Journal of Universal Computer Science, vol. 5, no. 9 (1999), 599-609
submitted: 10/6/99, accepted: 15/7/99, appeared: 28/9/99 [1 Springer Pub. Co.

Splicing on Trees: the Iterated Case

George Rahonis
(30 Kyprou st. 57019 Perea (Thessaloniki), Greece,
grahonis@ccf.auth.gr)

Abstract: The closure under the splicing operation with finite and recognizable sets of
rules, is extended to the family of generalized synchronized forests. Moreover, we inves-
tigate the application of the iterated splicing on known families of forests. Interesting
properties of this operation are established.

Key Words: DNA Computing, Trees languages
Category: F.1.1, F.4.0, F.4.3

1 Introduction

L. Adleman in his seminal paper [Adl. 94] in 1994, gave birth to a new direction
in research, as well as to a new way of thinking on computer science. Currently,
DNA computing is one of the most interesting research fields in order to construct
new types of computers. From the practical and also the theoretical point of view,
central role in the DNA computing plays the splicing operation.This operation
has been widely studied for formal languages [Head et al. 97, Paun et al. 98].
On the other hand, the importance of the tree structure in computer science is
very well-known, thus the investigation of splicing-like operations on trees is of
great interest.

In [Boz., Rah. 98], we defined a splicing operation on trees and we proved the
closure of the families REC of recognizable, OCF of one counter and ALG of
algebraic forests, under this operation with finite and recognizable sets of rules.

In this paper, we extend the above result to the family GST of generalized
synchronized forests. Next, we define the iterated splicing on trees which has an
unexpected property: it terminates after a finite number of steps. The families
REC, OCF, ALG and GST are proved to be closed under this operation with
finite and recognizable sets of rules. Moreover, we show that the height and the
branches of each forest remain unchanged under iterated splicing.

2 Preliminaries

We assume the reader to be familiar with basics on formal languages [Sal. 73],
as well as on DNA computing [Head et al. 97, Pdun et al. 98], and tree language
theory [Géc., Ste. 84, Géc., Ste. 97]. Here, we recall some notations and defini-
tions that will be used in the sequel.

600 Rahonis G.: Splicing on Trees: the Iterated Case

The power set of a set V, is written P(V). V* denotes the free monoid
generated by V and A is the empty word. If n is a positive natural number, then
[n] ={1,...,n}.

We write X for a finite ranked alphabet and we denote by X, the set of
symbols of ¥’ whose rank equals to n. A symbol ¢ € ¥ might have more than
one ranks. The degree of X' is denoted by deg(X) and is the maximal number n
such that X, # () and X = () for each k > n.

Let X = {x1,29,...} be a countably infinite set of variables and X,, =
{z1,...;®m}, for m > 0. The set of all trees over X, indexed by the variables
X1y ey Ty 18 denoted by T (X,,). A forest F is a set of trees over an alphabet
X, possibly with variables, that is F' C T (X,,), m > 0.

For t € Tx(X,) and t1, ...,t, € Tx(X,,), we write t(t1,...,t,) for the result
of substituting ¢; for x; in t.

There is also another common way to define trees. A tree domain D [Sal. 94],
is a subset of N} (N denotes the set of natural numbers), which satisfies the
following conditions:

(i) If w € D then v € D for each prefix v of u.

(ii) For each u € D, there exists i € N, such that uj € D for each j € [i] (if
u has no sons then ¢ = 0).

For a set V., a V—labeled tree is a mapping t : D — V', where D is a tree
domain. We call the elements of D the nodes of the tree and we denote D by
dom(t). Anode u € D is labeled by t(u) € V. If v is a proper prefix of u € dom(t),
then w is called a successor of v.

In this way, each tree t € Tx(X) can be considered as a X' U X-labeled tree
t: dom(t) — X UX, such that each node of ¢ labeled by an element of rank n > 0,
has exactly n immediate successors (sons) and variables don’t have successors.
The nodes of a tree t labeled by constants are called leaves, and the set of all
leaves of a tree t is denoted by leaf(t).

