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1 Introduction

Substructural logics [10] are logics with restricted structural rules in their sequent

formulation. They include relevant logic taking its rise in philosophical problems

on implication, BCK logic in set-theoretical paradoxes, linear logic in computer

science, and the Lambek calculus of syntactic categories in linguistics (see [4]).

Various kinds of semantics for substructural logics have been introduced: for

examples, Kripke-style models with a ternary relation for relevant logic [9, 5],

phase structures for linear logic [6], Kripke-style models using SO-monoids for

BCK-logic [8], and algebraic models using FL-algebras for the Lambek calculus

[7]. Do�sen [2, 3] introduced a very week substructural logic by the Hilbert-style

system L and its extenstions, and gave a Kripke-style model (groupoid frames

and models) and a canonical model construction for the logics.

In this paper, we introduce a class of substructural logics, called normal

substructural logics, and show that they include not only the logics mentioned

above but also weak logics with strict implication [1]. There are many normal

substructural logics which are not extensions of Do�sen's logic. Then we introduce

Kripke-style semantics (Kripke frames and models) for normal substructural log-

ics in the spirit of [7], and show a correspondence between axioms and properties

on frames. Finally, we give a canonical construction of Kripke models for normal

substructural logics. The construction di�ers from one in [3].

1 C. S. Calude and G. S�tef�anescu (eds.). Automata, Logic, and Computability. Special
issue dedicated to Professor Sergiu Rudeanu Festschrift.
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2 Normal substructural logics

We assume that our language L consists of the propositional variables p; q; r; : : :,

the logical constants 1, > and ?, and the logical connectives _, ^, � , and � .

De�nition 1. A normal substructural logic L is a set of formulas containing the

following axioms:

A1: 1; A2: p� p;

A3: p�>; A4: ?� p;

A5: p ^ q� p; A6: p ^ q� q;

A7: p� p _ q; A8: q� p _ q;

A9: (p� q) ^ (p� r)� p� q ^ r; A10: p� q� p � q;

and closed under the following rules:

��� �

�
(modus ponens)

;
�

[�1=p1; : : : ; �n=pn]�
(substitution)

;

�� 


(���)��� 

(pre�xing)

;

���

(�� 
)��� 

(suÆxing)

;

� �

� ^ �
(adjunction)

;
�

1��
(necessitation)

;

�� 
 �� 


� _ �� 

(_-elimination)

;

���� 


� ��� 

(residuation)

:

Remark. There are many normal substructural logics which are not extensions

of Do�sen's logic, since

(p� r) ^ (q� r)� p _ q� r

is a theorem of the system L (see [2, (56)]) but not of the minimal normal

substructural logic. On the other hand, since Do�sen's logic is not closed under

modus ponens, it is not a normal substructural logic.

Proposition2 (Do�sen's E+). The extension E+ of Do�sen's logic is regarded

as the f_;^; � ; � ; 1g-fragment of the normal substructural logic DE+ with the

axiom:

B1: (p� r) ^ (q� r)� p _ q� r:

Proof. Note that Do�sen used > for 1 in [2, 3]. The axioms and rules (1)-(5), (7)-

(12), (38), (40) and (50) are easily shown from the axioms and rules of DE+.
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For the rule (6), we see

���1

�1��1��1 ��1

���1
(�1��1 ��1)����1 ��1

(su�.)

(�1��1��1 ��1)��1����1 ��1
(pref.)

�1����1 ��1
(m.p.)

(���1)������1 ��1
(pref.)

�����1 ��1
(m.p.)

� ����1 ��1
(residuation)

:

Conversely, it is straightforward to see that the axioms and the rules for _, ^,

� , � , 1 of DE+ are derivable in the system E+ in [2]. ut

Proposition3 (Relevant logic). The positive fragment B+ of the basic rele-

vant logic is a normal substructural logic with the axiom for DE+ and the axiom:

B2: p ^ (q _ r)� (p ^ q) _ (p ^ r);

and the following its extensions are normal substructural logics: T+ with the

axioms for B+ and the axioms:

B3: (q� r)� (p� q)� p� r; B4: (p� q)� (q� r)� p� r;

B5: (p� p� q)� p� q;

E+ with the axioms for T+ and the axiom

B6: (1� p)� p;

S4+ with the axioms for E+ and the axiom

B7: p� 1;

R+ with the axioms for E+ and the axiom

B8: p� (p� q)� q:

Proof. See [5, 9]. ut

De�nition 4. Let � be a �nite sequence of formulas, and let � be a formula.

