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Abstract: This paper deals with solutions of algebraic, linear, and rational systems of
equations over an w-complete semiring, and their iteration lemmata. These are guar-
anteed if the underlying structure has an associative multiplicative operation, and its
elements have a norm. A number of such structures like words, vectors, traces, trees,
graphs, are presented.
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1 Introduction

The iteration lemmata for regular, linear and context-free languages are well
known. They are based on the catenation operation ( with unit element A ) on
the free monoid V* over some alphabet V', and the norm |w| ( length of words ).

In this paper other binary operations o on the power set on underlying
monoids M are introduced, as well as other general norms p. The operations
have to be associative with zero element () and unit element {\}, and distribu-
tive with U such that the resulting structure is an w-complete semiring. The
norm 4 has to be monotone with respect to o and U, with some minimal norms
for § and {\}, and be defined for all finite sets.

If rational, linear and algebraic languages are defined as fixed points of cor-
responding systems of equations on w-complete semirings, it can be shown that
iteration lemmata similar to the classical ones hold for such languages.

2 Definitions

Let M be a monoid with binary operation o and unit element A. Extend o to
an associative binary operation o : P(M) x P(M)—P (M), distributive with U
(Ao(BUC)=(AoB)U(AoC) and (AUB)oC = (AoB)U(Bo() ), with unit
element {A\} ({A\}oA=Ao{\} =A), and zero element ) (o A= Ao =10).
Then § = (P(M),U,0,0,{\}) is an w-complete semiring, i.e. if A; C A;41
for 0 < then Bo ;50 Ai = Uiso(B o Ai) and (U5 4i) © B = U;»0(4i 0 B).
Define also A°(®) = {)}, A°(D) = A A°(+1) = 40 4°(F) | 40 = ], ., A°H).

Let o : P(M)—IN be a ( partial ) function ( norm ) defined for all finite sets,
with the following properties :
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n(® =0, p({A}) <1, AC B=pu(A) < uB),
(4), u(B) < p(AU B) < maz{u(A), u(B)},

1(A), (B) < p(AoB) for A# 0, B # 0, u(AoB) < pu(A) +u(B) ,u(A) = oo

for |A| = oo.

Let X = {Xi,...,X,} be a set of variables such that X N M = 0.

A monomial over S with variables in X is a finite expression of the form :
AjoAso...0A, , where A; € X or A; C M,|4;] < o0,i =1,...,k. ( without
loss of generality, 4; = {a;} with a; € M suffices ). A polynomial p(X) over S
is a finite union of monomials where X = (Xy,---, X},,).

A system of equations over S is a finite set of equations :

E={X;,=p;(X)]i=1,...,n}, where p;(X) are polynomials.

The solution of the system E is a n-tuple (L1, ..., L,) of languages over M,
where L; = p;(L1, ..., L,) and the n-tuple is minimal with this property, i.e. if
(LY,..., L) is another n-tuple that satisfies E, then (Ly,...,Ly,) < (L},..., L)
( where the order is defined componentwise with respect to inclusion ).

i From the theory of semirings follows that any system of equations over &
has a unique solution, and this is exactly the least fixed point starting with
(X1, -+, Xp) = (0,---,0). For the theory of semirings see [4, 6].

A system of equations is called linear if all monomials are of the form AoXoB
or A, and rational if they are of the form X o A or A, with A C M and B C M.
Corresponding families of languages ( solutions of such systems of equations )
are denoted by ALG(o), LIN (o), and RAT (o). In case o is commutative then
ALG(o) = LIN (o) = RAT (o).

3 Iteration Lemmata

The following theorems can be proven in a way analogous to the classical itera-
tion lemmata. Proofs can be found in [7].

