Some Algebraic Structures with Iteration Lemmata

Manfred Kudlek (Fachbereich Informatik, Universität Hamburg kudlek@informatik.uni-hamburg.de)

Abstract: This paper deals with solutions of algebraic, linear, and rational systems of equations over an ω -complete semiring, and their iteration lemmata. These are guaranteed if the underlying structure has an associative multiplicative operation, and its elements have a norm. A number of such structures like words, vectors, traces, trees, graphs, are presented.

Keywords: ω -complete semirings, systems of equations, algebraic, linear, rational languages, norm, iteration lemmata, associative structures.

1 Introduction

The iteration lemmata for regular, linear and context-free languages are well known. They are based on the catenation operation (with unit element λ) on the free monoid V^* over some alphabet V, and the norm |w| (length of words).

In this paper other binary operations \circ on the power set on underlying monoids M are introduced, as well as other general norms μ . The operations have to be associative with zero element \emptyset and unit element $\{\lambda\}$, and distributive with \cup such that the resulting structure is an ω -complete semiring. The norm μ has to be monotone with respect to \circ and \cup , with some minimal norms for \emptyset and $\{\lambda\}$, and be defined for all finite sets.

If rational, linear and algebraic languages are defined as fixed points of corresponding systems of equations on ω -complete semirings, it can be shown that iteration lemmata similar to the classical ones hold for such languages.

2 Definitions

Let M be a monoid with binary operation \circ and unit element λ . Extend \circ to an associative binary operation $\circ: \mathcal{P}(M) \times \mathcal{P}(M) \to \mathcal{P}(M)$, distributive with \cup ($A \circ (B \cup C) = (A \circ B) \cup (A \circ C)$ and $(A \cup B) \circ C = (A \circ B) \cup (B \circ C)$), with unit element $\{\lambda\}$ ($\{\lambda\} \circ A = A \circ \{\lambda\} = A$), and zero element \emptyset ($\emptyset \circ A = A \circ \emptyset = \emptyset$). Then $\mathcal{S} = (\mathcal{P}(M), \cup, \circ, \emptyset, \{\lambda\})$ is an ω -complete semiring, i.e. if $A_i \subseteq A_{i+1}$ for $0 \le i$ then $B \circ \bigcup_{i \ge 0} A_i = \bigcup_{i \ge 0} (B \circ A_i)$ and $(\bigcup_{i \ge 0} A_i) \circ B = \bigcup_{i \ge 0} (A_i \circ B)$. Define also $A^{\circ(0)} = \{\lambda\}$, $A^{\circ(\overline{1})} = A, A^{\circ(k+1)} = A \circ A^{\circ(k)}$, $A^{\circ} = \bigcup_{k \ge 0} A^{\circ(k)}$.

Let $\mu: \mathcal{P}(M) \to I\!\!N$ be a (partial) function (norm) defined for all finite sets, with the following properties :

$$\begin{array}{l} \mu(\emptyset)=0\;,\;\mu(\{\lambda\})\leq 1\;,\;A\subseteq B \Rightarrow \mu(A)\leq \mu(B)\;,\\ \mu(A),\mu(B)\leq \mu(A\cup B)\leq \max\{\mu(A),\mu(B)\},\\ \mu(A),\mu(B)\leq \mu(A\circ B)\;\mathrm{for}\;A\neq\emptyset,B\neq\emptyset,\mu(A\circ B)\leq \mu(A)+\mu(B)\;,\mu(A)=\infty\\ \mathrm{for}\;|A|=\infty. \end{array}$$

Let $\mathcal{X} = \{X_1, \dots, X_n\}$ be a set of variables such that $X \cap M = \emptyset$.

A monomial over S with variables in X is a finite expression of the form : $A_1 \circ A_2 \circ \ldots \circ A_k$, where $A_i \in \mathcal{X}$ or $A_i \subseteq M, |A_i| < \infty, i = 1, \ldots, k$. (without loss of generality, $A_i = \{\alpha_i\}$ with $\alpha_i \in M$ suffices). A polynomial p(X) over S is a finite union of monomials where $X = (X_1, \cdots, X_n)$.