For a V-labeled tree, a path of t is a word

path(t, um) = t(ur)...t(uy,) € VT
where uy = A\, u, € leaf(t) and w; 1 is an immediate successor of u;,
i=1,....,m— 1. Then

path(t) = {path(t,u) [/ u € leaf(t)}.

Let now, X, I' be ranked alphabets and deg(X) = n. Assume that for each
k € [n], there is a mapping hy : X — Tr(X}). Then the mappings hy, k € [n]
are organized into a tree homomorphism h: Ts, — T, defined inductively by:

ho(ty, ..., t)) = hg(o)(h(t1), ..., h(t)), for k > 0,0 € X) and tq,...,t; € Tx.

A tree homomorphism h : Ts; — T is called linear, if for each 0 € Xy,
k > 0, hi(o) is a linear tree, that is each variable from X, appears at most

Rahonis G.: Splicing on Trees: the Iterated Case 601

once in hg (o). Moreover, a linear tree homomorphism h : T, — T is called
alphabetic, if for each o € Xy, k > 0, either

hi(0) =y(xiy, oy @4i,,), ¥ € L, OT

hi(0) =p, 1 <n <k

A nondeterministic top-down finite tree automaton is a four-tuple A = (X, Q,
Qo, @), with X the finite ranked alphabet of input symbols, @ the finite set of
states, Qo C (@ is the set of initial states and « is the family of state transitions
which is defined by the mappings a, : @ — P(Q™), where 0 € X,,, n > 0. If
o € Xy, then a, C Q.

A computation of A = (X,Q,Qo,) on an input tree t € T, is a Q-labeled
tree r : dom(t) — @, satisfying the following conditions:

(i) r(A) € Qo.

(ii) Suppose that u € dom(t) has m successors uy, ..., Uy, and t(u) = o € X,,.
Then (r(u1), ..., 7(Um)) € ag(r(w)).

(iil) If u € leaf(t) and t(u) = o (€ Xy), then r(u) € a,.

The set of all computations of A on t, is denoted by com 4(t) and the forest
recognized by A is

L(A) ={t € Tx / comu(t) # 0}.

It is well known, that the family of forests recognized by nondeterministic
top-down tree automata, is the family of recognizable forests and is denoted by
REC [Géc., Ste. 84, Géc., Ste. 97].

A nondeterministic synchronized tree automaton (nsta) [Sal. 94] is a top-
down finite tree automaton A = (X, Q, Qo, @), where @ is of the form

Q= (Q1 x{M)U(Q2xS5)

(recall that X\ denotes the empty word).

The set S is the synchronization alphabet and elements of S are called
synchronizing symbols (abbreviated as sync-symbols).We define a morphism
ha : Q* — S* by setting ha((q1,\)) = A and ha((q2,8)) = s, for ¢; € Q,
t=1,2 and s € S. The set of synchronized computations of A on a tree t € T,
is

scoma(t) = {r € com4(t) / Yu,w € path(r), ha(u) ~p, ha(w)}

where h4(u) ~p, ha(w) means that one of the words h4(u) and h4(w) is a
prefix of the other.
The nondeterminitic synchronized forest recognized by A, is

Ls(A) = {t € Ts /| scom(t) # 0}.

602 Rahonis G.: Splicing on Trees: the Iterated Case

The family of all nondeterministic synchronized forests is denoted by NST.

We also define the notion of a generalized synchronized tree automaton (gsta)
[Rah., Sal. 98]. It is an nsta which is allowed to make A — transitions, that
is to change the state in a fixed node. Let A be a gsta with state set Q =
(Q1 x {A}) U(Q2 x S) and let t € Tx;. A computation of A on tis a tree T,
where each node u € dom(r) = dom(t) is labeled by an element of @1 x {A} or
by a pair

(qa 5152-“571)7

where ¢ is the last element of ()1 U Q2 appearing at u in the computation
7 and $1S82...8,, n > 1, is the sequence of sync-symbols appearing at node u

in 7. (If A makes A-transitions at node wu, it is possible that n > 2). Now, the
morphism h 4 is defined by h4((q,\)) = A, and h4((q,8182...55)) = $182...8n,

for g € Q1 UQ2, s; € S, j € [n]. The forest Lg(A) recognized by A, is defined
as for nondeterministic synchronized tree automata. The family of forests which
are recognized by all gsta is denoted by GST.