Theorem 3.1 : Let L € RAT (o) with L C M. Then there exist n(L) > 0 such
that, for any w € L with u({w}) > n(L), there exist x1, z2,x3 € M such that :
(i) w € {z1} o {wa} o {ws}.
(i) 0 < p({r } o {2}) < n(D).
(iii) {z1} o {z2}° o {z3} C L. 0

Theorem 3.2 : Let L € LIN (o) with L C M. Then there exist n(L) > 0 such
that, for any w € L with p({w}) > n(L), there exist x1, z2, 3, 24,25 € M such
that :

(i) w € {1} o {2} o {ws} o {ws} o {25}

(i) p({z1} o {2} o {z4} o {25}) < n(L).
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(i) 0 < p({wa)} o {a4)
(iv) VE > 0: {1} o {w2}°® o {23} o {24}°¥) o {25} C L. 0

Theorem 3.3 : Let L € ALG(o) with L C M. Then there exist n(L) > 0 such
that, for any w € L with p({w}) > n(L), there exist x1, z2, 3, 24,25 € M such
that :

(i) w € {1} o {za} o {ms} o {aa} o {5 ).

(i) ({2} o {5} o {4}) < n(L).

(i) 0 < pu({z3} o {z1})

(iv) VE > 0 : {z1} o {x2}°® o {x3} o {z4}°®) o {z5} C L.

o

To prove these theorems the systems of equations are first converted into
equivalent systems of equations ( with additional variables ) where all monomials
are in normal form ( X oY or « for algebraic, @ o X or X o« or « for linear,
and X o« or « for rational systems ).

Any w € L can be generated as w € {#1} o--- o {8} where the 5; € M are
the leaves of a binary derivation tree with respect to o, and the children of each
node correspond to monomials. Note that p is monotone with respect to U and
o, but bounded by the sum.

4 Associative Structures
Words

Example 4.1 : Let o = -, the usual catenation ( being associative with unit
element A on M = V* ), and p be defined by p(w) = |w|, extended to sets :

u(@) =n({A}) =0, we V'=u({w}) =w|, u(AoB) =p(A) +u(B) ,

(AU B) = maz{u(A), u(B)} , p(A°) = oo .

Then (P(V*),-,U,{A},0) is an w-complete semiring.

O

Example 4.2 : Let o = w1, the shuffle operation ( being associative and com-
mutative on M = V* with unit element X ), and p be defined as in Example

4.1.
Then (P(V*),w, U, {A},0) is an w-complete semiring.

Vectors

Example 4.3 : Consider the set IN* of positive k& dimensional vectors. For
= (x1,---,2) and y = (y1,--,yx) € IN* define oy = x + y and the norm
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p(z) = maz{x,,---,x}. o is an commutative and associative operaion on IN*,
and can be extended to P(IN*).

Then (P(IN*), +,U,{0},0) is a commutative w-complete semiring. 0
Matrices

Example 4.4 : Consider the set My (IN) all k x k-matrices with coefficients
from IN and matrix ( operator ) norm ||M|| > 1., Let the associative operation
be defined by the normal matrix multiplication My o My = My - M. Let I be
the unit matrix.

Again, (P}( M, (IN)),-,U,I,0) is an w-complete semiring.

The norm is defined by (M) = log2(2-||M|]|) = 1+1og2(||M]]) (in this case
as a positive real number ). Then

maz{p(Mi), n(Ma)} < p(M - M) =1+ loga(|| My - Mo||)

= 1+ logs (|| My | | Mal]) < 2+ loga(|[My]]) +logs(|[Ma]]) = p(M) + u(Ma).

O

In the next two examples two closely related associative structures on words
are presented to show that iteration lemmata also may hold for a subset of the
structure, actually without only one zero element. This is done by introducing
‘garbage’ symbols such that the condition on the norm is fulfilled. They also
serve as a method for other algebraic structures with similar properties.

Words

Example 4.5 : Let X be an alphabet, # ¢ X, and consider A = X* U {#}*.
Define an operation ® : 4 x A — A in the following way : for z,y € X and
w, wy,ws € X
Wi O Twy = W TWy , WL O ywy = FWITIwAFT4f g oL )
wo# = #Fow=#WHT (lw| >0, k>0),
#m O # =7 (mn>0)
Aow=wor=w, \Oo# =# o) =#

Then M = (A,®, ) is a monoid since ® is an associative operation on A.
Extend ® to P(A) by

A®B= U a®b
a€A,beEB

Then S = (P(A),U,®,0,{\}) is an w-complete semiring.