A system of equations over S is a finite set of equations:

$$E = \{X_i = p_i(X) \mid i = 1, \dots, n\}, \text{ where } p_i(X) \text{ are polynomials.}$$

The solution of the system E is a n-tuple (L_1, \ldots, L_n) of languages over M, where $L_i = p_i(L_1, \ldots, L_n)$ and the n-tuple is minimal with this property, i.e. if (L'_1, \ldots, L'_n) is another n-tuple that satisfies E, then $(L_1, \ldots, L_n) \leq (L'_1, \ldots, L'_n)$ (where the order is defined componentwise with respect to inclusion).

From the theory of semirings follows that any system of equations over S has a unique solution, and this is exactly the least fixed point starting with $(X_1, \dots, X_n) = (\emptyset, \dots, \emptyset)$. For the theory of semirings see [4, 6].

A system of equations is called linear if all monomials are of the form $A \circ X \circ B$ or A, and rational if they are of the form $X \circ A$ or A, with $A \subseteq M$ and $B \subseteq M$. Corresponding families of languages (solutions of such systems of equations) are denoted by $\underline{ALG(\circ)}$, $\underline{LIN(\circ)}$, and $\underline{RAT(\circ)}$. In case \circ is commutative then $\underline{ALG(\circ)} = \underline{LIN(\circ)} = RAT(\circ)$.

3 Iteration Lemmata

The following theorems can be proven in a way analogous to the classical iteration lemmata. Proofs can be found in [7].

Theorem 3.1: Let $L \in \underline{RAT(\circ)}$ with $L \subseteq M$. Then there exist n(L) > 0 such that, for any $w \in L$ with $\overline{\mu(\{w\})} > n(L)$, there exist $x_1, x_2, x_3 \in M$ such that:

- (i) $w \in \{x_1\} \circ \{x_2\} \circ \{x_3\}$.
- (ii) $0 < \mu(\{x_1\} \circ \{x_2\}) \le n(L)$.

(iii)
$$\{x_1\} \circ \{x_2\}^{\circ} \circ \{x_3\} \subseteq L$$
.

Theorem 3.2: Let $L \in \underline{LIN(\circ)}$ with $L \subseteq M$. Then there exist n(L) > 0 such that, for any $w \in L$ with $\overline{\mu(\{w\})} > n(L)$, there exist $x_1, x_2, x_3, x_4, x_5 \in M$ such that:

- (i) $w \in \{x_1\} \circ \{x_2\} \circ \{x_3\} \circ \{x_4\} \circ \{x_5\}.$
- (ii) $\mu(\{x_1\} \circ \{x_2\} \circ \{x_4\} \circ \{x_5\}) \le n(L)$.

(iii)
$$0 < \mu(\{x_2\} \circ \{x_4\})$$

(iv) $\forall k \ge 0 : \{x_1\} \circ \{x_2\}^{\circ(k)} \circ \{x_3\} \circ \{x_4\}^{\circ(k)} \circ \{x_5\} \subseteq L$.

Theorem 3.3: Let $L \in \underline{ALG(\circ)}$ with $L \subseteq M$. Then there exist n(L) > 0 such that, for any $w \in L$ with $\overline{\mu(\{w\})} > n(L)$, there exist $x_1, x_2, x_3, x_4, x_5 \in M$ such that:

- (i) $w \in \{x_1\} \circ \{x_2\} \circ \{x_3\} \circ \{x_4\} \circ \{x_5\}.$
- (ii) $\mu(\{x_2\} \circ \{x_3\} \circ \{x_4\}) \le n(L)$.
- (iii) $0 < \mu(\{x_2\} \circ \{x_4\})$
- (iv) $\forall k \geq 0 : \{x_1\} \circ \{x_2\}^{\circ(k)} \circ \{x_3\} \circ \{x_4\}^{\circ(k)} \circ \{x_5\} \subseteq L.$

To prove these theorems the systems of equations are first converted into equivalent systems of equations (with additional variables) where all monomials are in normal form ($X \circ Y$ or α for algebraic, $\alpha \circ X$ or $X \circ \alpha$ or α for linear, and $X \circ \alpha$ or α for rational systems).