Finally, we denote by FIN the family of finite forests, by ALG the family
of algebraic forests [Gue. 83], and by OCF the family of one counter forests
[Boz., Rah. 94].

In [Boz. 92|, the notion of an alphabetic tree transduction was defined, and
used as the basis to build the AFL theory to the tree case [Boz., Rah. 94,
Rah. 200x].

Definition 1. A tree transduction 7 : T'ss — P(Tr) is called alphabetic, if there
exists a ranked alphabet A, a recognizable forest R C T, and two alphabetic
homomorphisms ¢ : Ta — T, ¥ : Ta — Tr, such that #7 = {(¢(t),¥(t)) /
t € R}, where #7 denotes the graph of 7.

Then, an alphabetic cone is a family of forests closed under alphabetic
transductions. Moreover, a sheaf of forests is an alphabetic cone closed un-
der the rational tree operations: union, top-catenation,a-product and a-star

[Boz., Rah. 94].

Proposition 2. [Boz., Rah. 94, Rah., Sal. 98] The classes REC of recognizable,
ALG of algebraic, OCF of one counter, and GST of generalized synchronized
forests are sheaves.[]

Rahonis G.: Splicing on Trees: the Iterated Case 603

3 H schemes on trees

The material of this section can be found in [Boz., Rah. 98].

Firstly, we recall the notion of the shift operation.

Consider a finite ranked alphabet X and let I' = X U {6,01,...,0,}, with
rank($) = n and rank(o;) = m;, i € [n]. The (n+1)-tuple (8,01, ..., 05) is called
a connected list in a forest FC Ty, if whenever one of the above symbols appears
in a tree t € F, then it appears in the fork §(o1,...,0,), that is none of these
symbols appears in trees of F' out of the above fork.

Let now A = X U {o}, with rank(c) =3 m;=m.
i=1

The shift operation on the connected list (6,01, ...,05), denoted sh : Tr —
TA, is the inverse linear tree homomorphism h : TA — T, which is defined by
~hi(y(21, o xk)) = y(21, ..oy 21), for each v € Xy, k > 0,

“h(0(21, oy) =

E(1(21y ey Tony)y T2(Tamg 115 s Tamy o) +oos T Tomg o ooamgy 1415 -5 Ton))-
Thus, we write

Sh(6(1(X1y ooy Tany)y O2(Tomy 415 +oos Tiny bmn) s ooy O Ty oy 141y ooy Tim))) =
(X1, ey o)

and

sh(vy(xq,...,x)) = y(x1, ..., 21) for each y € Xy, k > 0.

The shift operation can obviously be extended to more than one connected
lists.

We give now the definition of an H tree scheme.

Definition 3. Let Y be a finite ranked alphabet and @, #,$ be three new sym-
bols not belonging to X, with rank(@Q) = 3,4, 5,6, 7 and rank(#) = rank($) = 0.
An H tree scheme is a pair f = (X,R), with R the forest of rules, R C
Q(w, #,w, 8, w, #,w), where w stands for Tx; or for nothing.

Thus a tree r € R is of the form @Q(s1,#, 2,8, 83, #,54), 8: € T, =1,2,3,4,
where some s; may be missed, for example Q(sq,#, s2,$, #,54), Q(#, 52,8, #)
can be trees in R.

R can be either finite or infinite.

An H tree scheme f = (X, R) is called of F type, if R belongs to the family
of forests F.

Let now ¢,p, z € Ts;. We say that z is obtained by splicing t,p and we write
(t,p) —y Z, ift = O'(tl, ...,tl‘,l, 81,82,ti+2, ...,tn), p= O'(pl, vy Pi—14 53,84, Pi+2, .-
wsPr)y 2= 0(t1, ey i1, 81,84, Pit2, s Pn)s With 0 € Xy n >0, t1, ... 81,12,
sty D1y ey Pie1, Pig2y -y P € T and r = Q(s1, #, 52,9, s3,#, 84) is a rule in
R.

