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1 Introduction

This is a paper both about algebraic speci�cation and veri�cation foundations
and methodologies. It belongs to a modern trend in algebraic speci�cation, called
behavioural speci�cation. There are several formalisms for behavioural speci�ca-
tion, our research lies within the so-called hidden algebra [10, 9] formalism. This
style of speci�cation is object-oriented as opposed to the data-oriented classical
algebraic speci�cation style. It has been argued that behavioural abstraction
might be practically very e�ective for specifying and verifying large systems (in
general software, but not only). The main reasons for this are the simplicity of
the object-oriented style of speci�cation (which is mainly due to the behavioural
abstraction mechanism in which the strict equality between the states of objects
plays a secondary rôle, the primary equality being observational3 ) contrasting
to the somehow tedious and low-level techniques required by the data-oriented

1 C. S. Calude and G. S�tef�anescu (eds.). Automata, Logic, and Computability. Special
issue dedicated to Professor Sergiu Rudeanu Festschrift.

2 First version of this paper appeared as Technical Report IS-RR-98-0017F, Japan
Advanced Institute for Science and Technology, ISBN 0918-7553, June 1998.

3 Two states of an object are observationally equal (or equivalent) if and only if any
application on any string of \methods" gets the same values for the \attributes".
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approach. In fact, it can be said that behavioural speci�cation realizes algebraic
speci�cation as a true speci�cation paradigm.

This work builds on classical hidden algebra which was started several years
ago by Joseph Goguen. We extend classical hidden algebra formalism by a re-
arrangement of the basic concepts. This re-arrangement of the hidden algebra
formalism permits an extension to novel concepts which bring new practical
strength to the speci�cation and veri�cation methodologies. The main novel con-
cept, which constitutes the core of this work, is that of behavioural coherence,
which is essentially a property of preservation of behavioural structures. We de-
�ne this concept and study its main denotational and computational4 properties,
and also show how the extension of hidden algebra with behavioural coherence
still accommodates the coinduction proof method advocated by classical hidden
algebra. The emphasis of this paper is however on the methodologies related to
behavioural coherence. We present the basic methodologies of behavioural co-
herence by means of examples actually run under the CafeOBJ system, including
many proofs with the system exiled to appendices.

Our extended hidden algebra formalism constitutes the semantic foundation
for the behavioural speci�cation paradigm as realized in the new object-oriented
algebraic speci�cation language CafeOBJ [6]. In fact, all concepts de�ned here
are faithfully reected by the CafeOBJ formal de�nition and were introduced in
a rather concise form in [6] which contains the formal de�nition and semantics
of the CafeOBJ. Therefore, this paper serves also as an introduction to advanced
behavioural speci�cation with CafeOBJ. Other important publications on be-
havioural methodologies for algebraic speci�cation in CafeOBJ include a general
survey [7] presenting both the basic methodologies and the object composition
ones, and [13] which focuses on the object composition methodology. In this con-
text let us also mention that our extended hidden algebra formalism is highly
convergent to the so-called \observational logic" of Bidoit and Hennicker [12].

Finally, let us enumerate several practical methodological bene�ts of be-
havioural coherence. The use of behaviourally coherent \methods" and \at-
tributes" for object speci�cation may result in big simpli�cations at the veri-
�cation stage, while keeping smooth computational characteristics. Behavioural
coherent \methods" and \attributes" can be also used e�ectively in a denota-
tional rôle. Another important application area is that of \hidden" constructors
on the states of objects, this methodology being particularly e�ective for spec-
ifying object non-determinism in a simple and elegant way. It should be noted
that this use of behavioural coherence puts hidden algebra beyond the power
of other behavioural speci�cation formalisms, such as the so-called \co-algebra"
[14].

1.1 Basic Algebra Concepts, Notations, and Terminology

In this section we review the basic concepts, notations, and terminology, which
constitute now the folklore of algebraic speci�cation. Although the hidden alge-
bra formalism accommodates well (and even gets more power from) the order-
sorted approach (see [3]), for reasons of simplicity of presentation, we develop
all formal de�nition and results in a many-sorted framework.5

4 Including a special concept of term rewriting emerging from our approach.
5 This will not prevent us to use sub-sorting in the examples.
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Given a sort set S, an S-indexed (or sorted) set A is a family fAsgs2S
of sets indexed by the elements of S. In this context, a 2 A means that a 2 As

for some s 2 S. Similarly, A � B means that As � Bs for each s 2 S, and an S-
indexed (or sorted) function f : A! B is a family ffs : As ! Bsgs2S . Also,
we let S� denote the set of all �nite sequences of elements from S, with [] the
empty sequence. Given an S-indexed set A and w = s1:::sn 2 S�, we let Aw =
As1 � � � � �Asn ; in particular, we let A[] = f?g, some one point set. Also, for an
S-sorted function f : A! B, we let fw : Aw ! Bw denote the function product
mapping a tuple of elements (a1; : : : ; an) to the tuple (fs1(a1); : : : ; fsn(an)).

A (n S-sorted) signature (S;�) is an S��S-indexed set � = f�w;s j w 2
S�; s 2 Sg; we often write just � instead of (S;�). Note that this de�nition
permits overloading, in that the sets �w;s need not be disjoint. Call � 2 �[];s a
constant symbol of sort s. A signature morphism � from a signature (S;�)
to a signature (S0; �0) is a pair (f; g) consisting of a map f : S ! S0 of sorts
and an S� � S-indexed family of maps gw;s : �w;s ! �0f�(w);f(s) on operation

symbols, where f� : S� ! S0� is the extension of f to strings6. We may write
�(s) for f(s), �(w) for f�(w), and �(�) for gw;s(�) when � 2 �w;s.

A �-algebra A consists of an S-indexed set A and a function A� : Aw ! As

for each � 2 �w;s; the set As is called the carrier of A of sort s. If � 2
�[];s then A� determines a point in As which may also be denoted A� . A �-
homomorphism from one �-algebra A to another B is an S-indexed function
h : A! B such that

hs(A�(a)) = B�(hw(a))

for each � 2 �w;s and a 2 Aw. (When n = 0, this condition just says that
f(A�) = B� .) A �-homomorphism h : A ! B is a �-isomorphism i� each
function hs : As ! Bs is bijective (i.e., one-to-one and onto, in an older termi-
nology).