Any $w \in L$ can be generated as $w \in \{\beta_1\} \circ \cdots \circ \{\beta_k\}$ where the $\beta_j \in M$ are the leaves of a binary derivation tree with respect to \circ , and the children of each node correspond to monomials. Note that μ is monotone with respect to \cup and \circ , but bounded by the sum.

4 Associative Structures

Words

Example 4.1: Let $\circ = \cdot$, the usual catenation (being associative with unit element λ on $M = V^*$), and μ be defined by $\mu(w) = |w|$, extended to sets:

$$\mu(\emptyset) = \mu(\{\lambda\}) = 0 \ , \ w \in V^* \Rightarrow \mu(\{w\}) = |w| \ , \ \mu(A \circ B) = \mu(A) + \mu(B) \ ,$$

$$\mu(A \cup B) = \max\{\mu(A), \mu(B)\} \ , \ \mu(A^\circ) = \infty \ .$$
 Then $(\mathcal{D}(V^*) \to \{\lambda\}) = \emptyset$ is an $(A \cap B) = \emptyset$.

Then $(\mathcal{P}(V^*), \cdot, \cup, \{\lambda\}, \emptyset)$ is an ω -complete semiring.

Example 4.2 : Let $\circ = \coprod$, the shuffle operation (being associative and commutative on $M = V^*$ with unit element λ), and μ be defined as in Example 4.1.

Then $(\mathcal{P}(V^*), \coprod, \cup, \{\lambda\}, \emptyset)$ is an ω -complete semiring.

Vectors

Example 4.3: Consider the set $I\!N^k$ of positive k dimensional vectors. For $x=(x_1,\dots,x_k)$ and $y=(y_1,\dots,y_k)\in I\!N^k$ define $x\circ y=x+y$ and the norm

 $\mu(x) = max\{x_1, \dots, x_k\}$. \circ is an commutative and associative operation on \mathbb{N}^k , and can be extended to $\mathcal{P}(\mathbb{N}^k)$.

Then
$$(\mathcal{P}(\mathbb{N}^k), +, \cup, \{0\}, \emptyset)$$
 is a commutative ω -complete semiring.

Matrices

Example 4.4: Consider the set $\mathcal{M}_k(I\!\!N)$ all $k \times k$ -matrices with coefficients from $I\!\!N$ and matrix (operator) norm $||M|| \ge 1$., Let the associative operation be defined by the normal matrix multiplication $M_1 \circ M_2 = M_1 \cdot M_2$. Let I be the unit matrix.

Again, $(\mathcal{P})(\mathcal{M}_k(I\!\!N)), \cdot, \cup, I, \emptyset)$ is an ω -complete semiring.

The norm is defined by $\mu(M) = log_2(2 \cdot ||M||) = 1 + log_2(||M||)$ (in this case as a positive real number). Then

$$\begin{aligned} & \max\{\mu(M_1), \mu(M_2)\} \leq \mu(M_1 \cdot M_2) = 1 + \log_2(||M_1 \cdot M_2||) \\ &= 1 + \log_2(||M_1|| \cdot ||M_2||) < 2 + \log_2(||M_1||) + \log_2(||M_2||) = \mu(M_1) + \mu(M_2). \end{aligned}$$

In the next two examples two closely related associative structures on words are presented to show that iteration lemmata also may hold for a subset of the structure, actually without only one zero element. This is done by introducing 'garbage' symbols such that the condition on the norm is fulfilled. They also serve as a method for other algebraic structures with similar properties.