604 Rahonis G.: Splicing on Trees: the Iterated Case

Thus splicing on trees, means ”vertically cutting” of two trees with the same
root, at certain indices under the presence of a rule, and ”connecting” the left-
most part of the first tree with the rightmost part of the second tree.

For F C Ty, and f = (X, R) an H tree scheme, we write

f(F)={z€Tx /3t,pe F,3r € R, such that (¢,p) —, 2z}
and
fO(F) = FU f(F).
If 1, F» are two families of forests, we define the families
S(F1,F) ={f(F) / Fy € 71, f = (X, R) is an H tree scheme with R € F3}
and

S1(F1, Fo) = {fN(F) /| FL € Fi, f = (2, R) is an H tree scheme with
Re .7:2}

Theorem 4. If F is a sheaf of forests closed under the shift operation on con-
nected lists, then S1(F,FIN) =F and S{(F,REC) = F.O

The next lemma gave an interesting application of the above result.

Lemma 5. The families of forests REC, ALG and OCF are closed under the

shift opeartion on connected lists.[]

Corollary 6. It holds
S1(REC,FIN)=REC, S1(ALG,FIN) = ALG, S1(OCF,FIN) = OCF and
S1(REC,REC) = REC, S{(ALG,REC)= ALG, S;(OCF,REC)=OCF.O

The reader can easily understand that the result of theorem 4 cannot be
”linearized” for the word case, because of the shift operation, which has no
meaning on strings.

Let now, f = (X, R) be an H tree scheme. By passing to the yield of R, we
obtain an H string scheme o = (X, yield(R)) [Head et al. 97].
For F' C T, the inclusion below is in general strict

yield(f(F)) C o(yield(F)).
In the case of recognizable forests, the next proposition holds

Proposition 7. yield(S1(REC, FIN)) = S1(yield(REC), yield(FIN)),
where the symbol S1 has an analogous meaning in the word case.]

Rahonis G.: Splicing on Trees: the Iterated Case 605

4 Results

As a first result in this paper, we extend lemma 5 to the class GST of generalized
synchronized forests.

Lemma 8. GST is closed under the shift operation on connected lists.

Proof. Consider a generalized synchronized forest F C T, with I' = X U
{6,01,...,0n}, rank(8) = n, rank(o;) =my, i € [n], such that (6,071, ...,04,) is a
connected list in F.

Let sh: Tr — Ta, A= XYU{c}, rank(c) =) m;= m, be the shift operation
i=1

on the connected list (6,01, ...,00), and A = (I, @, Qo, @) be a gsta, with @ =
(Q1 x {A\})U(Q2 x S), and F = Lg(A).

For (q,s) € Q, let ((q1,81), -, (gns Sn)) € as((q, s)), with (g;, 8;) € Q, © € [n].
Now, for each (g;,s;), i € [n] there is a finite number of finite sequences of A-
moves
(i 8i)) 2 (@irs8i), (@i 8i1)) D (Qias Sin) oo) Oé)‘((qikifl7sik,;fl)) >
(qi}.-i) Si;.-,;)7
such that ae,((gi,,,8i,,)) # 0, and all the states that appear at each sequence
are pairwise disjoint.

Because of the definition of the connected list in F, we can assume that
a~((g;,85)) =0, for each j € {i,41,...,1,}, ¢ € [n], and v € X.

We substitute each state which appears in each of the above sequences, with
my, i € [n] different copies i.e.

(qlla si)a (qlll y Sy)a ceey (qzlkz) Siki)7

my

(qi 73i)7 (qz?i78i|)7 ceey (Q;,r;lja Szk,)

Let @’ be the so obtained set of states, and o’ the new family of state
transitions, where
- (431, 8i,) € aA((g7', 54)), whenever (g, 5,) € ax((ai,54)),
for each i € [n], I; € [my],
- (qé;_,_]) 5ij+1) € a&((Qé;asij))a whenever (Qij+1) 5ij+1) € a)\((Qij) Sij))a
for each i € [n], j € [k; — 1], [; € [my],
- o, (a5, 5in,)) = @0, (G, 500,))s for each i € [n], I; € [m],
- al(g,5)) = a,((g,8)), for each (¢,s) € Q, v € TU{A}.
Obviously, for the gsta A’ = (I, @', Qo, &), it holds Lg(A’) = Lg(A).