Given a many sorted signature �, an S-indexed set X will be called a set
of variable symbols if the sets Xs are disjoint from each other and from all
of the sets �w;s. Given a set X of variable symbols, we let �(X) denote the
signature formed by adding the elements of X to � as new constants, and we let
T�(X) denote T�(X) viewed as a �-algebra. It is called the �-term algebra
or free �-algebra generated by X , and has the property that if � : X !
A is an valuation, i.e., a (S-sorted) function to a �-algebra A, then there
is a unique extension of � to a �-homomorphism �� : T�(X) ! A. (Strictly
speaking, the usual term algebra is not free unless the constant symbols in �
are mutually disjoint; however, even if they are not disjoint, a closely related
term algebra, with each constant annotated by its sort, is free.) Also, we let
T� denote the initial term �-algebra T�(;), noting that this means there is a
unique �-homomorphism T� ! A for any �-algebra A. Call t 2 T� a ground
�-term. When the unique �-homomorphism T� ! A is surjective, we call A a
reachable algebra. Thus, each element of a reachable algebra can be denoted by
a ground term. The �-terms (modulo renaming of the variables) can be regarded
as derived operations by de�ning the arity ar(t) for terms t by the following
procedure:

6 This extension is de�ned by f�([]) = [] and f�(ws) = f�(w)f(s), for w in S� and s
in S.
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- consider the set var(t) of all variables occurring within t,
- transform var(t) into a string by �xing an arbitrary order on this set, and
- �nally, replace the variables in the string previously obtained by their sorts.

If the arity of a term t is w, then for any �-algebra A we can de�ne the in-
terpretation of t as derived operation At : Aw ! As by At(a) = ��(t) where
� : var(t) ! A is the valuation corresponding to the string a 2 Aw.

A �-context c[z] is a �-term c with a marked variable z occuring only once
in c.

A conditional �-equation consists of a variable setX , terms t; t0 2 T�(X)s
for some sort s, and terms tj ; t

0
j 2 T�(X)sj for j = 1; :::;m. Such an equation is

generally written in the form

(8X) t = t0 if t1 = t01; :::; tm = t0m :

The special case where m = 0 is called an (unconditional) equation, writ-
ten (8X) t = t0. A ground equation has X = ;. A �-algebra A satis�es a
conditional equation, written

A j=� (8X) t = t0 if t1 = t01; :::; tm = t0m ;

i� for all valuations � : X ! A, we have ��(t) = ��(t0) whenever ��(tj) = ��(t0j)

for j = 1; :::;m. Given a set E of (possibly conditional) �-equations, we call any
�-algebra that satis�es E a (�;E)-algebra.

A �-congruence on a �-algebra A is an S-sorted family of relations, �s

on As, each of which is an equivalence relation, and which also satisfy the
congruence property, that given any � 2 �w;s and any a 2 Aw, then
A�(a) �s A�(a

0) whenever a �w a0.7 The quotient of A by �, denoted A=�,
has carriers (A=�)s = As=�s, which inherit a �-algebra structure by de�ning
A=��([a1]; : : : ; [an]) = [A�(a)], where � 2 �w;s and a 2 Aw, where [a] denotes
the �-equivalence class of a.

We now consider the logic of many sorted algebra, that is, rules for deduc-
ing new equations from old ones. Given a set E of (possibly conditional) �-
equations, we de�ne the (unconditional) �-equations that are derivable from
E recursively, by the following rules of deduction:

(1) Reexivity: Each equation (8X) t = t is derivable.
(2) Symmetry: If (8X) t = t0 is derivable, then so is (8X) t0 = t.
(3) Transitivity: If (8X) t = t0 and (8X) t0 = t00 are derivable, then so is (8X) t =

t00.
(4) Congruence: If (8X) ti = t0i is derivable, where ti; t

0
i 2 T�(X)si for i =

1; :::; n, then for any � 2 �s1:::sn;s, the equation
(8X)�(t1; : : : ; tn) = �(t01; : : : ; t

0
n) is also derivable.

(5) Substitutivity: Given (8Y ) t = t0 if t1 = t01; : : : ; tm = t0m in E and given a

substitution � : Y ! T�(X) such that (8X) ��(tj) = ��(t0j) is derivable for
j = 1; :::;m, then (8X) ��(t) = ��(t0) is also derivable.

7 Meaning ai �si
a0i for i = 1; :::; n, where w = s1 : : : sn and a = (a1; : : : ; an).

77Diaconescu R., Futatsugi K.: Behavioural Coherence ...



Given a set E of �-equations, let E denote the S-sorted set of pairs (t; t0) of
ground �-terms such that (8;) t = t0 is derivable from E. Then E is a �-
congruence by rules (1){(4). The following completeness result was �rst proved
by Goguen and Meseguer [11], although the unconditional one sorted form is
very well known, going back to Birkho� [2] in 1935:

Theorem1. Given a set E of (possibly conditional) �-equations, an uncondi-
tional �-equation is satis�ed by every (�;E)-algebra i� it is derivable from E
using the rules (1){(5).

Goguen and Meseguer [11] use the above to prove the following basic result:

Theorem2. The �-algebra T�;E = T�=E
 is an initial (�;E)-algebra, in

the sense that for any (�;E)-algebra A there is a unique �-homomorphism
h : T�;E ! A.

Of course, there are many other initial (�;E)-algebras, but they are all �-
isomorphic to this one.

Now we briey recall some basic rewriting concepts and notations. For sim-
plicity we restrict the discussion to the unconditional case. Given a signature �,
a �-rule is given by

(8) t -> t0

where t; t0 are �-terms such that var(t0) � var(t). A �-TRS8 is a �nite col-
lection of �-rules. Given a �xed TRS, then a �-term t0 rewrites (in one step)
to the �-term t1 i� there is a TRS-rule (8) t -> t0 such that t0 = c[��(t)] and
t1 = c[��(t0)] for some �-context (called rewrite context) c and some sub-
stitution �. This is denoted as t0 ! t1. The transitive-reexive closure of !
is denoted as

�
!. A TRS is (ground) conuent i� for any (ground) term t0,

if t0
�
! t1 and t0

�
! t2, then there exists t3 such that t1

�
! t3 and t2

�
! t3,

and it is (ground) terminating i� there are only �nite rewrite chains from
any (ground) term t. A term t is in normal form i� there is no rewrite from
t. When the TRS is conuent and terminating, then each term t has a unique

normal form nf(t) such that t
�
! nf(t).

Given a signature morphism � : � ! �0 and a �0-algebra A0, we can de�ne
the reduct of A0 to �, denoted �(A0) or A0j�, to have carriers A0

�(s) for s 2 S,

and to have operations �(A0)� for � 2 �w;s de�ned by �(A0)�(m) = A0
�(�)(m)

for m 2 A0
�(w). Also, given a �0-homomorphism h : A01 ! A02, we can de�ne

hj� : A01j� ! A02j� by (hj�)s = h�(s) for s 2 S.
Similarly, given a �-equation e of the form (8X) t = t0, we de�ne �(e) to be

the �0-equation (8X 0) �(t) = �(t0), where X 0 is the S0-indexed set, also denoted
�(X), with X 0

s0 =
S
�(s)=s0 Xs for s0 2 S0, and where � : T�(X) ! T�0(X0) is

the S-indexed function de�ned by viewing T�0(X0) as a �(X)-algebra using the
reduct construction given above, and then the initiality of T�(X).