Words

Example 4.5 : Let Σ be an alphabet, $\# \not\in \Sigma$, and consider $\mathcal{A} = \Sigma^* \cup \{\#\}^+$. Define an operation $\odot : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ in the following way : for $x, y \in \Sigma$ and

Define an operation $\odot: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ in the following way: for $x, y \in \Sigma$ and $w, w_1, w_2 \in \Sigma^*$

$$\begin{array}{l} w_1 x \odot x w_2 = w_1 x w_2 \; , \; w_1 x \odot y w_2 = \#^{|w_1| + |w_2| + 1} \; \text{if} \; x \neq y, \\ w \odot \#^k = \#^k \odot w = \#^{|w| + k - 1} \; (\; |w| > 0 \; , \; k > 0 \;) \; , \\ \#^m \odot \#^n = \#^{m + n - 1} \; (\; m, n > 0 \;) \\ \lambda \odot w = w \odot \lambda = w \; , \; \lambda \odot \#^k = \#^k \odot \lambda = \#^k \end{array}$$

Then $\mathcal{M} = (\mathcal{A}, \odot, \lambda)$ is a monoid since \odot is an associative operation on \mathcal{A} . Extend \odot to $\mathcal{P}(\mathcal{A})$ by

$$A \odot B = \bigcup_{a \in A, b \in B} a \odot b$$

Then $S = (\mathcal{P}(A), \cup, \odot, \emptyset, \{\lambda\})$ is an ω -complete semiring.

Therefore \odot -rational, \odot -linear and \odot -algebraic languages over \mathcal{A} can be defined as minimal solutions of corresponding systems of equations.

Note that any such language L is a disjoint union $L_1 \uplus L_2$ with $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \{\#\}^+$.

Defining the *norm* of any $a \in \mathcal{A}$ by $\mu(w) = |w|$ for $w \in \Sigma^*$ and $\mu(\#^k) = k$ (k > 0) one gets $\mu(a) + \mu(b) \le \mu(a \odot b) + 1 \le \mu(a) + \mu(b) + 1$, and extended to sets $\max(\mu(A), \mu(B)) \le \mu(A \odot B) \le \mu(A) + \mu(B)$.

Therefore the iteration lemmata for \odot -rational, \odot -linear, and \odot -algebraic languages hold. This is especially true for elements from $L \cap \Sigma^*$.

Example 4.6: Let Σ be an alphabet, $\Omega \not\in \Sigma$, and consider $\mathcal{B} = \Sigma^* \cup \{\Omega\}$.

Define an operation $\otimes : \mathcal{B} \times \mathcal{B} \to \mathcal{B}$ in the following way : for $w, w_1, w_2 \in \Sigma^*$ $w_1 x \otimes x w_2 = w_1 x w_2$, $w_1 x \otimes y w_2 = \Omega$ if $x \neq y$

 $w\otimes \varOmega = \varOmega \otimes w = \lambda \otimes \varOmega = \varOmega \otimes \lambda = \varOmega \otimes \varOmega = \varOmega.$

 $\lambda \otimes w = w \otimes \lambda = w$

- \otimes is an associative operation, and $\mathcal{M}_{\Omega} = (\mathcal{B}, \otimes, \lambda)$ is a monoid.
- \otimes can be extended to $\mathcal{P}(\mathcal{B})$ as above.

Then $\mathcal{S}_{\Omega} = (\mathcal{P}(\mathcal{B}), \cup, \otimes, \emptyset, \{\lambda\})$ is an ω -complete semiring.

Again, \otimes -rational, \otimes -linear and \otimes -algebraic languages can be defined. Note that such a language L_{Ω} either contains Ω or not.

Now define a relation \approx on \mathcal{A} by $a \approx b$ if either $a, b \in \Sigma^*$ and a = b, or $a = \#^m, b = \#^n$ (m, n > 0). \approx is an equivalence relation on \mathcal{A} . Thus \mathcal{M}/\approx and \mathcal{S}/\approx can be defined. Note that $\mathcal{M}_{\Omega} \simeq \mathcal{M}/\approx$ and $\mathcal{S}_{\Omega} \simeq \mathcal{S}/\approx$, where \simeq means isomorphic.