606 Rahonis G.: Splicing on Trees: the Iterated Case

Next, we consider the gsta B = (A, Q’, Qq,), with the family 3 defined in
the following way:
- B,((g,8)) = o, ((g, 8)), for (g,8) € Q', v € T U{A},
- ((q%a 51)7 ceey (qyll) 51)7 """" 3 (q'rlu 571)7 sy (q:lnn) 571)) S 60’((q’ S))a
for (q,s), (qzl-'i,si) € Qi€ [n],l; € [m], whenever ((q1,81),..-,(Gn,Sn)) €
aé((qa 5))) , ,
- (qas) € /BA((Qi;.iasiL-i))a for (Q7S)a (q@‘;.iasi}.-i) € Qla (NS [n]a li S [ml]a
whenever (..., (¢,8) ,...) € ap, (¢, + Six.))-
N ; T k2
l;—place
The reader will have no difficulties to verify that Lg(B) = sh(F), and thus
sh(F) € GST .O0

A combination of the above lemma, proposition 2 and theorem 4 gives

Theorem 9. S1(GST,FIN) = GST and S1(GST,REC) = GST..]

We define now the iterated splicing on H tree schemes.
Let f = (X, R) be an H tree scheme and F C T’x,. Then

fOFE) = FO(F)

k>0

fOF)=F, and fED(F) = fOF)U f(fP(F), k>0.

We call index of F in f, and we denote by ind(f, F), the quantity n €
N U {0}, such that

FOF) =0 FOF).
k=0

We say that the forest ' C T has finite index in the H tree scheme
f=(X,R), if ind(f, F) € N.

From the definition of the splicing operation on trees, we can easily under-
stand that for each rule r = Q(s1, #, s2, $, 83, #, s4) € R, the number of appear-
ances of the site (s1,s2) or (s3,s4) in the trees of F is bounded (in fact this
number is < deg(X)), so the application of the splicing operation on F, after a
finite number of steps, produces always the same trees. Thus

Proposition 10. The index of each forest F C Tx;, in each H tree scheme f =
(X, R) is finite.

For two families of forests F1, F»2, we define the family

Rahonis G.: Splicing on Trees: the Iterated Case 607

H(F, Fo) = {fONF) /) Fy € Fi, f = (X, R) is an H tree scheme with
Re .7:2}

Then the next theorem holds

Theorem 11. If F is a sheaf of forests closed under the shift operation on con-
nectd lists, then H(F,FIN) = F, and H(F,REC) = F.

Proof. Let F € F, F C Ty, and f = (X, R) be an H tree scheme of R type,
with R € {FIN, REC}. Then

ind(f,F)

fF) = U FO(F).

k=0

By theorem 4, the forest f(!)(F) = FU f(F) belongs to F. Thus by induction
ind(f,F)
fEN(F) € F, that is H(F,R) C F.
=0
Conversely, for F € F, F C T, we consider the H tree scheme f = (X,0).
Then f*)(F) = F which means that F C H(F,R).0]

k

Combining the last theorem with lemmas 5 and 8, we obtain

Corollary 12. It holds H(F,R) = F, with F € {REC, ALG,OCF,GST} and
R € {FIN, REC}.0

Let F C T, and f = (X, R) be an H tree scheme. For the H string scheme
o = (Xy,yield(R)) obtained by f [Boz., Rah. 98], the next inclusion is generally
strict

yield(f*)(F)) C o) (yield(F).

We shall investigate now a property of the iterated splicing.
Recall that the height of a tree t € T's;, where X' is a finite ranked alphabet, is
defined by
- hg(t) =0, if t € Xy,
- hg(o(t1,....,ty)) =1 + max{hg(t1), ..., hg(t,)}.
If F C Ty, then its height is the number hg(F') = sup{hg(t) / t € F}.