Therefore ®-rational, ®-linear and ®-algebraic languages over A can be de-
fined as minimal solutions of corresponding systems of equations.
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Note that any such language L is a disjoint union L; & Ly with L; C X* and
Ly C {#}.

Defining the norm of any a € A by

p(w) = |w| for w € X* and u(#*) =k (k>0)

one gets p(a) + u(b) < ula®b) +1 < u(a) + u(db) + 1, and extended to sets

maw(u(A), p(B)) < (A ® B) < pu(A) + p(B).

Therefore the iteration lemmata for ®-rational, ®-linear, and ®-algebraic
languages hold. This is especially true for elements from L N X*.

O

Example 4.6 : Let ¥ be an alphabet, 2 ¢ ¥, and consider B = X* U {(2}.
Define an operation ® : B x B — B in the following way : for w, wq,ws € X*
WT ® TWwy = w1 Twe , Wi Qyws = N ifxF£y
WRN=NRWw=AN=0A=02x 1 =1N.

AQW=wRA=w
® is an associative operation, and M = (B,®, A) is a monoid.

® can be extended to P(B) as above.

Then Sp = (P(B),U, ®,0,{\}) is an w-complete semiring.

Again, ®-rational, ®-linear and ®-algebraic languages can be defined. Note
that such a language Ly, either contains (2 or not.

Now define a relation ~ on A by

a =~ b if either a,b € X* and a =b, or a = #™, b=#" (m,n >0 ).

~ is an equivalence relation on A. Thus M/~ and S/~ can be defined.
Note that Mo ~ M/~ and S ~ §/~, where ~ means isomorphic.

Now define a mapping h : S = Sp by h(w) = w for w € X* and h(a) = 2
for a € {#}T.
Thus, h=1(2) = {#}* and h='(w) = w for w € I*.

If L is some ®-language, defined by a ®-system of equations, define the
corresponding ®-system of equations, replacing every #* by (2 ( only in the
constants of the system of equations ) and every ® by ®, yielding a ®-language
Lg. Then h(L) = Lo and LN X* = Lo N X*.

On the other hand, if Lg is some ®-language, define the corresponding
®-system of equations, replacing every 2 by # ( only in the constants of the
equation system ) and every ® by ®, yielding a ®-language L. Then h(L) = L,
and LN X* = Lo N X*.

Since the X part of any ®-language L, is identical to the X part of the
corresponding ®-language L, the iteration lemmata for ®-languages also are
valid for the X' part of L.
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Note that the iteration lemmata for ®-languages cannot be proved by the
same method as for ®-languages since there is no ( almost ) monotone and
bounded norm on Sg,.

O

Traces

Details on traces can be found in [2, 3].

Let V be an alphabet and C' C V x V a symmetric, not necessarily reflexive,
relation, called an independence relation. Define uabv ~ ubav if (a,b) € I and
consider its reflexive and transitive closure ~*. Then ~* is an equivalence rela-
tion, and the set 7 = V*/ ~*, also written V*/C, being a monoid, is called the
trace monoid of V' with respect to C.

For t; = [u],t = [v] € T the binary operation on traces is defined by
t; oto = [uv], and the neutral element is [A]. For t = [w] € T a norm can be
defined by p(t) = |w|.

A ( Mazurkiewicz ) trace can be uniquely factorized into left ( right ) Foata
normal form [2, 5] : ¢ = [z1] 0---o[xy] with Va,b € [z;] : (a,b) e C (1<i< k)
and Vb € [z;41] Ja € [z;] : (a,b) € C (left ) or Va € [z;] Ta € [x;41] : (a,b) € C
(right ) (1 <4 < k). Here the factors [z;] can be considered as multisets
forming some maximal commutative clique.

The number of such factors, left or right, is identical, and also defines a norm
u(t) on T with p([A]) = 0, which can be extended to set of traces, yielding also
the structure (P(7),0,U, {[A]},0).