Now define a mapping $h: \mathcal{S} \to \mathcal{S}_{\Omega}$ by h(w) = w for $w \in \mathcal{L}^*$ and $h(a) = \Omega$ for $a \in \{\#\}^+$.

```
Thus, h^{-1}(\Omega) = \{\#\}^+ and h^{-1}(w) = w for w \in \Sigma^*.
```

If L is some \odot -language, defined by a \odot -system of equations, define the corresponding \otimes -system of equations, replacing every $\#^k$ by Ω (only in the constants of the system of equations) and every \odot by \otimes , yielding a \otimes -language L_{Ω} . Then $h(L) = L_{\Omega}$ and $L \cap \Sigma^* = L_{\Omega} \cap \Sigma^*$.

On the other hand, if L_{Ω} is some \otimes -language, define the corresponding \odot -system of equations, replacing every Ω by # (only in the constants of the equation system) and every \otimes by \odot , yielding a \odot -language L. Then $h(L) = L_{\Omega}$ and $L \cap \Sigma^* = L_{\Omega} \cap \Sigma^*$.

Since the Σ part of any \otimes -language L_{Ω} is identical to the Σ part of the corresponding \odot -language L, the iteration lemmata for \odot -languages also are valid for the Σ part of L_{Ω} .

Note that the iteration lemmata for \otimes -languages cannot be proved by the same method as for \odot -languages since there is no (almost) monotone and bounded norm on \mathcal{S}_{Ω} .

Traces

Details on traces can be found in [2, 3].

Let V be an alphabet and $C \subseteq V \times V$ a symmetric, not necessarily reflexive, relation, called an independence relation. Define $uabv \sim ubav$ if $(a,b) \in I$ and consider its reflexive and transitive closure \sim^* . Then \sim^* is an equivalence relation, and the set $\mathcal{T} = V^*/\sim^*$, also written V^*/C , being a monoid, is called the trace monoid of V with respect to C.

For $t_1 = [u], t_2 = [v] \in \mathcal{T}$ the binary operation on traces is defined by $t_1 \circ t_2 = [uv]$, and the neutral element is $[\lambda]$. For $t = [w] \in \mathcal{T}$ a norm can be defined by $\mu(t) = |w|$.

A (Mazurkiewicz) trace can be uniquely factorized into left (right) Foata normal form $[2, 5]: t = [x_1] \circ \cdots \circ [x_k]$ with $\forall a, b \in [x_i]: (a, b) \in C$ ($1 \le i \le k$) and $\forall b \in [x_{i+1}] \exists a \in [x_i]: (a, b) \not\in C$ (left) or $\forall a \in [x_i] \exists a \in [x_{i+1}]: (a, b) \not\in C$ (right) ($1 \le i < k$). Here the factors $[x_i]$ can be considered as multisets forming some maximal commutative clique.

The number of such factors, left or right, is identical, and also defines a norm $\mu(t)$ on \mathcal{T} with $\mu([\lambda]) = 0$, which can be extended to set of traces, yielding also the structure $(\mathcal{P}(\mathcal{T}), \circ, \cup, \{[\lambda]\}, \emptyset)$.

Example 4.7: Let # be an additional symbol with $(\#, \#) \notin C$, and define $C = T \cup \{ [\#^k] \mid 1 \leq k \}$.

Let the trace $t_1 = [x_1] \circ \cdots \circ [x_k] \circ [y_1]$ be factorized into right Foata normal form, and the trace $t_2 = [y_2] \circ [z_1] \circ \cdots \circ [z_m]$ into left Foata normal form. Then \odot is defined by

 $t_1\odot t_2=[x_1\cdots x_ky_1z_1\cdots z_m]$ if $[y_1]=[y_2]$, and $t_1\odot t_2=[\#^{k+m+1}]$ if $[y_1]\neq [y_2]$,

$$[\lambda] \odot t = t \odot [\lambda] = t \; , \; [\lambda] \odot [\#^k] = [\#^k] \odot [\lambda] = [\#^k] \; , \; [\#^k] \odot [\#^m] = [\#^{k+m}]$$

 \odot is also an associative operation, and $\mathcal{M}_C = (\mathcal{C}, \odot, [\lambda])$ is a monoid.