An important property of these translations on algebras and equations under
signature morphisms is called the Satisfaction Condition, which expresses the
invariance of satisfaction under change of notation:

8 Abbreviation for term rewriting system.
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Theorem3. Given an signature morphism � : � ! �0, a �0-algebra A0, and
a �-equation e, then

�(A0) j=� e i� A0 j=�0 �(e):

This theorem was �rst proved in the original version of [8], and constitutes the
basic axiom of the so-called institutions, which have recently been emerging as
the mathematical structure underlying the modern level of algebraic speci�cation
theory.

2 Coherent Hidden Algebra

In this section we extend the hidden algebra formalism for behavioural spec-
i�cation (as de�ned in seminal papers such as [9, 10] and abbreviated here as
HA). Our extension yields a suitable framework for the development of the novel
concept of behavioural coherence, and also corresponds exactly to the semantics
of the behavioural speci�cation paradigm as realized in the algebraic speci�ca-
tion language CafeOBJ [6]. We refer to this extension as coherent hidden algebra
(abbreviated CHA).

Hidden algebra (formerly called \hidden sorted algebra") was invented by
Goguen as an extension of the (order sorted) equational logic formalism under-
lying the modern theory of abstract data types and, generally, constituting the
logical foundation for classical algebraic speci�cation. One of the early papers
which present hidden algebra is [9], while the basic reference for this area might
now be the survey [10]. An institution-independent approach to HA can be found
in [3]. Hidden algebra extends ordinary algebra with sorts representing states of
objects rather that data elements and also introduces a new concept of satisfac-
tion between models (algebras) and sentences, called behavioural satisfaction.

CHA extends HA by introducing explicit concepts of behavioural operation
and behavioural sentence. Because of behavioural sentences, CHA does not need
a special notation for behavioural satisfaction, that would be treated just as the
satisfaction of behavioural sentences. This has the advantage of a unitary institu-
tion for CHA with a unique satisfaction relation for both strict and behavioural
sentences and of allowing strict equations on hidden sorts.

De�nition 4. A CHA signature is a tuple (H;V;�;�b), where

{ H and V are disjoint sets of hidden sorts and visible sorts, respectively,
{ � is an (H [ V )-sorted signature,

{ �b � � is a subset of behavioural operations such that each � 2 �b
w;s

has exactly one hidden sort in w.

Notice that very often we will shorten the notation (H;V;�;�b) to (H;V;�),
or just �, when no confusion is possible.

From a methodological perspective, the operations in �b have object-oriented
meaning, � 2 �b

w;s is thought as an action (or \method" in a more classical
jargon) on the space (type) of states if s is hidden, and thought as observation
(or \attribute" in a more classical jargon) if s is visible. The last condition says
that the actions and observations act on (states of) single objects.
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De�nition 5. A CHA signature morphism � : (H;V;�;�b)!

(H 0; V 0; �0; �0b) is a signature morphism � ! �0 such that

(M1) �(V ) � V 0 and �(H) � H 0,

(M2) �(�b) = �0b and ��1(�0b) � �b,

These conditions say that hidden sorted signature morphisms preserve visibility

and invisibility for both sorts and operations, and the �0
b
� �(�b) inclusion

expresses the encapsulation of classes (in the sense that no new actions (methods)
or observations (attributes) can be de�ned on an imported class)9. However, this
last inclusion condition applies only to the case when signature morphisms are
used as module imports (the so-called horizontal signature morphisms); when
they model speci�cation re�nement this condition might be dropped (this case
is called vertical signature morphism).

Now, we turn our attention to models.

De�nition 6. Given a CHA signature �, the class of its models consists of all
�-algebras A.

De�nition 7. Given a CHA signature �, a behavioural context10 is any �-
context c[z] such that all operations above z in c are behavioural.

While ordinary satisfaction corresponds to reasoning about strict equality,
behavioural satisfaction corresponds to reasoning about behavioural equivalence,
which can be regarded as a looser form of equality. Behavioural equivalence is the
main concept underlying the behavioural abstraction mechanism of speci�cations
based on hidden algebra, hence it plays a central rôle in CHA.

De�nition 8. Given a �-algebra A, two elements (of the same sort s) a and a0

are called behaviourally equivalent, denoted a �s a
0 (or just a � a0) i�

Ac(a) = Ac(a
0)11

for all visible behavioural contexts c.

Remark that the behavioural equivalence is a (H[V )-sorted equivalence relation,
and on the visible sorts the behavioural equivalence coincides with the (strict)
equality relation.

The concept of behavioural equivalence leads also to a di�erent notion of
equation and satisfaction:

De�nition 9. Given a CHA signature �, a behavioural �-equation is a sen-
tence of the form

(8X) t � t0 if t1 �1 t
0
1; : : : ; tm �m t0m

where each �i is either = or � for all i 2 f1; : : : ;mg, all other symbols having
the same meaning as for ordinary equations.

9 Without it the Satisfaction Condition fails, for more details on the logical and com-
putational relevance of this condition see [9].

10 Notice that the CafeOBJ concept of \behavioural context" corresponds to \visible
behavioural context" in the sense of this paper.

11 Notice that this equality means an equality between functions Aw1w2
! As0 , where

c : w1sw2 ! s0 with w1; w2 2 (H [ V )� and s0 2 V .
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Now, we are ready to de�ne the notion of satisfaction for hidden algebra.

De�nition 10. Given a CHA signature � and a �-algebra A, a behavioural
equation (8X) t � t0 if t1 �1 t

0
1; : : : ; tm �m t0m is satis�ed (also denoted by

j=) by A i�

��(t) � ��(t0) whenever ��(ti) �i �
�(t0i) for all i 2 f1; : : : ;mg

for all valuations � : X ! A.

Note that the CHA satisfaction generalizes the HA behavioural satisfaction
[10, 9] since the satisfaction of (8X) t � t0 if t1 � t01; : : : ; tm � t0m corresponds
exactly to the HA behavioural satisfaction of
(8X) t = t0 if t1 = t01; : : : ; tm = t0m.

De�nition 11. Given a CHA signature � and a �-algebra A, a hidden con-
gruence is an equivalence relation � on A which is identity on visible sorts and
is a �b-congruence.

The following result constitutes the foundations for the coinduction [10]
proof method for hidden algebra. We do it here again, since the CHA formalism
is an extension of HA.

Theorem12. Given a CHA signature � and a �-algebra A, the behavioural
equivalence relation on A is the largest hidden congruence on A.