Example 4.7 : Let # be an additional symbol with (#,#) ¢ C, and define
C=TU{#|1 <k}

Let the trace t; = [z1] 0 --- o [zk] o [y1] be factorized into right Foata normal
form, and the trace ¢» = [ya2] o [z1] 0 - - - © [2,] into left Foata normal form. Then
® is defined by

tt Oty =[xy mpy121 e 2m) if (1] = [y2] , and t; © ty = [#FIMHL] f
[v1] # [y,

Not=toN=t, No#]=#1oN=#", #1o#"] = #""]

® is also an associative operation, and M¢ = (C,®,[)\]) is a monoid.

Again, ® can be extended to P(C), and S¢ = (P(C),U,®,0,{[\]}) is an
w-complete semiring.

Therefore ®-rational, ®-linear and ®-algebraic languages over C can be de-
fined as minimal solutions of corresponding systems of equations.

Defining now the norm of any ¢t € C as in Example 3.4 for t € 7, and
p([#*) =k (k> 0) one gets u(s) + p(t) < p(s ©t) +1 < pu(s) + p(t) + 1, and
extended to sets this yields maz(u(A), u(B)) < u(A ® B) < u(A) + u(B).
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Therefore the iteration lemmata for ®-rational, ®-linear, and ®-algebraic
trace languages hold.

O

Example 4.8 : Let 2 ¢ ¥, and consider D = T U {2}.

Let the trace t; = [z1] 0 --- o [zk] o [y1] be factorized into right Foata normal
form, and the trace to = [y2] o [21] 0 - - - 0 [2n,] into left Foata normal form.

Define an operation ® : D x D — D in the following way :

t1 ®te =[xy Tpy121 - - 2m] if [Y1] = [y2], and

t1 ®@ta = 2 if [y1] # [y2],

Not=to[A\]=t

NeoR=02x[) =1

N N2=1

® is an associative operation, and M¢ o = (D, ®,\) is a monoid.

® can be extended to P(D) as above.

Then S¢,o = (P(D),U, ®,0,{\}) is an w-complete semiring.

Again, ®-rational, ®-linear and ®-algebraic trace languages can be defined.
Note that such a language L, either contains {2 or not.

Now similar relations as between the structures from examples 4.5 and 4.6
can be stated between the structure Se = (P(C),U, ®,0,{[A]}) from example
4.7 and the structure from example 4.8, Sc.o = (P(D),U, ®,0, {A}).

Therefore the iteration lemmata also hold for ®-trace languages without (2.

O

Trees

Example 4.9 :

Consider labelled trees with labels z € C where C' is a finite set of labels. If
T is any tree let p(T) be the label of the root, and A(T) the set of labels of the
leaves. Define the norm p(T") of T to be the depth of T'. Let A denote the empty
tree, and {2 a special element.

Define T7 o T5 to be the tree T' obtained from 77 and 7> by identifying
each leaf of T7 with label p(T%) with the root of T, and labelling it as before,
provided p(T») € A(T1) and that (A(T1) —{p(T2)})NA(T2) = 0. Otherwise, define
T10T> = 2. Furthermore, define AoT = ToA = T and 20T = Tof) = 20() = (2.

Then o is an associative operation, and

maz(u(Th), p(T2) < p(Th o w(Tz) < p(Ty) + p(Tz) for all Th, To # £2.

Extend o to P(T). Then (P(T),0,U,{A4},0) is an w-complete semiring.

O
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Example 4.10 :

As in the previous example consider labelled trees.

Define {11} o {T>} to be the set of all trees obtained from 77 and T» by
identifying a leaf of T7 with label p(T5) with the root of T», and labelling it as
before, provided p(Ts) € A(T1) and (A(T1) — {p(T2)}) N A(T2) = (). Otherwise let
the result be {£2}.

Then o is an associative operation and (P(7),o,U, {4}, ) is an w-complete
semiring.

o

Graphs
The next examples show some associative operations on graphs.

Let C be a finite set of colours ( or labels ). A vertex coloured ( or vertex
labelled ) graph is a structure G = (V, E,C,~) where V is a finite set of vertices,
E CV xV — D the set of edges with D = {(z,z)|z € V}, and v : V=C a
mapping attaching every vertex a colour. Actually, V', E, and v depend on G. If
necessary, this dependence will be indicated.

