 28/1/00 Springer Pub. Co.

use a natural source of randomness (Geiger counters and Zener diodes have been

the most commonly cited in this role). Such sources contain real randomness,

but not of suÆcient quality for sensitive applications.

An extractor is a combinatorial object that is used to improve the quality of a

random source. For the sake of illustration, let us suppose that we have a natural

source of randomness (e.g., a Geiger counter measuring radioactivity emissions)

that generates a string of n bits. We would like each string to have a probability

of 2�n of being produced (this means perfect randomness). However, random-

ness sources typically have some biases and they allocate more probability mass

to some strings (and of course less to some others). The exact qualitative for-

mulation of this phenomenon is captured by the concept of maximum mass of

a probability distribution (similar in many aspects to the entropy of the distri-

bution) and which is de�ned as follows. Let D be the probability distribution

associated to a randomness source for binary strings of length n. The maximum

mass of D is de�ned by max-mass(D) = maxD(x), where the maximum is taken

over all the strings of length n. Note that the bigger max-mass(D) is, the more

defective the source is. We can now de�ne the main object of interest in this

paper.

De�nition 1 An (n; k; d;m; �) extractor is a bipartite regular multigraph G =

(Vleft; Vright; E), where Vleft has 2
n nodes identi�ed with the strings of length n,

Vright has 2
m nodes identi�ed with the strings of length m, and with the degree

of each node in Vleft equal to 2d; it has the property that if x is chosen randomly

in Vleft according to a distribution D with max-mass(D) at most 2�k, and if y is

chosen uniformly at random among the 2d edges outgoing from x, the distribution

of the string (E(x; y); y) is �-close to the uniform distribution.2

In other words, we start with an n-bit string x provided by a defective source, we

process it using a perfectly random string y of length d to obtain a string E(x; y)

of length m, and then we append to it y (so that the good random strings are

not lost). What we obtain is very close (within distance �) to a perfectly random

string.

It is not surprising that extractors have attracted much attention. The main

objective has been the construction of extractors with better parameters. In

general, considering n and k as �xed, we want to make d and � small andm large.

The best results have been established by Zuckerman [Zuc97], Ta-Shma [TS96],

Trevisan [Tre99], and Raz, Reingold, and Vadhan[RRV99]. In the case in which

k =
(n), Zuckerman has constructed an extractor with d = O(log(n)+log(��1))

and m =
(n). Ta-Shma's extractor works for any k (of course, k � n) and

has d = poly(log(n) + log(��1)) and m = k. Trevisan's extractor works with

2 Two distributions D1 and D2 on the same sample space S are �-close ifP
x2S

jD1(x)�D2(x)j � �:

213Xue K., Zimand M.: Extractors for the Real World

k = n
(1) and has m = k
(1) and d = O(logn) for constant �. The extractor

of Raz, Reingold, and Vadhan works for any k and achieves m = k1�� and

d = O(log2(n) � log(1=�)= logk). These results are undeniably impressive and

they have lead to breakthrough results in some applications of extractors. On

the other hand, these extractors are the result of a sophisticated amalgamation

of some more basic extractors and of some other combinatorial objects and, as

a consequence, the hidden constants appear to be very large. Also, while the

computation of E(x; y) is doable in polynomial time in all the constructions

cited above, they are by no means practical.

We investigate here constructions of extractors that are simple, eÆcient, easy

to program, and whose parameters are good in a realistic setting, this meaning

for reasonable values of n and m such as n= 1024, 512, or 256 and m = 512,

256, or 128, which in our opinion should be interesting in practice. We �rst

observe that random bipartite graphs of a certain type are with high probability

good extractors. The drawback is that checking if a graph is an extractor is NP

complete and thus we cannot obtain any guarantee about the quality of such an

extractor. We next show that a random bipartite graph of another type meets

with high probability a condition that can be checked in polynomial time and

that is suÆcient to make the graph a good extractor. However, in practice, the

condition can be checked only for small values of n and m. Next we consider

deterministic constructions. A main ingredient in many of these constructions

is the utilization of hashing functions with small collision error. Many hashing

functions with 0 collision error are known, but, in this setting, the challenge

is to �nd hashing functions that can be speci�ed with a small number of bits,

because the length of the hashing function is exactly the parameter d in the

de�nition of an extractor. With the issue of practicality in mind, we design a

new family of hashing functions that are speci�ed with d = 2m(log(n=(2m)) +

1=2) bits, have � � 2�m collision error, and have an eÆcient implementation.