Proof. Consider a hidden congruence � on A. We have to prove that for any
elements a; a0 of the same sort h, a �h a

0 implies a �h a
0, i.e., Ac(a) = Ac(a

0) for
all visible behavioural contexts c. We prove this by induction on the length of
the context c. We may assume that h is hidden, otherwise the conclusion follows
directly from the de�nition of hidden congruences.

If the length of c[z] is 1, then c[z] is just of the form �(t; z) where � : vh! s
(with v 2 V � and h 2 H) is a visible sorted behavioural operation and t 2
(T�(X))v is a v-tuple of terms. Because � is a �b-congruence, we have that
Ac(x; a) = A�(At(x); a) � A�(At(x); a

0) = Ac(x; a
0) for any valuation x 2

Aar(t). Because � is a hidden congruence and the sort of � is visible we have
that A�(At(x); a) = A�(At(x); a

0), thus Ac(x; a) = Ac(x; a
0) for all x 2 Aar(t)

follows. Therefore Ac(a) = Ac(a
0) as functions Aar(t) ! As.

If the length of c is greater than 1, then there exists a visible behavioural
context c0 : wh0 ! s (with h0 2 H; s 2 V , and w 2 (H [ V )� of length smaller
than the length of c and a behavioural operation � : vh ! h0 (with v 2 V �

and h 2 H), such that c[z] = c0[�(t; z)] for t 2 (T�(X))v a v-tuple of terms.
Therefore, for all x 2 Aar(t) and y 2 Aw, Ac(y; x; a) = Ac0(y;A�(At(x); a))
and Ac(y; x; a

0) = Ac0(y;A�(At(x); a
0)). Because � is a hidden congruence,

A�(At(x); a) �h0 A�(At(x); a
0), and by the induction hypothesis we get Ac(a) =

Ac(a
0) as functions Aar(t);w ! As.
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3 Behaviourally Coherent Operations

3.1 The De�nition

De�nition 13. Given a CHA signature � and a hidden �-algebra A, an op-
eration � 2 � � �b is behaviourally coherent for A i� it preserves the
behavioural equivalence relation on A, i.e., if and only if

A�(a) �s A�(a
0) if a �w a

0

for all a; a0 2 Aw, where � 2 (� ��b)w;s.

Notice that the operations having only visible sorts in the arity are trivially
behaviourally coherent for any �-algebra A, so we will omit them from our
arguments.

Corollary 14. If all operations in ���b are behaviourally coherent, then � is
a �-congruence.

Corollary 15. Given a CHA signature � and a �-algebra A for which all op-
erations in � ��b are behaviourally coherent, there exists another �-algebra A
(called the behavioural image of A) such that

A j= (8X) t � t0 i� A j= (8X) t = t0

for all behavioural �-equations (8X) t � t0.

Proof. By Corollary 14, � is a �-congruence. Let A be the quotient algebra
A=�, and [ ] : A! A be the corresponding quotient algebra morphism.

First assume A j= (8X) t = t0. Let � : X ! A be an arbitrary valuation. By
hypothesis we have that (�; [ ])�(t) = (�; [ ])�(t0), which means [��(t)] = [��(t0)],
therefore ��(t) � ��(t0). This concludes that A j= (8X) t � t0.

Conversely, let A j= (8X) t � t0 and consider and arbitrary valuation

� : X ! A. There exists a valuation � : X ! A such that �; [ ] = �. We have

that �
�
(t) = (�; [ ])�(t) = [��(t)] = [��(t0)] = �

�
(t0), which concludes the proof of

A j= (8X) t = t0.

This result has a special signi�cance, since it can be generalized to any kind of
sentences. In this way, given a concept of sentence (which need not be equational,
it can be Horn clause, full �rst order, second order, etc.) we can de�ne on top of it
a concept of behavioural sentence with a corresponding notion of (behavioural)
satisfaction. This idea has been fully exploited in [3] for developing an institution-
independent theory of behavioural speci�cation generalizing the concrete hidden
algebra. We have all reasons to believe that this can be further developed in order
to incorporate CHA.

Related to above, it might be interesting to briey present the concept of
behavioural image of an algebra from a categorical perspective.
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Proposition16. Consider a hidden signature (H;V;�;�b), and let �0 be its
sub-signature without the non-behavioural operations having at least one hid-
den sort in the arity. Given a �-algebra A, we may consider the unique �0-
homomorphism h to the �nal �0-algebra in the sub-category of �0-algebras A0

with A0j�v = Aj�v (which always exists [3, 10]), where �v is the maximal visible
sub-signature �v � �. We factor h as e; i where e is surjective and i is an in-
clusion. Then, denote the image (target) of e as A0. A0 is an algebra which is the
quotient under behavioural equivalence of the reduct Aj�0 . If all operations from
� � �b are behaviourally coherent for A, then the quotient A0 can be uniquely
expanded to a �-algebra A which is a quotient of A. Then A is the behavioural
image of A.

3.2 Sound Deduction

In this section we show that in the presence of behavioural coherence, equational
deduction is sound for behavioural equivalence. This constitutes the basis for the
execution of languages implementing CHA; the next section is devoted to the
term rewriting-based operational semantics of CHA.

Theorem17. Given a set E of (possibly behavioural) equations for a hidden
signature �, the class of (�;E)-algebras for which all operations in � ��b are
behaviourally coherent is included in the class of (�;E)-algebras for which the
ordinary equational deduction rules are sound for behavioural equations.

Proof. First we will show that all equational deduction rules besides Congruence
are sound anyway. For Base this is obvious, and the soundness of rules (1){
(3) follow immediately from the fact that behavioural equivalence is indeed an
equivalence relation. We concentrate now on the Substitutivity rule.

Consider an algebra A, and a behavioural equation (since for ordinary equa-
tions the argument holds by the soundness of ordinary equational logic) (8Y ) t �
t0 if t1 � t01; : : : ; tm � t0m in E. Assume that for some substitution � : Y !
T�(X), (8X) ��(tj) � ��(t0j) is true for j 2 f1; : : : ;mg . We have to prove that

(8X) ��(t) � ��(t0) is also true. Pick up an arbitrary valuation  : X ! A.
Then for all j 2 f1; : : : ;mg we have that  �(��(tj)) �  �(��(t0j)) which means

(�; �)�(tj) � (�; �)�(t0j) for all j 2 f1; : : : ;mg. Because A j= (8Y ) t �
t0 if t1 � t01; : : : ; tm � t0m, it follows that (�; 

�)�(t) � (�; �)�(t0), thus
 �(��(t)) �  �(��(t0)).