Forz € Vet I(z) = {y € V|(y,z) € E} and O = {y € V|(z,y) € E}. The
indegree of z is defined by d_(x) = |I(z)|, and the outdegree by d;(z) = |O(x)|.
This can be extended to the entire graph by I = {z € V|d_(z) = 0} ( initial
vertices ) and O = {z € V(G)|d+(z) = 0} ( terminal vertices ). Let IN O = 0,
and assume I # 0, O # 0.

Let §(x,y) be the ( directed ) distance between the vertices x and y. Addi-
tionally, assume also that Vo € I Jy € O : §(x,y) < oo, and define the norm
w(G) = max{d(z,y) | §(z,y) < oo,z € I,y € O} as a norm of G.

Consider also the sets y(I) and y(O), representing the colours of initial and
terminal vertices.

Let G denote the set of all such graphs.

Example 4.11 : Now consider two such graphs, G; = (Vi,E;,C,y) and
G = (Va, E3,C, ). Take a copy of G» such that V1 NV, = (). An operation ®
will be defined for singletons of such graphs.

Let ¢ € C be a colour, and consider the sets v; ' (c) N Oy, 75 *(c) N L.

IfVe e C: |y ()N 01| = |v5 ' (c) N I| = k(c) then take a permutation 7
on {1,---,k(c)}, and identify z; € v '(c) N Oy with Yn(i) € 75 He) N Is.

If3ceC: |y (e)NO =]yt (e)NI >0

then define the resulting graph G = (V, E,C,v) € {G1} ® {G2} by

V=ViUVe —U.,cr (¢)N0O1, E = E UE, ( with identification of
vertices ) . I =11, 0 =0,

Y(z) =n(2) if 2 € Vi = U,eci H(€) N 01 and ¥(2) = 12(2) if 2 € Va.
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Ounly G = (V, E,C, ) defined in such a way are elements of {G1} ® {G2}.

IfVYee C: |y (e)NO| =]yt (e)Nn Iy =0

then define the resulting graph G = (V, E, C, ) by

V=WVuWn E=FEUE,, I=6LUIL,0=0,U0,

v(z) =1 (z) if z € V1 and y(z) = 72(2) if z € V5.

{Gi} 0 {G2} ={G}

In all other cases let {G1} ® {Go} = {X#G)+u(G2)Y

where X = ({0,1},{(0, 1)}, {#},7) with # ¢ C and 7(0) = (1) = #,
{GY o {X*} = {X*} 0 {G} = {XHDH} {XF} o (X} = {X*7}, 0 < k,m,
X' =X.

Thus graphs are connected only if the numbers of vertices in O; with the
same colour coincide with those in I>. Especially, if all such numbers are 0 then
the graphs are put in parallel.

Let furthermore A be the empty graph, the neutral element, with the following
properties :

{A}o{G} = {G}o{a} = {G}, {4}o{a} = {4}, {A}o{} = {2}o{d} = {2}.

Extend ® to sets of graphs by

AoB= |J {Glo{H},
GeA,HEB
Then ({G1} @ {G2}) ® {Gs} = {G1} © ({G2} ® {G3}), and also for sets
(A@B)®D =A6(Bo®D),ie ©isan associative operation.

Let Gx = GU{X* | k > 0}. Then the structure S = (P(G4),U,®, B, {A})
is an w-complete semiring. Therefore ®-rational, ®-linear, and ®-algebraic lan-
guages can be defined.

The norm satisfies maz(p(G1), u(Gz)) < pu(G) < u(Gr) + p(G2) for all
G € {G1}©{G,}, and extended to sets of graphs, fulfills all conditions. Therefore
the iteration lemmata hold also for ®-languages.

O

Example 4.12 : Now consider two such graphs, G; = (V1,E;,C,v1) and
Gs = V1, Es,C,72). Assume V3 NV2 = (). An operation ® will be defined for
singletons of such graphs.

Let ¢ € C be a colour, and consider the sets v, *(¢) N Oy, v, *(c) N I.