They yield immediately an (n; k; d;m;
p
�+ 2�(k�m)) extractor.We compare our

construction to one of Srinivasan and Zuckerman [SZ94] which has been used as

a basic element in Zuckerman's and Ta-Shma's constructions cited above. While

asymptotically somewhat weaker, for reasonable values of n and m, our hashing

functions need a number of random bits that is close and in many cases even

smaller than the requirements in [SZ94]. Our method is easy to implement and

from this point of view is vastly superior to the other method.

2 Randomized constructions

One possibility is to do a randomized construction. This is a consequence of the

following result. (Similar results for a related type a graphs - dispersers - have

been established by Sipser [Sip86].)

214 Xue K., Zimand M.: Extractors for the Real World

Proposition1. Let us consider the family G of graphs G of the form G =

(Vleft; Vright; E), with jVleftj = N = 2n; jVrightj = M = 2m and degree D =

2d = n � ��2; where m = �n for some � < 1: Then, with high probability, a

randomly chosen graph from G is an (n;m; d;m; �)-extractor.

Proof. Since E(x; y) and y are chosen independently, it is enough to show that

the distribution of E(x; y) is �-close to the uniform distribution when x is chosen

from Vleft according to a distribution D` with max-mass(D`) � 2�m and y is

chosen uniformly at random from f0; 1gd. It can be shown that we can consider

a at distribution in the role of D`, i.e., we can consider that D` assigns 2
�m

probability mass to 2m nodes from Vleft and zero probability mass to the rest

of the nodes. Thus, it remains to show that, with high probability, for any set

A` of M nodes from Vleft, the distribution of E(x; y) is �-close to the uniform

distribution, when x and y are chosen randomly from A` and respectively f0; 1gd.
Let us denote the above event by GOOD. E(x; y) is �-close to the uniform

distribution if for all subsets Ar of Vright,����Prob(E(x; y) 2 Ar)� jArj
jVrightj

���� < �:

If the above relation holds for a set Ar, then it also holds for its complement.

So, it is enough to restrict our attention to sets Ar with jArj �M=2:

Let us choose a subset A` � Vleft with jA`j = M and a subset Ar � Vright
with jArj = P �M=2. For each x 2 A` and y 2 f0; 1gd, let us call E(x; y) to be

a throw. Then Prob(E(x; y) 2 A) is equal to (number of throws that hit Ar)/

(numbers of throws). The probability that a throw hits Ar is P=M and there

are MD throws. Let Xi, i = 1; : : : ;MD, be a random variable, which is 1 if the

i-th throw hits Ar, and 0 otherwise. Let

S =
MDX
i=1

Xi:

Since the variables Xi are independent, the Cherno� bound yields

Prob

����� S

MD
� P

M

���� > �

�
< 2e�2�2MD

= 2e�2nM :

The second line is due to the fact that D = n � ��2: A` can be chosen in
�
N
M

�
ways, and Ar can be chosen in

�
M
P

�
ways. Thus the probability that there is some

A` and some Ar as above such that the probability of a throw from A` hitting

Ar is not within � distance from the probability of Ar is bounded from above by�
N

M

��
M

P

�
2e�NM �

�
eN

M

�M �
eM

P

�P
� e�2NM

215Xue K., Zimand M.: Extractors for the Real World

< eM+P � 2M logN � 2�M logM � 2P logM � e�2nM

< e�(2nM+M logM�M�P�M logN�P logM)

<<
1

M2
:

Since P is chosen from f1; : : : ;M=2g, the complement of GOOD has probability

much less than (M=2) �M�2 << 1:

Thus it is enough to link randomly each node from Vleft to D nodes in Vright
and the graph that is obtained is with high probability a pretty good extractor.

Unfortunately, if we want to be guaranteed that the random outcome is indeed

an extractor, then we have a problem: checking whether a graph is an extractor is

NP-complete and the problem seems to be intractable even for moderate values

of n and m.