Again, \odot can be extended to $\mathcal{P}(\mathcal{C})$, and $\mathcal{S}_{\mathcal{C}} = (\mathcal{P}(\mathcal{C}), \cup, \odot, \emptyset, \{[\lambda]\})$ is an ω -complete semiring.

Therefore \odot -rational, \odot -linear and \odot -algebraic languages over \mathcal{C} can be defined as minimal solutions of corresponding systems of equations.

Defining now the *norm* of any $t \in \mathcal{C}$ as in Example 3.4 for $t \in \mathcal{T}$, and $\mu([\#^k]) = k$ (k > 0) one gets $\mu(s) + \mu(t) \le \mu(s \odot t) + 1 \le \mu(s) + \mu(t) + 1$, and extended to sets this yields $\max(\mu(A), \mu(B)) \le \mu(A \odot B) \le \mu(A) + \mu(B)$.

Therefore the iteration lemmata for \odot -rational, \odot -linear, and \odot -algebraic trace languages hold.

Example 4.8 : Let $\Omega \notin \Sigma$, and consider $\mathcal{D} = \mathcal{T} \cup \{\Omega\}$.

Let the trace $t_1 = [x_1] \circ \cdots \circ [x_k] \circ [y_1]$ be factorized into right Foata normal form, and the trace $t_2 = [y_2] \circ [z_1] \circ \cdots \circ [z_m]$ into left Foata normal form.

Define an operation $\otimes: \mathcal{D} \times \mathcal{D} \to \mathcal{D}$ in the following way :

$$t_1 \otimes t_2 = [x_1 \cdots x_k y_1 z_1 \cdots z_m]$$
 if $[y_1] = [y_2]$, and

$$t_1 \otimes t_2 = \Omega \text{ if } [y_1] \neq [y_2],$$

$$[\lambda] \otimes t = t \otimes [\lambda] = t$$

$$[\lambda] \otimes \Omega = \Omega \otimes [\lambda] = \Omega$$

$$\Omega \otimes \Omega = \Omega$$

- \otimes is an associative operation, and $\mathcal{M}_{C,\Omega} = (\mathcal{D}, \otimes, \lambda)$ is a monoid.
- \otimes can be extended to $\mathcal{P}(\mathcal{D})$ as above.

Then $\mathcal{S}_{C,\Omega} = (\mathcal{P}(\mathcal{D}), \cup, \otimes, \emptyset, \{\lambda\})$ is an ω -complete semiring.

Again, \otimes -rational, \otimes -linear and \otimes -algebraic trace languages can be defined. Note that such a language L_{Ω} either contains Ω or not.

Now similar relations as between the structures from examples 4.5 and 4.6 can be stated between the structure $S_C = (\mathcal{P}(\mathcal{C}), \cup, \odot, \emptyset, \{[\lambda]\})$ from example 4.7 and the structure from example 4.8, $S_{C,\Omega} = (\mathcal{P}(\mathcal{D}), \cup, \otimes, \emptyset, \{\lambda\})$.

Therefore the iteration lemmata also hold for \otimes -trace languages without Ω .

Trees

Example 4.9:

Consider labelled trees with labels $x \in C$ where C is a finite set of labels. If T is any tree let $\rho(T)$ be the label of the root, and $\lambda(T)$ the set of labels of the leaves. Define the norm $\mu(T)$ of T to be the depth of T. Let Λ denote the empty tree, and Ω a special element.