Now, we focus on Congruence. We show that Congruence is sound whenever

all operations from � � �b are coherent. Assume (8X) ti � ti is true in
A for i = 1; :::; n. We have to prove that (8X) �(t1; : : : ; tn) � �(t01; : : : ; t

0
n)

is also true in A. Consider a valuation  : X ! A. Then  �(ti) �  �(t0i) for
i = 1; :::; n. Because � is coherent for A, we have that A�( 

�(t1); : : : ;  
�(tn)) �

A�( 
�(t01); : : : ;  

�(t0n)). By the homomorphism property of  �, we have that
 �(�(t1; : : : ; tn)) �  �(�(t01; : : : ; t

0
n)).

Corollary 18. Given a set E of (possibly behavioural) equations for a hidden
signature �, the class of reachable (�;E)-algebras for which all operations in
���b are behaviourally coherent is exactly the class of reachable (�;E)-algebras
for which the ordinary equational deduction rules are sound for behavioural sen-
tences.
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Proof. Consider a reachable (�;E)-algebra A. We will show that if Congruence

is sound, then all operations in � � �b are behaviourally coherent. Consider
such an operation � : w ! s and a; a0 2 Aw. Each component of either a or
a0 can be denoted by a ground term, therefore let a = At and a0 = At0 , with
t; t0 2 (T�)w. Then A j= (8;) t � t0 (notice that this is a �nite conjunction of
behavioural equalities indexed by w). Now, we have only to apply the hypothesis
for Congruence for �, i.e., A j= (8;) �(t) � �(t0), which means A�(a) � A�(a

0).

This Corollary constitutes the foundations for computing with behaviourally
coherent operations. The following section is devoted to this issue.

3.3 Behavioural Rewriting

The operational semantics of CHA requires a more sophisticated notion of rewrit-
ing which takes special care of the use of behavioural sentences during the rewrit-
ing process.

The following de�nition extends the concept of behavioural context with
behaviourally coherent operations.

De�nition 19. Given a CHA signature � and a �-algebra A, a behaviourally
coherent context for A is any �-context c[z] such that all operations above12

the marked variable z are either behavioural or behaviourally coherent for A.

Notice that any behavioural context is also behaviourally coherent.

Proposition20. Consider a CHA signature �, a set E of �-sentences regarded
as a TRS, and a �-algebra A satisfying the sentences in E. If t0 is a ground
term and for any rewrite step t0 ! t1 which uses a behavioural equation from E,
the rewrite context has a visible behaviourally coherent sub-context for A, then
A j= (8;) t0 = t1. If the rewrite context is behaviourally coherent for A, then
A j= (8;) t0 � t1.

Proof. We prove only the �rst case; the proof of the second case follows by
a similar argument. There exists a behavioural equation (8X) t � t0 in E
such that t0 = c[��(t)] and t1 = c[��(t0)] for some rewrite context c and some
valuation � : X ! T�. Let c

0 be a visible behavioural coherent sub-context of c,
this means c[z] = c00[c0[z]] for some other rewrite context c00. Denote the unique
�-homomorphism T� ! A by h. Therefore At0 = Ac00(Ac0(h(�

�(t)))) and At1 =
Ac00(Ac0(h(�

�(t0)))). Because A satis�es the sentences in E, we also have that
h(��(t)) � h(��(t0)). Because c0 is a visible behaviourally coherent context for
A, by induction on its length, we can prove that Ac0(h(�

�(t))) = Ac0(h(�
�(t0))).

Then At0 = At1 , which means A j= (8;) t0 = t1.

This condition on rewriting was �rst introduced in [6], under the name of
behaviourally coherent context condition and it is implemented by the
CafeOBJ rewriting engine. It can be visualized by the following �gure:

12 Meaning that z is in the subterm determined by the operation.
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A

B

C

Here A is the top position of the term to be reduced (represented by the big
triangle), and C is the position of the sub-term (represented by the white triangle)
to which the rule is applied. The rewriting context is represented by the whole
gray area, and the behaviourally coherent sub-context by the dark gray area
(with the top at B). The condition says that the sort of the operation at position
B is visible, and that on the path between B and C there are no operations which
are non-behavioural and not coherent.

4 Behavioural Coherence Methodologies

In this section we discuss several speci�cation methodologies for behavioural
coherence. We use the CafeOBJ notation for behavioural speci�cation.

4.1 The Conservative Methodology

Consider the following parameterized speci�cation of a bu�er object with two
methods (take and put) and two attributes (get and empty?).

We start by specifying the elements of the bu�er:

mod! TRIV+(X :: TRIV) {
op err : -> ?Elt

}

The (initial denotation) module TRIV+ is parameterized by the (loose denotation)
built-in module TRIV which has only one sort Elt. The system also provides the
built-in error super-sort ?Elt. The denotation of TRIV+ consists of all sets (as
interpretation for Elt) plus an new element err of sort ?Elt but outside the
interpretation of Elt. In this speci�cation, the sort Elt stands for the elements
of the bu�er, and err is an error value. TRIV becomes a parameter of (the below
speci�cation) BUF1, one can instantiate the elements of the bu�er to any concrete
set. Now, we can specify the bu�er object:

mod* BUF1 { protecting(TRIV+)
*[ Buf ]*
op init : -> Buf
op put : Elt Buf -> Buf {coherent}
bop get_ : Buf -> ?Elt
bop take_ : Buf -> Buf
op empty? : Buf -> Bool {coherent}
var E : Elt
var B : Buf
eq empty?(init) = true .

85Diaconescu R., Futatsugi K.: Behavioural Coherence ...



ceq empty?(take B) = true if empty?(B) .
eq empty?(put(E, B)) = false .
ceq empty?(B) = true if (get B) == err .
bceq take put(E, B) = put(E, take B) if not empty?(B) .
bceq take(put(E, B)) = B if empty?(B) .
ceq get B = err if empty?(B) .
ceq get put(E, B) = E if empty?(B) .
ceq get put(E, B) = get B if not empty?(B) .

}

The states of the bu�er object are represented by the hidden sort Buf and there
are only two behavioural operations (denoted by the keyword bop). The keywords
eq, ceq, and bceq stand for (strict) unconditional equations, (strict) conditional
equations, and conditional behavioural equations, respectively.

Notice that the predicate empty? (which checks the emptiness of the bu�er)
is speci�ed as a Boolean-valued operation by using the built-in Boolean data
type BOOL having one sort Bool with two constants (true and false) and the
usual Boolean operations. The denotation of the BOOL data type consists of
the initial algebra (more precisely, of the isomorphism class of initial algebras)
interpreting the sort Bool as a set with only two elements, corresponding to the
interpretations of the constants true and false.13

An interesting point of this speci�cation is that one method (put) and one
attribute (empty?) of the bu�er object are declared as behaviourally coherent
operations rather than behavioural operations. One important practical conse-
quence of this is that the de�nition14 of the behavioural equivalence relation
gets drastically simpli�ed, while the denotation of the speci�cation remains un-
changed. This is supported by the following proposition:

Proposition21. For each BUF1-model M , the operations put and empty? are
behaviourally coherent.