Proposition2. Checking whether a graph is an extractor is NP complete.

Proof. We reduce the Regular Matcher problem to \Checking whether a bipartite

graph is an (n; k; d;m; 1=p) extractor." The Regular Matcher problem has been

shown to be NP complete in [BKV+81] and is de�ned as follows:

Input: A bipartite graph G = (V1; V2; E) with jV1j = jV2j = 2M .

Question: Is it the case that for any S � V1, jSj = M , there exists T � V2
such that jSj = jT j and there is a matching between S and T ?

We will use the fact that a bipartite graph G = (V1; V2; E) with jV1j =
jV2j = 2M is a regular matcher if and only if for each S � V1 with jSj = M ,

j� (S)j � jSj, where � (X), denotes the set of nodes adjacent in G to the nodes

in the set X .

The reduction works as follows. Let G = (V1; V2; E) be a bipartite graph

with jV1j = jV2j = 2M . We can assume that G is regular, since otherwise we

can increase the number of outgoing edges from a node x 2 V1 by adding some

multiple edges outgoing from x (i.e., if (x; y) is an existing edge, we add some

copies of it.) Let t be the degree of each node in V1. We build a bipartite graph

G0 = (V 0
1 ; V

0
2 ; E

0) as follows: V 0
1 = V1; V

0
2 = V2 [W , where W is a set of new

nodes and jV 0
2 j = tM +1; and E0 = E. We show that G0 is a (2M; logM; t; tM +

1; 2(1�M=(tM + 1))) extractor if and only if G is a regular matcher.

Let G be a regular matcher and suppose that G0 is not an extractor of the

required type. Then there is a distribution D on V1 with max-mass(D) � 1=M

such that dist(E(D;Ut); UV 0

2
), the distance between the distribution E(D;Ut)

and the uniform distribution UV 0

2

on V 0
2 , is greater than 2�, where � = (1 �

M=(tM+1)). (E(D;Ut) is the distribution induced on V 0
2 by choosing randomly

according to D a node in V1 and then following the i-th outgoing edge with i

chosen uniformly at random from T = f1; : : : ; tg): It can be shown that D can

be taken to be a at distribution, i.e., there is a set X � V1 with jX j =M such

216 Xue K., Zimand M.: Extractors for the Real World

that D assigns 1=M probability mass to the elements in M and 0 probability

mass to the nodes in V1 �M . Let us denote E(D;Ut) by D1 and UV2 by D2. It

is easy to see that

dist(D1; D2) = 2(ProbD2
(A)� ProbD1

(A));

where A = fx : D2(x) > D1(x)g (this holds for any distributions D1 and D2).

The distribution D1 either places zero probability mass on an element in V 0
2 or

else it places probability mass at least

1

jX jjT j =
1

tM
>

1

jV 0
2 j
:

It follows that there is a set K � V 0
2 such that

ProbD1
(K) = 0

and

ProbD2
(K) > �:

Consequently, jKj > �jV2j and � (X) \K = ;: Then,

� (X) < (1� �)jV 0
2 j =

M

tM + 1
(tM + 1) =M = jX j;

which contradicts the fact that G is a regular matcher.

Conversely, suppose G0 is an extractor with the required parameters. If G is

not a regular matcher, then there is X � V1, jX j =M , and j� (X)j < jX j =M:

Let H = V 0
2 � � (X): Then

jH j > tM + 1�M = �jV 0
2 j:

Thus,

ProbUV 0
2

(H) > �

and

ProbE(UX ;Ut)(H) = 0;

where UX is the uniform distribution on X . This contradicts the fact that G0 is

an extractor with the required parameters.

Let us therefore explore other possibilities. Hash functions are a key ingredi-

ent in many of the known constructions of extractors. The basic technical tool

in these constructions is the leftover hash lemma (see [ILL89], [Nis96]). We shall

use a variant of it. First we need some de�nitions.

De�nition 3. Let H be a family of functions h : f0; 1gn ! f0; 1gm. We say that

H has � collision error if for all x1 6= x2, Probh2H(h(x1) = h(x2)) � (1+ �)2�m.