IfVee C: |y (e)NO1| = |v5 ' (c) N Iz| = k(c) then take a permutation 7
on {1,---,k(c)}, and identify z; € 77 '(c) N O; with Yn(i) € 75 He) N L.

f3ceC: |y (e)NO| =]yt (e)Nnly >0

then define the resulting graph G = (V, E,C,v) € {G1} ® {G2} by
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V=nuV,-U.c 71_1(0) NO,, E = E; UE, ( with identification of
vertices ) . I =1, 0 =0,

Y(z)=m(z)if ze Vi =U,.co 7, He) N Oy and y(2) = Ya(2) if 2 € Vs.

Only G = (V, E,C,~) defined in such a way are elements of {G1} ® {G2}.

IfVee C:ly He)NO =]y (e)N Iy =0

then define the resulting graph G = (V, E, C,v) by

V=ViUVs, E=FEUEsy, I=LUL, O=0,U0O,

v(z) =1 (z) if z € V1 and y(2) = 72(2) if z € V5.

{G1} @ {G2} = {G}

In all other cases define {G1} ® {G2} = {2} where 2 is a zero element with
the following properties by definition :

[} {2} = {2} @ (G} = {2} ® {2} = {2}.

Let furthermore A be the empty graph, the neutral element, with the following
properties :
{Ayo{G} = {Gia{d} = {G}, {4ja{d} = {4}, {4}o{0} = {2}e{4} = {0}

Then ({G1} ® {G2}) ® {G3} = {G1} ® ({G2} ® {G3}), i.e. the operation ®
is associative.

Extend ® to sets of graphs by

AeB= |J {G}eo{H},
GeA,HeB
Then ({G1} ® {G2}) ® {G3} = {G1} ® ({G=2} ® {G3}), and also for sets
(A B)® D =A® (B®D), ie. ® is an associative operation.

Let Go = G U {2}. Then the structure Sp = (P(Gp),U,®,0,{A}) is an
w-complete semiring. Therefore ®-rational, ®-linear, and ®-algebraic languages
can be defined.

Now similar relations as between the structures from examples 4.5 and 4.6
can be stated between the structure S = (P(Gx),U, ®,0,{A}) from example
4.11 and the structure from example 4.12, S, = (P(Gn),U, ®, 0, {A}).

Therefore the iteration lemmata also hold for ® languages without (2.

Example 4.13 : Consider any Ny C (U, ¢ v, H(e)) N Oy and

Ma € (Upeo s () N Iz with

Ve e C i1 (0) N Nl = 195 (0)) 0 Mol

Ify7 (e) NNy = {z1,---, 2k}, v5 ' (¢)) N My = {y1,---,yx}, and 7. is any
permutation on {1,---,k} then identify x; with y,_¢; ( for all colours ). Let 7
denote the total permutation Il.ccm,, i.e. the one to one mapping N; < M.
Thus M2 = 71'(N1) and |N1| = |M2|
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Let I = IlU(IQ_M2) and O = (Ol—Nl)UOQ, V = ViU(Vé-Mz),
E =FE1UE;, v(z) =m(z) if z € V1, and v(z) = 72(2) if z € (Vo — Ms). Define
G = (V,E,C,v). Put any G defined in such a way into {G1} o {G=}.

Extend o to sets of graphs by

AoB= ] {G}o{H}.
GeEA,HEB

o is an associative operation.

If A is defined as the neutral element, i.e. {A}0o{G} = {G}o{A} = {G}, then
the structure S = (P(G),U, 0,0, {A}) is an w-complete semiring, and o-rational,
o-linear, o-algebraic languages can be defined.

As for the norm trivially holds : maz(u(G1), n(G2)) < u(G@) < w(G1)+p(Gs)
for any graph G € {G:} o {G>}, the iteration lemmata are valid for such o
languages.

O

5 Conclusion

It has been shown that there exists a variety of associative structures for which
iteration lemmata are valid. Especially, certain operations on graphs are impor-
tant for concurrent systems [8]. In another paper process algebras related to
some graph structures have been considered [1].
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