Proof. We �rst prove that empty? is behaviourally coherent. We have thus to
show that Mempty?(b) = Mempty?(b

0) whenever b �Buf b
0. From b �Buf b

0 we

deduce thatMget(b) =Mget(b
0). If both of them areMerr, thenMempty?(b) =

Mempty?(b
0) = Mtrue by the last equation on empty?. Otherwise, both of

them are di�erent than Merr, which means that Mempty?(b) = Mempty?(b
0) =

Mfalse by the �rst equation on get and because MBool has only two elements,
i.e., the interpretations of true and false.

Now, in order to complete the proof of this proposition we use the following
lemma (its proof by using the CafeOBJ system is given in Appendix A.2):

Lemma22. The coherence of empty? implies the coherence of put.

13 The BOOL data type plays a crucial rôle for CafeOBJ conditional equations since
their conditions are in fact Bool-sorted terms. This is more general than the classical
de�nition of conditional equations (adopted also by this paper) and allows some forms
of negation and dis-equality. Precisely speaking, the underlying logics of CafeOBJ

are constrained over the built-in (or pre-de�ned) data type BOOL, and this is fully
explained by the framework of constraint logics [5, 4].

14 N.B. the behavioural equivalence relation remains the same, only its de�nition is
simpli�ed.
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To resume, the operations empty? and put are behaviourally coherent in all
BUF1-models, hence the denotation of BUF1 is the same as the denotation when
both empty? and put were speci�ed as behavioural operations. This suggests the
�rst (and in some sense the simplest) use of behavioural coherence:

Some operations can be speci�ed as behaviourally coherent rather than
behavioural provided their coherence (with respect to the rest of the spec-
i�cation) can be proved. This results in a simpli�cation of the de�nition of
behavioural equivalence, with potential for simplifying the whole veri�cation
process related to this speci�cation.

Notice that recently, Bidoit and Hennicker [1] gave practically relevant syn-
tactic su�cient conditions for the conservative methodology.

4.2 The Non-Conservative Methodology

Now, we turn to a more sophisticated use of behavioural coherence. In the pre-
vious case, from the semantical perspective, the main point was that the coher-
ence property held in all models. In other words, in that case the declaration
\fcoherentg" for operations it treated as a pure computational declaration15

with no consequence on the denotations. In this section we explore a denotational
rôle for such declarations.

The coherence declaration for an operation has the e�ect that the denotation
of the speci�cation is restricted to those models for which the corresponding op-
eration is behaviourally coherent. Let us look again at the bu�er example. The
above BUF1 speci�cation leads to non-terminating computations due to the pres-
ence of the last equation on empty? and the �rst equation on get. But these
equations are exactly the ones which ensure the coherence of empty?. The same
situation can be achieved by dropping the last equation on empty? and by re-
stricting the class of BUF1-models only to those for which empty? is coherent.
Notice that by dropping the last equation on empty?, there are models for which
empty? is not behaviourally coherent. Any model M with a bu�er state b which
for which Mget(b) = Merr and with Mempty?(b) = false would be such an

example.16

So, consider the speci�cation BUF1 minus the last equation on empty?.

mod* BUF { protecting(TRIV+)
*[ Buf ]*
op init : -> Buf
op put : Elt Buf -> Buf {coherent}
bop get_ : Buf -> ?Elt
bop take_ : Buf -> Buf
op empty? : Buf -> Bool {coherent}
var E : Elt
var B : Buf
eq empty?(init) = true .
ceq empty?(take B) = true if empty?(B) .
eq empty?(put(E, B)) = false .
bceq take put(E, B) = put(E, take B) if not empty?(B) .

15 Increasing the power of behavioural rewriting.
16 Though such model cannot be a reachable one.
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bceq take(put(E, B)) = B if empty?(B) .
ceq get B = err if empty?(B) .
ceq get put(E, B) = E if empty?(B) .
ceq get put(E, B) = get B if not empty?(B) .

}

This speci�cation avoids any non-termination, and its denotation is the same as
that of BUF1. Lets denote by Mod(BUF) the denotation of BUF, by Mod(BUF1)
the denotation of BUF1, and by Mod(BUF0) the denotation of the speci�ca-
tion BUF' which is the same as BUF but without any coherence declarations
for operations. We have that Mod(BUF) � Mod(BUF0) as strict inclusion. Also,
Mod(BUF) =Mod(BUF1). The strictness ofMod(BUF) �Mod(BUF0) shows that
the coherence declarations (in fact really only that of empty?) shrink the deno-
tation to a smaller class of models, hence this is why this methodology is called
\non-conservative".

The non-conservative methodology for behavioural coherence is strongly sim-
ilar to the classical use of operation attributes (such as associativity (A), commu-
tativity (C), identity (I), or idempotence (Z)) in ordinary algebraic speci�cation.
For example, imagine a speci�cation of the data type of natural numbers with
the plus operation declared commutative:

op _+_ : Nat Nat -> Nat {comm}

In the case of the natural numbers such declaration is denotationally redun-
dant since the commutativity of + would be satis�ed anyway by the stan-
dard (initial) model17 which constitutes the denotation of the natural numbers
data type. Hence, this use of \comm" declaration is a conservative methodol-
ogy, the same as \coherent" declaration for put. However, the computational
consequences of the \comm" declaration are crucial: by computing modulo com-
mutativity the non-termination of computations is avoided. The same happens
in the case of \coherent" declarations, the computation gets more power18.
In the case of the coherence of empty? the similarity is almost perfect, since
\coherent" declaration is used for avoiding non-terminating computations. On
the side of non-conservative methodology, imagine a speci�cation of monoids
and a commutativity declaration for its binary operation:

op _;_ : Mon Mon -> Mon {comm}

This declaration restricts the denotation only to the commutative monoids, thus
having a similar denotational e�ect as the coherence declaration for empty?. In
both cases the computational e�ect is maintained.

We may resume the non-conservative methodology by the following:

Behavioural coherence declarations for operations restrict the denotation of
the speci�cation to the models for which these operations are behaviourally
coherent, also giving more computational power. This usage of coherence
declarations is similar to the usage of operation attributes (such as A,C,AC,I,
etc.) in ordinary algebraic speci�cation.

17 This is a standard induction exercise in algebraic speci�cation introductory texts.
18 Due to the easier satisfaction of the so-called \behaviourally coherent context con-

dition" check, see Appendix A.1.
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As in the case of traditional A/C/I/Z attributes, coherence declarations
should be used with some care because they might have an undesirable denota-
tional impact. Abusing them might result in shrinking denotations too much, to
the point of eliminating some desirable models (implementations). In general it
is recommended to use the conservative methodology as much as possible, since
this might simplify a lot the veri�cation process without the burden to verify that
certain implementations satisfy the coherence declarations (since in the conser-
vative case these coherence properties are supposed to be proved at the abstract
level of the speci�cation). The non-conservative methodology is recommended
for situations similar to the \coherent" declaration for empty?, when the shrink
of the denotation is rather natural and helps with avoiding some computational
problems.