217Xue K., Zimand M.: Extractors for the Real World

De�nition 4. The collision probability of a distribution D on f0; 1gn is

ProbD(X = Y) =
P

x2f0;1gn D
2(x); where X and Y are independent random

variables having distribution D.

The following facts are well known. We include their proofs for completeness.

Lemma5. Let D be a distribution on f0; 1gn with collision probability at most

2�n(1 + �2). Then D is �-close to the uniform distribution on f0; 1gn:
Proof. .

X
x2�n

jD(x) � 2�nj �
p
2n
sX

x2�n

(D(x) � 2�n)2 (Cauchy-Schwartz inequality)

=
p
2n
sX

x2�n

D2(x) +
X
x2�n

2�2n � 2 � 2�n
X

x 2 �nD(x)

�
p
2n
p
2�n(1 + �2)� 2�n = �:

Lemma6. Let D be a distribution on f0; 1gn with max-mass(D) = 2�k: Then

the collision probability of D is upper bounded by 2�k:

Proof. The collision probability of D is
P

x2�n D2(x): Since
P

x2�n D(x) = 1

and D(x) � p=2n, this expression is maximized for distributions D allocating

p=2n probability mass to 2n=p elements in �n and 0 to the rest of the elements.

In this case, the collision probability is 2n=p:

The following is a variant of the left-over hash lemma.

Lemma7. Let H be a family of hash functions h : f0; 1gn ! f0; 1gm with �

collision error. Then the distribution of (h(x); h), when x is chosen from f0; 1gn
according to a distribution with max-mass � 2�k and h is chosen uniformly at

random in H, is
p
�+ 2�(k�m)-close to the uniform distribution.

Proof. We evaluate the collision probability of (h(x); h).

Probx;h;x0;h0((h(x); h) = (h0(x0); h0))

= Probh;h0(h = h0)Probx;x0;h(h(x) = h(x0))

=
1

jH j (Probx;x0(x = x0) + Probx;x0;h(h(x) = h(x0) j x 6= x0)): (1)

The �rst term is bounded by 2�k (we have used the hypothesis on the maximum

mass of the distribution of x and Lemma 6). We evaluate the second term.

218 Xue K., Zimand M.: Extractors for the Real World

Probx;x0;h(h(x) = h(x0) j x 6= x0)

=
X
u6=u0

Probh(h(u) = h(u0))Probx;x0(x = u and x0 = u0 jx 6= x0)

� (1 + �)2�m
X
u6=u0

Probx;x0(x = u and x0 = u0 j x 6= x0) = (1 + �)2�m:

We have used the fact that H has � collision error. It follows that equation (1)

is bounded from above by

1

jH j (2
�k + (1 + �)2�m) =

1

jH j � 2m (1 + 2�(k�m) + �):

Taking into account Lemma 5, the conclusion follows.

It turns out that a random regular bipartite graph yields with high proba-

bility a family of hash functions with small collision error. More precisely, the

following theorem holds.

Theorem8. Let G = (V1; V2; E) be a random regular bipartite graph with the

left-hand side V1 = f0; 1gn, the right-hand side V2 = f0; 1gm, and degree D =

2d = 9n �2m �1=(�2): For each h 2 f0; 1gd we de�ne a hash function h : f0; 1gn !
f0; 1gm by h(x) = E(x; h), where E(x; h) is the node from V2 that is obtained

from x following the edge labeled with h. Let H be the family of functions h.

Then with probability of G at least 1� 2�n, H has � collison error.

Proof. For �xed a; a0 2 f0; 1gn, with a 6= a0, and for each h 2 f0; 1gd, let Xh be

1, if E(a; h) = E(a0; h), and 0, otherwise. Clearly, Prob(Xh = 1) = 2�m and the

random variablesXh are independent. By Cherno� bounds, ProbG((
P

Xh)=D �
2�m(1+ �)) � e�(1=3)��2�D�2�m < 2�3n�1: Thus, the fraction of edges h such that

E(a; h) = E(a0; h) is � 2m(1 + �), only with probability of G less than 2�3n�1:

The probability that there is a pair a; a0 as above is less than 2�(n+1). The

conclusion follows.