Then the formula � � � is inductively de�ned by

1. hi�� := �,

2. 
; � �� := 
�� ��.

Here hi denotes the empty sequence.
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Lemma5. Let L be a normal substructural logic. Then

1. L is closed under the rule:

��� �� 

�� 
 (cut);

2. L is closed under the rule:

���

(� ��)�� ��
(pre�xing�)

;

3. >�� �> 2 L,

4. (� ��)�� �� _ �; (� ��)�� �� _ � 2 L,

5. (� ����� �)�� �� ^ ���� �; (� ����� �)�� �� ^ ���� � 2

L,

6. (� ��) ^ (� ��)�� �� ^ � 2 L,

7. if B1 2 L, then (� ����� �)^ (� ����� �)�� ��_���� � 2 L,

8. if B3 2 L, then (���)� (� ��)�� �� 2 L,

9. if B3 2 L, then L is closed under the rule:

� ��
(���)�� ��

(suÆxing+)

where � must be nonempty,

10. if B3; B6 2 L, then L is closed under the rule:

� ��
(���)�� ��

(suÆxing�)
:

Proof. (1). Straightforward.

(2). By induction on the length of � . For induction step,

���

(� ��)�� ��
(induction hypothesis)

(
�� ��)� 
�� ��
(pref.)

:

(3). By induction on the length of � . For induction step,

>� 
�>�


>� 
�>

(
�>� 
)� 
�>
(pref.)

>� 
�>
(cut)

>�� �>
(
�>)� 
�� �>

(pref.)

>� 
�� �>
(cut)

:
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(4).
��� _ �

(� ��)�� �� _ �
(pref.�)

:

(5).
� ^ ���

(���� �)�� ^ ���� �
(su�.)

(� ����� �)�� �� ^ ���� �
(pref.�)

:

(6). By induction on the length of � . For induction step, letting � 0 := 
; �

and � := (� ��) ^ (� ��), we see

(� 0��) ^ (� 0��)� 
� �

��� �� ^ �

(
� �)�� 0�� ^ �
(pref.)

(� 0��) ^ (� 0��)�� 0�� ^ �
(cut)

:

(7). Similar to (6).

(8). By induction on the length of � . For induction step,

(���)� (� ��)�� �� ((� ��)�� ��)� (
�� ��)� 
�� ��

(���)� (
�� ��)� 
�� ��
(cut)

:

(9). By induction on the length of � . For induction step,

(���)� (� ��)�� ��


�� ��

((� ��)�� ��)� 
�� ��
(su�.)

(���)� 
�� ��
(cut)

:

(10).

� ��
1�� ��

(necessitation)

(���)� 1�� ��
(su�.+)

(1�� ��)�� ��

(���)�� ��
(cut)

:

ut

Proposition6 (The Lambek calculus, linear logic and BCK logic).

The Lambek calculus FL is a normal substructural logic with the axioms B1,

B3, B6 and the axioms:

B9: p�?� q; B10: p� 1�p;

B11: (p� q� r)� p � q� r;

intuitionistic linear logic ILL is a normal substructural logic with the axioms for

FL and the axiom:

B12: (p� q� r)� q� p� r;

BCK logic is a normal substructural logic with the axioms for ILL and the axiom:

B13: p� q� p:
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Proof. We will show that a sequent �!� is provable in the Gentzen-type sequent

calculus in [7] if and only if � � � 2 FL. It is straightforward to see that the

axioms and the rules in De�nition 1, and the axioms B1, B3, B6, B9, B10, and

B11 are derivable in the sequent calculus. Conversely, for initial sequents of the

forms �!> and �;?; �!�, we see

>�� �>
1�> 1

>
(m.p.)

� �>
(m.p.)

;

>�?��� �
(� �>)�� �?��� �

(pref.�)
� �>

� �?��� �
(m.p.)

;

and for rules (cut), (1w), ( �!), (!� ) and (�!), we see

� ��
(���� �)�� ��� �

(su�.�)

(������ �)���� ��� �
(pref.�)

������ �

��� ��� �
(m.p.)