4.3 The Hidden Constructor Methodology

The HA formalism requires that operations on hidden sorts have at most one
hidden sort in their arity. This monadicity condition is essential for the case
of behavioural operations (and in fact all hidden sorted operations in HA are
meant as CHA behavioural operations) but may limit the speci�cation power.
Behaviourally coherent operations constitute the solution to this problem. Since
they do not de�ne the behavioural equivalence, they are not subject to the
monadicity condition. On the other hand, they can be used e�ectively in be-
havioural speci�cations because they preserve the behavioural equivalence and
thus they have smooth denotational and computational properties. We call such
operations hidden constructors. Hidden cosntructors play a similar rôle in
object-oriented algebraic speci�cation as classical constructors play in ordinary
(data type oriented) algebraic speci�cation.

The hidden constructor methodology is \orthogonal" to the conservative vs.
non-conservative methodologies in the sense that the behavioural coherence of
a hidden constructor might be a consequence of the rest of the speci�cation, or
its coherence declaration might really shrink the denotation of the speci�cation.

We illustrate this methodology by the speci�cation of an unreliable bu�er
object. This means that there is a \put" method on the bu�er object which is
unreliable in the sense that the element which is put into the bu�er might be
lost.19 We reuse the above \reliable" bu�er object speci�cation, the unreliable
bu�er object being thought as a re�nement of the reliable bu�er.

mod* UBUF { protecting(BUF)
*[ Buf < UBuf ]*
op put : Elt UBuf -> UBuf {coherent}
bop take_ : UBuf -> UBuf
op _|_ : UBuf UBuf -> UBuf {coherent}
op put? : Elt UBuf -> UBuf {coherent}
op get? : Buf ?Elt -> Bool {coherent}
bop get? : UBuf ?Elt -> Bool
var B : Buf
vars U1 U2 U : UBuf
var E : Elt
var E' : ?Elt

19 These kinds of \unreliable" objects are very useful for protocols speci�cation and
veri�cation.
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eq put (E, U1 | U2) = put(E, U1) | put(E, U2) .
eq put?(E, U1 | U2) = put?(E, U1) | put?(E, U2) .
eq take( U1 | U2) = (take U1) | (take U2) .
eq get?( U1 | U2, E') = get?(U1, E') or get?(U2, E') .
eq put?(E, U) = U | put(E, U) .
eq get?(B, E') = (E' == get B) .

}

The states of the unreliable bu�er object (represented by the sort UBuf) are
thought as a non-deterministic extension of the states of the reliable bu�er with
the hidden constructor | \building" the non-deterministic states of the unreli-
able bu�er. The reliable bu�er methods are extended to the unreliable bu�er, an
unreliable put method is introduced (put?), and, in the unreliable case, the \get"
attribute becomes a relation (get?) rather than a function. Notice that the last
equation expresses the fact that get? is an actual extension of get to the unre-
liable case, and the equation before the last one expresses the non-deterministic
relationship between the unreliable \put" method and the reliable one. Notice
also that get? is speci�ed as behavioural operation since it is thought as an
extension of a behavioural operation. The coherence of | , put, put?, and get?
(on Buf) can be proved from the speci�cation (we leave this as exercise to the
reader). However, the coherence of the hidden constructor | deserves special
mention. This is a consequence of the four (strict) equations specifying the be-
haviour of | with respect to the application of the \methods" and \attributes"
of the unreliable bu�er object. The strictness of these four equation is a mat-
ter of style rather than of methodology, for this speci�cation we think that the
implementations should strictly satisfy those equations.

The hidden constructor | also has some useful properties, such as be-
havioural associativity, commutativity, and idempotence. The proofs of these
can be seen in Appendix A.3. Also, in Appendix A.4 we present some proofs
about the unreliable bu�er object.

The hidden constructor methodology can be resumed as:

Operations on hidden sorts having several hidden sorts in the arity might be
e�ectively used in speci�cations provided they are behaviourally coherent.
It is recommended to use them in conjunction with a conservative method-
ology, i.e., their coherence property is a consequence of the rest of the
speci�cation.

5 Conclusions and Future Work

We extended the traditional HA to a more powerful behavioural speci�cation
formalism (CHA) which includes explicit concepts of behavioural operation and
behavioural sentence and also permits operations with several hidden sorts in
the arity. We de�ned the novel concept of behaviourally coherent operation,
studied its basic denotational and computational properties, and presented its
basic methodologies via several CafeOBJ examples.

Further work will be dedicated for testing these methodologies for larger
CASE studies. Work in this direction is already under development by the
CafeOBJ team.
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A CafeOBJ Proofs

A.1 Using CafeOBJ for Behavioural Proofs

As mentioned above, CafeOBJ speci�cations can be executed. The basic execu-
tion mechanism of CafeOBJ is term rewriting by interpreting the speci�cation
equations as rewrite rules. For verifying behavioural properties in CafeOBJ, one
writes a proof score accordingly to some proof method (such as coinduction), but
the basic execution is done by rewriting. However, the CafeOBJ rewriting mech-
anism has some special features related to the special behavioural speci�cation
features of the language.

In CafeOBJ, there is a clear distinction between the strict equality (denoted
syntactically by eq and supported semantically by the strict equality predicate
==) and the behavioural equivalence (denoted syntactically by beq and supported
semantically by the behavioural equivalence predicate =b=). The most basic ex-
ecution command, called reduce, corresponds to reducing the input term to
a normal form which is thought as strictly equal to the input term under the
speci�cation, thus it is conceptually linked to ==. There is also a behavioural
counterpart to this command, called beh-reduce, conceptually linked to =b=,
but this is much less used in practice.20

When executing by reduce or when evaluating the predicate == special care
should be taken with respect to the use of behavioural equations as rewrite rules.
The reason is that they denote behavioural rather than strict equality, thus
their application might dilute the strict equality into a behavioural equality.
The so-called behaviourally coherence context condition mentioned in Section
3.3 ensures the safety of use of behavioural equalities as rewrite rules.

A.2 Proof of Lemma 22

In this appendix section we prove that the coherence of the empty? attribute
of the bu�er speci�cation implies the coherence of the put method. We do this
proof by the CafeOBJ system.