Thus, if we build D = 9n �2m �1=(�2) random functions h : f0; 1gn ! f0; 1gm
we obtain a family H that, with high probability, can be used to de�ne a good

extractor. Calculating the collision error of H can be done in time polynomial

in N = 2n (the number of nodes in V1), M = 2m (the number of nodes in V2),

and ��1: Thus, it seems that one has to repeatedly build families H of random

functions and check if the family has the desired collision error. One may hope

to fall upon on a good family H even when trying a smaller D than the one

prescribed by Theorem 8. Unfortunately, the time for calculating the collision

error is quadratic in 2n and, consequently, this operation can be performed only

for quite small values of n. Also, in our experiments, smaller values of D did not

219Xue K., Zimand M.: Extractors for the Real World

produce a reasonable � (i.e., in the order of 2�m). In our experiments we have

used the collection of random bits provided by Marsaglia [Mar96]. Marsaglia has

produced high-quality random bits using a combination of random sources (three

sources of electronic white noise) and pseudo-random number generators. The

bits have passed the state-of-the-art tests of randomness. These bits are avail-

able in form of a CD-ROM (or they can be downloaded from the web [***96])

containing sixty 10-megabyte �les. We have used these bits to obtain the families

H of random functions and then we have calculated the collision error. Some

of the (disappointing) results are given in Table 1 (time represents the running

time for calculating � on a Pentium 200 MHz machine).

n m D � time (in sec.)

7 4 8000 0.164

7 4 10000 0.136

8 5 8192 0.273 58299

8 5 12000 0.216 84220

Table 1: Calculation of the collision error for a random family of hash functions

3 Deterministic constructions

Let us turn to deterministic constructions. As we have mentioned in the Intro-

duction, the best constructions known at this moment are not practical. A basic

element in many of these constructions is a simpler extractor designed by Srini-

vasan and Zuckerman [SZ94], which is based on a family of hash functions. They

have constructed such a family H of functions h : f0; 1gn ! f0; 1gm, where each
h is speci�ed by d = 2(log(n+log(m))+log(m)+2m+2 log(��1)) bits, that has �-

collision error. By Lemma 7, this immediately yields an (n; k;m; d;
p
�+ 2�(k�m))

extractor. For the sake of comparing with the method that we have developed

and which will be described later, we describe the construction of Srinivasan and

Zuckerman. Their method relies on a set of \almost k-wise independent random

variables" constructed by Alon et al. [AGHR92].

Input: n;m and �.

Step 1. Choose two strings x and y of length r, with

r � log(n+ logm) + log(m) + 2m+ 2 log(1=�):

Also, r should be a power of two. The two strings x and y de�ne a hash function

h from the family H .

220 Xue K., Zimand M.: Extractors for the Real World

Step 2. Construct the string

R = (x � y) Æ (x2 � y) Æ : : : Æ (xm(n+log(m)) � y);

where the exponentiations are done in the �eld GF (r), � denotes inner product
modulo 2, and Æ denotes concatenation.
Step 3. Let L be the parity check matrix of BCH codes, of sizem(n+logm)�2nm:
In a more detailed manner, L is de�ned as follows. Let u be the smallest integer

so that

2u � 2nm+ 1:

Let x1; : : : ; x2u�1 be the nonzero elements of the �eld GF (2u). Using the stan-

dard representation of GF (2u), we view each xi as a column vector with u binary

entries. Let t be the smallest integer such that 1 + ut � m(n+ logm): Then

L =

0
BBBBBB@

1 1 : : : 1

x1 x2 : : : x2u�1

x31 x32 : : : x32u�1
...

x2t+1
1 x2t+1

2 : : : x2t+1
2u�1

1
CCCCCCA

The hashing function h : f0; 1gn ! f0; 1gm is de�ned by

h(00 : : : 0| {z }
n

) Æ h(00 : : : 1| {z }
n

) Æ h(11 : : : 1| {z }
n

) = R � L:

(In fact, to be accurate, in the right hand side we take only the �rst 2nm entries

of R �L which will represent the concatenation of all the hashed via h images of

the strings in f0; 1gn:)
The family H of these hashing functions has � collision error.