;

(�� �)� 1��� �

(� ��� �)�� � 1��� �
(pref.�)

� ��� �

� � 1��� �
(m.p.)

;

(������ �)�� ����� �

(� ������� �)�� �� ����� �
(pref.�)

� ������� �

� �� ����� �
(m.p.)

;

����� ��

���

(��� ��)���� ��
(su�.�)

����� ��
(cut)

(� ��)�� ���� ��
(pref.�)

� ��

� ���� ��
(m.p.)

;

� ��
(���)�� ��

(su�.�)

(���� �)� (���)�� ��� �
(su�.�)

(������ �)��� (���)�� ��� �
(pref.�)

������ �

�� (���)�� ��� �
(m.p.)

:

(_!), (!_1), (!_2), (^1!), (^2!), (!^) are straightforward using Lemma

5.

For ILL and BCK, note that B12 and B13 correspond to the exchange rule

(e!) and the weakening rule (w!), respectively. ut
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Proposition7 (Logic with strict implication). Corsi's system is regarded

as the

f>;?;_;^; �g-fragment of the normal substructural logic F with the axioms

for B+, the axiom B7, and the axiom:

B14: (q� p) ^ (q� r)� p� r:

Proof. Note that (1�>) ^ (>� 1) 2 F . Then it is easy to see that the axioms

Ax1-Ax10 and the rule MP in [1] are derivable in F . For the rule AF, we see

�� 1
�

1��
(necessitation)

���
(cut)

:

Conversely, it is straightforward to see that the axioms and the rules for >, ?,

_, ^, � of F are derivable in the system in [1]. ut

3 Kripke-type semantics

De�nition 8. A Kripke frame for normal substructural logics is a structure

hM;\; �; "; !i satisfying the following conditions:

1. hM;\i is a meet-semilattice with the greatest element !,

2. � is a binary operation on M and " 2M such that

(a) " � x = x, ! � x = !,

(b) y � z implies x � y � x � z for all x; y; z 2M ,

(c) (x \ y) � z = (x � z) \ (y � z) for all x; y; z 2M .

De�nition 9. A valuation j= on a Kripke frame hM;\; �; "; !i is a mapping

which assigns a �lter of M (i.e. a nonempty subset X of M such that x; y 2 X

if and only if x \ y 2 X) to each propositional variables. In the sequel, we will

write x j= p for x 2j= (p). Each valuation j= can be extended to a mapping from

the set of all formulas to the power set of M by

1. x j= 1 if and only if x � ",

2. x j= > for all x,

3. x j= ? if and only if x = !,

4. x j= ��� if and only if x � y � z and y j= � imply z j= � for all y; z 2M ,

5. x j= � _ � if and only if y j= � or y j= �, and z j= � or z j= � for some

y; z 2M with y \ z � x,
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6. x j= � ^ � if and only if x j= � and x j= �,

7. x j= � �� if and only if y j= � and z j= � for some y; z 2M with y � z � x.

Proposition10. Let j= be a valuation on a Kripke frame hM;\; �; "; !i. Then

fx 2M jx j= �g

is a �lter for any formula �.

Proof. By induction on the complexity of �. Here we show only the case � �

�� � . Suppose that ! � y � z and y j= �. Then since ! = ! � y � z and ! j= �

by the induction hypothesis, we see z j= � , and hence ! j= �� � . Next suppose

that x j= �� � and x � y, and let u; v 2 M be such that y � u � v and u j= �.

Then since x �u � y � u � v, we see v j= � , and hence y j= �� � . Finally suppose

that x j= �� � and y j= �� � , and let u; v 2M be such that (x\ y) � u � v and

u j= �. Then since x � u j= � and y � u j= � , (x � u) \ (y � u) j= � by the induction

hypothesis. Thus (x � u) \ (y � u) = (x \ y) � u j= � , and so v j= � . Therefore

x \ y j= �� � . ut

De�nition 11. A Kripke model is a structure hM;\; �; "; !; j=i such that

1. hM;\; �; "; !i is a Kripke frame,

2. j= is a valuation on hM;\; �; "; !i.

A formula � is true in a Kripke model hM;\; �; "; !; j=i if

" j= �;

and valid in a Kripke frame hM;\; �; "; !i if it is true for any valuation j= on the

Kripke frame.