For each ranked alphabet X, we define a monadic alphabet I'(X) by
-I'(X) = Xo,
-I'(X)y={o;/oeX,,n>0,i€n]}

The transduction branches br : T — P(Tr(s)) is defined inductively by
-br(t)y =t, ifte Xy,

=br(o(ty, .. tn)) = o:(br(t;)).

=1

608 Rahonis G.: Splicing on Trees: the Iterated Case

For a forest F C T, we write br(F) =] br(t).
ter

Let now, F C Tx, f = (X,R) be an H tree scheme, t,p € F, r € R,
and (t,p) —, z. From the definition of the splicing operation, we have that

hg(z) = hg(t) or hg(z) = hg(p), that is hg(z) < max{hg(t), hg(p)}, so
hg(f(F)) < hg(F).
On the other hand br(z) C br(t) U br(p), and thus
br(f(F)) € br(F).
We conclude

Proposition 13. The iterated splicing on a forest F C Ty, with an H tree
scheme f = (X, R), preserves the height and the branches of F, that is

hg(f)(F)) = hg(F) and br(f*)(F)) = br(F).0

5 Conclusion

We defined iterated splicing on trees, and we proved that this operation termi-
nates after a finite number of steps, whereas it leaves unchanged two character-
istics of the tree structure. It is not difficult to see that this does not happen for
the other known way for splicing trees [Sak., Fer. 99]. Moreover, this does not
happen in general, for the word case. For further research we state the following
open problem:

Given a finite alphabet A, a language L € A*, and an H string scheme
0 = (A, R), find whether L has finite index in o.

References

[Adl 94] Adleman M. L.: "Molecular computation of solutions to combinatorial
problems”; Science 226, (1994), 1021-1024.

[Boz. 92] Bozapalidis S.: ” Alphabetic tree relations”; Theoretical Computer Sci-

ence 99, (1992), 177-211.

[Boz., Rah. 94] Bozapalidis S., Rahonis G.: "On two families of forests”; Acta Infor-
matica 31, (1994), 235-260.

[Boz., Rah. 98] Bozapalidis S., Rahonis G.: "H tree schemes with finite and recog-
nizable sets of rules”; Romanian Journal of Information Science and
Technology 4, 1, (1998), 307-318.

[Géc., Ste. 84] Gécseg F., Steinby M.: ” Tree Automata”; Akadémiai Kiadé / Budapest
(1984).

[Géc., Ste. 97] Gécseg F., Steinby M.: " Tree Languages”, in: Handbook of Formal Lan-
guages, Vol ITI, Rozenberg G., Salomaa A. eds.; Springer-Verlag, (1997),
1-68.

Rahonis G.: Splicing on Trees: the Iterated Case 609

[Gue. 83] Guessarian I.: ”Pushdown tree automata”; Mathematical Systems The-
ory 16, (1983), 237-263.

[Head et al. 97] Head T., P&un Gh., Pixton D.: "Language Theory and Molecular Ge-
netics: Generative Mechanisms Suggested by DNA Recombination”, in:
Handbook of Formal Languages, Vol II, Rozenberg G., Salomaa A. eds.;
Springer-Verlag, (1997), 295-360.

[P&un et al. 98] Pdun Gh, Rozenberg G, Salomaa A.: ”’DNA Computing. New Com-
puting Paradigms”; Springer-Verlag / Berlin, (1998).

[Rah., Sal. 98] Rahonis G., Salomaa K.: "On the size of stack and synchronization
alphabets of tree automata”; Fundamenta Informaticae 36, (1998), 57-
69.

[Rah. 200x] Rahonis G.: 7 Alphabetic and synchronized tree transducers”; Theoreti-
cal Computer Science (to appear).

[Sak., Fer. 99] Sakakibara Y., Ferretti C.: ”Splicing on Tree-like Structures”; Theoret-
ical Computer Science 210, 2, (1999), 227-243.

[Sal. 73] Salomaa A.: "Formal Languages”; Academic Press / New York, (1973).

[Sal. 94] Salomaa K.: ”Synchronized tree automata”; Theoretical Computer Sci-
ence 127, (1994), 25-51.