Since the matrix L has at least 2nm columns, it cannot be calculated ex-

plicitly except for very small values of n and m. However, note that in order to

calculate h(a), for some a 2 f0; 1gn, it is not necessary to have the whole L. We

split the columns of L into consecutive blocks of m columns and we denote by

slice(a) the a-th block. Then h(a) = R � slice(a). Thus, it is enough to calculate

the a-th block. However, this still requires the calculation of an m(n+logm)�m
matrix, which is a very time consuming operation that has to be performed each

time one hashes a point a.

We consider a new family H of hash functions h : f0; 1gn ! f0; 1gm having

� = (logn� logm)2�m � 2�3m

221Xue K., Zimand M.: Extractors for the Real World

collision error. A function h in the family is speci�ed by a number of bits equal

to

Æ = 2m � (log(n=(2m)) + 1=2):

Again, by Lemma 7, this immediately yields an (n; k;m; Æ;
p
�+ 2�(k�m)) ex-

tractor. The description �ts into a few lines:

Input: n;m.

Step 1. Let s = log(n=(2m)): The hash function h is given by s + 1 strings,

y1; : : : ; ys and z, where each yi has length 2m and z has length m. The string

a of length n that will be hashed is viewed as a polynomial pa of s variables, of

degree one in each variable, over the �eld GF (22m): In this step, we calculate

pa(y1; : : : ; ys):

Step 2. The output of the �rst step gives the two coeÆcients of a linear function

l(x) = cx+ d over GF (2m): We output l(z) which represents h(a).

Let us prove that this construction achieves the claimed performance.

Theorem9. The family H of hash functions h : f0; 1gn ! f0; 1gm de�ned

above has � = (logn� logm)2�m � 2�3m collision error.

Proof. Let k = 2m and y = (y1; : : : ; ys). In the �rst step, we take the point

a 2 f0; 1gn that will be hashed and we split it into 2s substrings a1; : : : ; a
2s ,

each of size k. These substrings de�ne the polynomial

pa(x1; : : : ; xs) = a0 + a1x1 + : : : a2sx1 : : : xs

of degree one in each variable. For ai 6= aj , let

Col(i; j) = fy 2 f0; 1gsk : pai(y) = paj (y)g:

By induction on s, it can be shown that

jCol(i; j)j � sKs�1 �Ks�2; for s � 2;

where K = 2k: Therefore,

Prob(y 2 Col(i; j)) � sKs�1 �Ks�2

Ks
=

s

22m
� 1

24m
: (2)

In the second step, pa(y) is divided into 2 blocks, c and d, each of length m,

and we calculate cz + d in GF (2m). Let us denote c by p1a(y) and d by p2a(y).

The collision error is given by

max
a1 6=a2

Probh=(y1;:::;ys;z)(h(a1) = h(a2)):

222 Xue K., Zimand M.: Extractors for the Real World

For any pair a1 6= a2,

Probh=(y1;:::;ys;z)(h(a1) = h(a2)) =

Probh=(y1;:::;ys;z)(pa1(y) = pa2(y)) +

Probh=(y1;:::;ys;z)(p
1
a1(y)z + p2a1(y) = p1a2(y)z + p2a2(y) j pa1(y) 6= pa2(y)):

From (2), the �rst term is bounded by s � 2�2m� 2�4m: For the second term,

it is enough to observe that a non-null polynomial degree of degree at most one

has at most one root. It follows that the second term is bounded by 2�m: Thus,

for each a1 6= a2,

Probh=(y1;:::;ys;z)(h(a1) = h(a2)) � s2�2m � 2�4m + 2�m

= 2�m(1 + s2�m � 2�3m);

and thus the collision error is bounded by s2�m � 2�3m:

It is noteworthy the following twist of roles in comparison with traditional

hashing methods: the point that is hashed provides a polynomial function (pa)

and the hashing function gives the elements that are mapped via this function.