Proposition12. Let C be a class of Kripke frames. Then

L(C) := f�j� is valid in all frames of Cg

is a normal substructural logic.

Proof. Here we only show that L(C) is closed under the _-elimination rule.

Let �� 
; �� 
 2 L(C), let hM;\; �; "; !i 2 C, and let j= be a valuation on

hM;\; �; "; !i. Suppose that " � y � z and y j= � _ �. Then y � z and there

exist u; v 2 M such that u \ v � y, u j= � or u j= �, and v j= � or v j= �.

Since " j= �� 
 and " j= �� 
, we have u j= 
 and v j= 
. Thus u \ v j= 
 by

Proposition 10 and u \ v � y � z, and so z j= 
. Therefore " j= � _ �� 
. ut

162 Ishihara H.: A Canonical Model Construction for Substructural Logics



Lemma13. Let F := hM;\; �; "; !i be a Kripke frame, let x; y 2M , and let j=

be a valuation on F such that x �y j= q and j= (p) =" y := fz 2M jy � zg. Then

x j= p� q.

Proof. Let u; v 2 M be such that x � u � v and u j= p. Then y � u, and hence

x � y � x � u � v. Therefore v j= q, and so x j= p� q. ut

Proposition14. Let F := hM;\; �; "; !i be a Kripke frame. Then

1. B1 is valid in F if and only if (x �y)\ (x � z) � x � (y\ z) for all x; y; z 2M ,

2. B2 is valid in F if and only if for all x; y; z 2 M with x 6� z, y 6� z and

x \ y � z, there exist u; v 2M such that x � u, y � v and u \ v = z,

3. B3 is valid in F if and only if x � (y � z) � (x � y) � z for all x; y; z 2M ,

4. B4 is valid in F if and only if y � (x � z) � (x � y) � z for all x; y; z 2M ,

5. B5 is valid in F if and only if (x � y) � y � x � y for all x; y 2M ,

6. B6 is valid in F if and only if x � " � x for all x 2M ,

7. B7 is valid in F if and only if " � x for all x 2M ,

8. B8 is valid in F if and only if y � x � x � y for all x; y 2M ,

9. B9 is valid in F if and only if ! � x � ! for all x 2M ,

10. B10 is valid in F if and only if x � x � " for all x 2M ,

11. B11 is valid in F if and only if (x � y) � z � x � (y � z) for all x; y; z 2M ,

12. B12 is valid in F if and only if (x � z) � y � (x � y) � z for all x; y; z 2M ,

13. B13 is valid in F if and only if x � x � y for all x; y 2M ,

14. B14 is valid in F if and only if x � (x � y) � x � y for all x; y 2M .

Proof. Here we show (1), (2), (3), (11), and (14).

(1). Suppose that (x � y) \ (x � z) � x � (y \ z) for all x; y; z 2 M , and let

j= be a valuation on F . Let x; y 2 M be such that x j= (p� r) ^ (q� r) and

y j= p _ q. Then there exist u; v 2 M such that u \ v � y, u j= p or u j= q, and

v j= p or v j= q, and hence x � u j= r and x � v j= r. Thus (x � u) \ (x � v) j= r,

and so x � (u \ v) j= r. Hence x � y j= r. Therefore x j= p _ q� r, and so

" j= (p� r)^(q� r)� p_q� r. Conversely suppose that (p� r)^(q� r)� p_q� r

is valid in F , and let j= be a valuation on F such that j= (p) =" y, j= (q) =" z,

and j= (r) =" (x � y \ x � z). Then y \ z j= p _ q, x j= p� r, and x j= q� r
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by Lemma 13, and hence x j= p _ q� r. Therefore x � (y \ z) j= r, and so

(x � y) \ (x � z) � x � (y \ z).

(2). Suppose that for all x; y; z 2 M with x 6� z, y 6� z and x \ y � z, there

exist u; v 2 M such that x � u, y � v and u \ v = z, and let j= be a valuation

on F . Let z; w 2M be such that " � z � w and z j= p ^ (q _ r). Then z j= p and

there exist x; y 2 M such that x \ y � z, x j= q or x j= r, and y j= q or y j= r.

If x � z or y � z, then z j= p ^ q or z j= p ^ r, and hence w j= (p ^ q) _ (p ^ r).