We �rst encode the behavioural equivalence relation in CafeOBJ:

mod! BARE-NAT {
[ NzNat Zero < Nat ]
op 0 : -> Zero

20 There are several reasons for this. One of them is that the current proof methods for
behavioural equivalence rarely require the direct use of beh-reduce or =b=. Another
reason lies in the inherent incompleteness of the evaluation of =b=.
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op s_ : Nat -> NzNat
}
mod* BUF-BEQ { protecting(BUF + BARE-NAT)

op _R[_]_ : Buf Nat Buf -> Bool {coherent}
bop take : Nat Buf -> Buf
var N : Nat
vars B B1 B2 : Buf
eq take(0, B) = B .
eq take(s(N), B) = take(N, take B) .
eq B1 R[N] B2 = get take(N, B1) == get take(N, B2) .

}

The module BARE-NAT speci�es a very simple data type for the natural numbers.
The operation take introduced in BUF-BEQ is a second order generalization of the
method take of BUF, which is necessary for de�ning the behavioural equivalence.
The behavioural equivalence on Buf is de�ned by the parameterized relation
R[ ] .

The following is the proof score for Lemma 22:

open BUF-BEQ .
ops b1 b1' b2 b2' : -> Buf .
vars B1 B2 : Buf
op n : -> Nat .
op e : -> Elt .

The following are the assumptions corresponding to the case when both bu�ers
are empty or to the case when both bu�ers are non-empty. These are the only
cases to be considered because of the coherence of empty?.

beq b1 = b2 .
beq b1' = b2' .
eq empty?(b2) = true .
eq empty?(b2') = false .

In the �rst case the proof of the coherence of put is given by the following reduc-
tions (notice also the case analysis corresponding to the parameter of R[ ] ):

red put(e, b1) R[0] put(e, b2) .
red put(e, b1) R[s n] put(e, b2) .

For the second case, we need to proceed by induction. Here is the base case:

red put(e, b1') R[0] put(e, b2') .

For the inductive step, we �rst assume the induction hypothesis

cq get(take(n, put(e, B1))) == get(take(n, put(e, B2))) = true
if B1 =b= B2 .

and we then perform the following reduction:

red put(e, b1') R[s n] put(e, b2') .
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A.3 Proofs of behavioural ACZ properties of |

In order to prove the ACZ of | as behavioural properties, we extend the
CafeOBJ encoding of behavioural equivalence from the reliable bu�er object to
the unreliable one.

mod* UBUF-BEQ { protecting(UBUF + BUF-BEQ)
op _R[_,_]_ : UBuf Nat ?Elt UBuf -> Bool {coherent}
bop take : Nat UBuf -> UBuf
var N : Nat
var E : ?Elt
vars U U1 U2 : UBuf
eq take(0, U) = U .
eq [take] : take(s(N), U) = take(N, take U) .
eq U1 R[N,E] U2 = get?(take(N, U1), E) == get?(take(N, U2), E) .

}

We then build an environment for proofs:

mod* UBUF-PROOF { protecting(UBUF-BEQ)
ops u u' u'' : -> UBuf
op n : -> Nat
op e : -> Elt
op e' : -> ?Elt
vars U1 U2 U : UBuf
var E : Elt
var N : Nat

}

We need to prove a lemma:

Lemma23. take(N, U1 | U2) = take(N, U1) | take(N, U2)

Proof. We prove this by induction on the natural number parameter:

open UBUF-PROOF .

This is the base case:

red take(0, u | u') == take(0, u) | take(0, u') .

Now we assume the induction hypothesis:

eq take(n, U1 | U2) = take(n, U1) | take(n, U2) .

and then do the induction step:

red take(s(n), u | u') == take(s(n), u) | take(s(n), u') .
close

Now we can proceed with the main proof.

open UBUF-PROOF .

by using Lemma 23:

eq take(N, U1 | U2) = take(N, U1) | take(N, U2) .

and then prove the ACZ behavioural properties:

red (u | u') R[n,e'] (u' | u) .
red (u | u') | u'' R[n,e'] u | (u' | u'') .
red u | u R[n,e'] u .
close
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A.4 Proofs about the Unreliable Bu�er

In this appendix section we prove some (behavioural) properties of the unreliable
bu�er. Firstly, we do some testing reduction in order to get a feeling about
how the unreliable bu�er works. We just show the output from the CafeOBJ
interpreter:

-- opening module UBUF(X.TRIV+).. done._*
-- reduce put?(e1,put?(e2,init))
(init | put(e1,init)) | (put(e2,init) | put(e1,put(e2,init))) : UBuf
-- reduce get?(put?(e1,put?(e2,init)),e1)
true : Bool
-- reduce get?(put?(e1, put?(e2, init)), e2)
true : Bool
-- reduce get?(put?(e1, put?(e2, init)), err)
true : Bool
-- reduce get?(put?(e1, put?(e2, b)),err)
false : Bool
-- reduce get?(take put?(e1, put?(e2, init)), e1)
true : Bool
-- reduce get?(take put?(e1, put?(e2, init)), e2)
false : Bool
-- reduce take put(e1, put?(e2, init)) == take put?(e1, put(e2, init))
false : Bool
-- reduce take put(e1, put?(e2, init)) =b= take put?(e1, put(e2, init))
true : Bool

Now we prove a true concurrency property between the reliable and unreliable
\put" methods. This can be formulated as

put(e; put?(e; u)) � put?(e; put(e; u))

for each unreliable bu�er state u and each element e. Here is the proof:

open UBUF-PROOF .

We assume a previously proved lemma:

eq take(N, U1 | U2) = take(N, U1) | take(N, U2) .

and then perform the corresponding reductions by taking care of a small case
analysis:

red put(e, put?(e, u)) R[n,e] put?(e, put(e, u)) .
red put(e, put?(e, u)) R[n,e'] put?(e, put(e, u)) .
close

The reachable unreliable bu�er objects are richer in properties. For example
the following constitute a complete axiomatization of the attribute get?. Notice
that in the unreliable case the same is not possible for take.

mod* UBUF! { protecting(UBUF)
vars E E' : Elt
var U : UBuf
eq get?(put(E, U), err) = false .
cq get?(put(E, U), E') = get?(U, E')

if not(get?(U, err)) or (E =/= E' and get?(U, err)) .
cq get?(put(E, U), E) = true if get?(U, err) .
cq get?(take U, err) = true if get?(U, err) .
bceq take put(E, U) = put(E, take U) if not get?(U, err) .

}
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We leave the proof of these properties for the reachable case to the reader.
Now we can concentrate to prove a last property for reachable unreliable

bu�er object models:

take put?(e; u) � put?(e; take u) if get?(u; err) is false

We open the environment for the reachable unreliable bu�er object and assume
the hypothesis:

open UBUF-PROOF + UBUF! .
eq get?(u, err) = false .

and then perform the reductions:

red take put?(e, u) R[n,e] put?(e, take u) .
red take put?(e, u) R[n,e'] put?(e, take u) .
close
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