Even if asymptotically somewhat weaker, for realistic values of n and m, our

construction needs a number of random bits that is close and in many cases

smaller than the requirements of the method in [SZ94] (see Table 2; the collision

error has been chosen to be the same for the two methods, namely (logn �
logm)2�m � 2�3m, which explains why the number of bits is not monotonically

increasing with m for the [SZ94] method).

n m no. of random bits

this paper [SZ94] paper

512 64 320 538

512 128 384 1056

1024 128 640 1054

1024 256 768 2084

2048 64 576 538

2048 128 896 1053

2048 256 1280 2082

2048 512 1536 4136

Table 2: Comparison of the number of random bits. The collision error is (logn�
logm)2�m � 2�3m.

223Xue K., Zimand M.: Extractors for the Real World

The main goal of the design has been to facilitate as much as possible the

implementation while maintaining competitive values of the parameters. For

example, the polynomials pa could have been taken of degree s in each variable.

This would have reduced the number of random bits but would have made the

evaluation of pa(y) more diÆcult. As a result, the running time outperforms

by far the method of [SZ94] (see Table 3; ; for the algorithm in [SZ94] we have

taken the collision error to be 0.01, while for our method the collision error is

(logn� logm)2�m � 2�3m, a value that is much smaller than 0.01).

n m running time for 10 iterations

this paper [SZ94] paper

256 64 48 ms 341750 ms

512 64 54 ms 895600 ms

1024 128 220 ms 8750230 ms

1024 256 390 ms 44376580 ms

Table 3: Comparison of running times. The collision error is (logn�logm)2�m�
2�3m.

References

[***96] ***. Marsaglia's random bits. ftp://ftp.cs.hku.hk/pub/random, 1996.

[AGHR92] N. Alon, O. Goldreich, J. H�astad, and R.Peralta. Simple constructions of
almost k-wise independent random variables. Random Structures and Al-
gorithms, 3(3):289{304, 1992.

[BKV+81] M. Blum, R.M Karp, O. Vornberger, C.H. Papadimitriou, and
M. Yannakakis. The complexity of checking whether a graph is a
superconcentrator. Information Processing Letters, 13(4,5):164{167, 1981.

[ECS94] D. Eastlake, S. Crocker, and J. Schiller. RFC 1750 - Randomness requiere-
ments for security. Internet Request for Comments 1750, December 1994.

[FLW92] A.M Ferrenberg, D.P. Landau, and Y.J. Wong. Monte Carlo simulations:
hidden errors from "good" random number generators. Physical Review
Letters, 69(23):3382{3384, 1992.

[ILL89] R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random generation from
one-way function. In Proceedings of the 21st ACM Symposium on Theory
of Computing, pages 12{24. ACM Press, 1989.

[Mar96] G. Marsaglia. Diehard. http://stat.fsu.edu/~geo/diehard.html, 1996.

[Nis96] N. Nisan. Extracting randomness: how and why. A survey. In Proceedings
of the 11th Structure in Complexity Theory Conference, pages 44{58, 1996.

[RRV99] R. Raz, O. Reingold, and S. Vadhan. Extracting all the randomness and
reducing the error in trevisan's extractor. In Proceedings of the 29th ACM
Symposium on Theory of Computing, pages 149{158. ACM Press, May 1999.

224 Xue K., Zimand M.: Extractors for the Real World

[Sip86] M. Sipser. Expanders, randomness, or time versus space. In Proceedings of
the 1st Structure in Complexity Theory Conference, pages 325{329. Springer
Verlag Lecture Notes in Computer Science #223, June 1986.

[SZ94] A. Srinivasan and D. Zuckerman. Computing with very weak random
sources. In Proceedings of the 34th IEEE Symposium on Foundations of
Computer Science, pages 264{275, 1994.

[Tre99] L. Trevisan. Constructions of near-optimal extractors using pseudo-random
generators. In Proceedings of the 29th ACM Symposium on Theory of Com-
puting, pages 141{148. ACM Press, May 1999.

[TS96] A. Ta-Shma. On extracting randomness from weak random sources. In
Proceedings of the 26th ACM Symposium on Theory of Computing, pages
276{285, 1996.

[Zuc97] D. Zuckerman. Randomness-optimal oblivious sampling. Random Struc-
tures and Algorithms, 11:345{367, 1997.

225Xue K., Zimand M.: Extractors for the Real World