Assume that x 6� z and y 6� z. Then there exist u; v 2M such that x � u, y � v

and u\ v = z, and hence u\ v � z � w, u j= p^ q or u j= p^ r, and v j= p^ q or

v j= p^ r. Thus w j= (p^ q)_ (p^ r). Therefore " j= p^ (q_ r)� (p^ q)_ (p^ r).

Conversely suppose that p^(q_r)� (p^q)_(p^r) is valid in F . Let x; y; z 2M

be such that x 6� z, y 6� z and x \ y � z, and let j= be a valuation on F such

that j= (p) =" z, j= (q) =" x and j= (r) =" y. Then z j= p ^ (q _ r), and hence

z j= (p ^ q) _ (p ^ q). Thus there exist u; v 2 M such that u \ v � z, u j= p ^ q

or u j= p ^ r, and v j= p ^ q or v j= p ^ r, and so z � u \ v, x � u or y � u, and

x � v or y � v. Therefore u \ v = z, and either x � u and y � v, or x � v and

y � u.

(3). Suppose that x � (y � z) � (x � y) � z for all x; y; z 2 M , and let j= be a

valuation on F . Let x; y; z; u; v; w 2M be such that " �x � u, x j= q� r, u �y � v,

y j= p� q, v � z � w, and z j= p. Then (x � y) � z � (u � y) � z � v � z � w. Since

x � (y � z) � (x � y) � y and x � (y � z) j= r, we have w j= r. Thus v j= p� r, and so

u j= (p� q)� p� r. Therefore " j= (q� r)� (p� q)� p� r. Conversely suppose

that (q� r)� (p� q)� p� r is valid in F , and let x; y; z 2 M , and let j= be a

valuation on F such that j= (p) =" z, j= (q) =" y �z, and j= (r) =" x�(y �z). Then

y j= p� q and x j= q� r by Lemma 13, and hece x j= (p� q)� p� r. Therefore

(x � y) � z j= r, and so x � (y � z) � (x � y) � z.

(11). Suppose that (x � y) � z � x � (y � z) for all x; y; z 2 M , and let j= be a

valuation on F . Let x; y; u; v 2M be such that " �x � u, x j= p� q� r, u � y � v

and y j= p � q. Then there exist u0; v0 2M such that u0 �v0 � y, u0 j= p and v0 j= q,

and hence (x�u0)�v0 � x�(u0 �v0) � x�y � u�y � v and (x�u0)�v0 j= r. Thus v j= r,

and so u j= p � q� r. Therefore " j= (p� q� r)� p � q� r. Conversely suppose

that (p� q� r)� p � q� r is valid in F , and let j= be a valuation such that

j= (p) =" y, j= (q) =" z and j= (r) =" (x � y) � z. Then x j= p� q� r by Lemma

13, and hence x j= p � q� r. Therefore x � (y � z) j= r, and so (x � y) � z � x � (y � z).

(14). Suppose that x � (x � y) � x � y for all x; y 2M , and let j= be a valuation

on F . Let x; y; u; v 2 M be such that " � x � u, x j= (p� q) ^ (q� r), u � y � v

and y j= p. Then x � (x � y) j= r and x � (x � y) � x � y � u � y � v, and hence

v j= r. Therefore u j= p� r, and so " j= (p� q) ^ (q� r)� p� r. Conversely

suppose that (p� q) ^ (q� r)� p� r is valid in F , let x; y 2 M , and let j= be

a valuation such that j= (p) =" y, j= (q) =" x � y and j= (r) =" x � (x � y).

Then x j= p� q and x j= q� r by Lemma 13. Thus x j= p� r, and so x � y j= r.
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Therefore x � (x � y) � x � y. ut

4 A canonical model construction

De�nition 15. Let L be a normal substructural logic. An L-pretheory x is a

subset of the set � of all formulas such that

1. > 2 x,

2. if � 2 x and ��� 2 L, then � 2 x,

3. if �; � 2 x, then � ^ � 2 x.

Lemma16. Let L be a normal substructural logic. Then

1. if x and y are L-pretheories, then so is x \ y,

2. if x and y are L-pretheories, then so is x � y := f�j9� 2 y(��� 2 x)g,

3. L � f�g is an L-pretheory,

4. if x is an L-pretheory, then L � x = x,

5. if x, y and z are L-pretheories, then (x \ y) � z = (x � z) \ (y � z).

Proof. (1). Straightforward.

(2). Let x and y be L-pretheories. Then since >�>�> 2 L by Lemma 5

(3), >�> 2 x, and hence > 2 x � y. Suppose that � 2 x � y and �� 
 2 L. Then

there exists � 2 y such that ��� 2 x. Since L is closed under the pre�xing

rule, (���)��� 
 2 L, and hence �� 
 2 x. Therefore 
 2 x � y. Suppose

that �; 
 2 x � y. Then there exist �; �0 2 y such that ���; �0� 
 2 x, and

hence � ^ �0 2 y and (� ^ �0��) ^ (� ^ �0� 
) 2 x by Lemma 5 (5). Since

(�^�0��)^ (�^�0� 
)��^�0�� ^ 
 2 L, �^�0�� ^ 
 2 x, and therefore

� ^ 
 2 x � y.

(3). Since ��> 2 L, > 2 L � f�g. Suppose that � 2 L � f�g and �� 
 2 L.

Then ��� 2 L, and hence �� 
 2 L. Therefore 
 2 L � f�g. Suppose that

�; 
 2 L � f�g. Then (���) ^ (�� 
) 2 L, and hence ��� ^ 
 2 L. Thus

� ^ 
 2 L � f�g.

(4). Straightforward.

(5). Let x, y and z be L-pretheories. Then trivially, (x\y) �z � (x �z)\(y �z).

Suppose that 
 2 (x � z) \ (y � z). Then there exist �; � 2 z such that �� 
 2 x

and �� 
 2 y, and hence � ^ � 2 z and � ^ �� 
 2 x \ y by Lemma 5 (5).

Therefore 
 2 (x \ y) � z.

Proposition17. Let L be a normal substructural logic, and let ML be the set

of all L-pretheories. Then FL := hML;\; �; L; �i is a Kripke frame.
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Proof. Straightforward. ut

Proposition18. Let L be a normal substructural logic. Then

1. if B1 2 L, then (x � y) \ (x � z) � x � (y \ z) for all x; y; z 2ML,

2. if B2 2 L, then for all x; y; z 2 ML with x 6� z, y 6� z and x \ y � z, there

exist u; v 2ML such that x � u, y � v and u \ v = z,

3. if B3 2 L, then x � (y � z) � (x � y) � z for all x; y; z 2ML,

4. if B4 2 L, then y � (x � z) � (x � y) � z for all x; y; z 2ML,

5. if B5 2 L, then (x � y) � y � x � y for all x; y 2ML,

6. if B6 2 L, then x � L � x for all x 2ML,

7. if B7 2 L, then L � x for all x 2ML,

8. if B8 2 L, then y � x � x � y for all x; y 2ML,

9. if B9 2 L, then � � x � � for all x 2ML,

10. if B10 2 L, then x � x � L for all x 2ML,

11. if B11 2 L, then (x � y) � z � x � (y � z) for all x; y; z 2ML,

12. if B12 2 L, then (x � z) � y � (x � y) � z for all x; y; z 2ML,

13. if B13 2 L, then x � x � y for all x; y 2ML,

14. if B14 2 L, then x � (x � y) � x � y for all x; y 2ML.

Proof. Here we show (1), (2), (5), and (11).

(1). Let x; y; z 2ML, and let 
 2 (x � y)\ (x � z). Then there exist � 2 y and

� 2 z such that �� 
; �� 
 2 x, and hence � _ �� 
 2 x by B1. Therefore,

since � _ � 2 y \ z, we have 
 2 x � (y \ z).

(2). Let x; y; z 2 ML be such that x 6� z, y 6� z and x \ y � z, and de�ne u

and v by

u := f� 2 �j9� 2 x9
 2 z(� ^ 
� � 2 L)g;

v := f� 2 �j9� 2 y9
 2 z(� ^ 
� � 2 L)g:

Then it is straightforward to see that u and v are L-pretheories with x � u, y � v

and z � u\v. Suppose that � 2 u\v. Then there exist � 2 x, � 2 y and 
; 
0 2 z

such that � ^ 
� �; � ^ 
0� � 2 L, and hence � ^ 
 ^ 
0� �; � ^ 
 ^ 
0� � 2 L.

Thus (� ^ 
 ^ 
0) _ (� ^ 
 ^ 
0)� � 2 L, and so (� _ �) ^ 
 ^ 
0� � 2 L by B2.

Therefore, since � _ � 2 x \ y � z, we have � 2 z.
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(5). Let x; y; z 2 ML, and let 
 2 (x � y) � y. Then there exist �; � 2 y such

that ���� 
 2 x. Since (���� 
)�� ^ ��� ^ �� 
 2 L by Lemma 5 (5),

we see � ^ ��� ^ �� 
 2 x, and hence � ^ �� 
 2 x by B5. Therefore, since

� ^ � 2 y, we have 
 2 x � y.

(11). Let x; y; x 2ML, and let 
 2 (x �y) �z. Then there exist � 2 y and � 2 z

such that ���� 
 2 x, and hence � ��� 
 2 x byB11. Since ����� �� 2 L,

we see ��� �� 2 y, and hence � �� 2 y � z. Therefore 
 2 x � (y � z). ut

Lemma19. Let L be a normal substructural logic, and let x 2ML. Then

1. � 2 x if and only if L � f�g � x,

2. L � f�g \ L � f�g � L � f� _ �g,

3. (L � f�g) � (L � f�g) � L � f� ��g.

Proof. (1). If � 2 L�f�g, then ��� 2 L, and hence � 2 x. Since � 2 L�f�g � x,

the converse is trivial.

(2). Suppose that 
 2 L � f�g \ L � f�g. Then �� 
; �� 
 2 L, and hence

� _ �� 
 2 L by the _-elimination rule. Therefore 
 2 L � f� _ �g.

(3). Suppose that � 2 (L � f�g) � (L � f�g). Then there exists 
 such that

�� 
� �; �� 
 2 L, and also

�� 
� �

�� 


(
� �)��� �
(su�.)

���� �
(cut)

� ��� �
(residuation)

:

Therefore � ��� � 2 L, and so � 2 L � f� ��g.

Theorem20. Let L be a normal substructural logic, and let j=L be a mapping

from the set of all propositional variables to the set of all subsets of ML de�ned

by

j=L (p) := fx 2MLjp 2 xg:

Then ML := hML;\; �; L; �; j=Li is a Kripke model such that � 2 L if and only

if � is true in ML.

Proof. It is easy to see that j=L is a valuation on FL, and hence ML is a Kripke

model. It remains to show that

L j=L �,� 2 L:

To this end, we will show that

x j=L �,� 2 x
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for all � 2 � and x 2ML by induction on the complexity of �.

Basis: Straightforward.

Induction step:

Case 1. � � � _ � : Suppose that x j=L � _ � . Then there exist u; v 2 ML such

that u \ v � x, u j=L � or u j=L � , and v j=L � or v j=L � . By the induction

hypothesis � 2 u or � 2 u, and � 2 v or � 2 v. Since ��� _ �; � �� _ � 2 L, we

have � _ � 2 u and � _ � 2 v. Therefore � _ � 2 u \ v � x. Conversely suppose

that � _ � 2 x. Then L � f�g \ L � f�g � x by Lemma 19 (1) and (2), and since

L � f�g j=L � and L � f�g j=L � by the induction hypothesis, we have x j=L �_ � .

Case 2. � � � ^ � : Straightforward.

Case 3. � � � � � : Suppose that x j=L � � � . Then there exist u; v 2 ML such

that u � v � x, u j=L �, and v j=L � . By the induction hypothesis � 2 u or � 2 v,

and since �� � �� � � 2 L, we have � �� � � 2 u. Therefore � � � 2 u � v, and so

� � � 2 x. Conversely suppose that � � � 2 x. Then (L � f�g) � (L � f�g) � x by

Lemma 19 (1) and (3), and hence x j=L � � � .

Case 4. � � �� � : Suppose that x j=L �� � . Then since L � f�g j=L � by

the induction hypothesis, x � (L � f�g) j=L � , and hence � 2 x � (L � f�g) by the

induction hypothesis. Therefore there exists � such that �� � 2 x and �� � 2 L,

and hence (�� �)��� � 2 L by the suÆxing rule. Thus �� � 2 x. The converse

is straightforward. ut
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