Define $T_1 \circ T_2$ to be the tree T obtained from T_1 and T_2 by identifying each leaf of T_1 with label $\rho(T_2)$ with the root of T_2 , and labelling it as before, provided $\rho(T_2) \in \lambda(T_1)$ and that $(\lambda(T_1) - \{\rho(T_2)\}) \cap \lambda(T_2) = \emptyset$. Otherwise, define $T_1 \circ T_2 = \Omega$. Furthermore, define $\Lambda \circ T = T \circ \Lambda = T$ and $\Omega \circ T = T \circ \Omega = \Omega \circ \Omega = \Omega$.

Then \circ is an associative operation, and

$$max(\mu(T_1), \mu(T_2) \le \mu(T_1 \circ \mu(T_2) \le \mu(T_1) + \mu(T_2) \text{ for all } T_1, T_2 \ne \Omega.$$

Extend \circ to $\mathcal{P}(\mathcal{T})$. Then $(\mathcal{P}(\mathcal{T}), \circ, \cup, \{\Lambda\}, \emptyset)$ is an ω -complete semiring.

Example 4.10:

As in the previous example consider labelled trees.

Define $\{T_1\} \circ \{T_2\}$ to be the set of all trees obtained from T_1 and T_2 by identifying a leaf of T_1 with label $\rho(T_2)$ with the root of T_2 , and labelling it as before, provided $\rho(T_2) \in \lambda(T_1)$ and $(\lambda(T_1) - {\rho(T_2)}) \cap \lambda(T_2) = \emptyset$. Otherwise let the result be $\{\Omega\}$.

Then \circ is an associative operation and $(\mathcal{P}(\mathcal{T}), \circ, \cup, \{\Lambda\}, \emptyset)$ is an ω -complete semiring.

Graphs

The next examples show some associative operations on graphs.

Let C be a finite set of colours (or labels). A vertex coloured (or vertex labelled) graph is a structure $G = (V, E, C, \gamma)$ where V is a finite set of vertices, $E \subseteq V \times V - D$ the set of edges with $D = \{(x, x) | x \in V\}$, and $\gamma : V \to C$ a mapping attaching every vertex a colour. Actually, V, E, and γ depend on G. If necessary, this dependence will be indicated.

For $x \in V$ let $I(x) = \{y \in V | (y, x) \in E\}$ and $O = \{y \in V | (x, y) \in E\}$. The indegree of x is defined by $d_{-}(x) = |I(x)|$, and the outdegree by $d_{+}(x) = |O(x)|$. This can be extended to the entire graph by $I = \{x \in V | d_{-}(x) = 0\}$ (initial vertices) and $O = \{x \in V(G) | d_+(x) = 0\}$ (terminal vertices). Let $I \cap O = \emptyset$, and assume $I \neq \emptyset$, $O \neq \emptyset$.

Let $\delta(x,y)$ be the (directed) distance between the vertices x and y. Additionally, assume also that $\forall x \in I \; \exists y \in O : \delta(x,y) < \infty$, and define the norm $\mu(G) = \max\{\delta(x,y) \mid \delta(x,y) < \infty, x \in I, y \in O\}$ as a norm of G.

Consider also the sets $\gamma(I)$ and $\gamma(O)$, representing the colours of initial and terminal vertices.

Let \mathcal{G} denote the set of all such graphs.

Example 4.11: Now consider two such graphs, $G_1 = (V_1, E_1, C, \gamma_1)$ and $G_2 = (V_2, E_2, C, \gamma_2)$. Take a copy of G_2 such that $V_1 \cap V_2 = \emptyset$. An operation \odot will be defined for singletons of such graphs.

Let $c \in C$ be a colour, and consider the sets $\gamma_1^{-1}(c) \cap O_1$, $\gamma_2^{-1}(c) \cap I_2$.

If $\forall c \in C : |\gamma_1^{-1}(c) \cap O_1| = |\gamma_2^{-1}(c) \cap I_2| = k(c)$ then take a permutation π on $\{1, \dots, k(c)\}$, and identify $x_i \in \gamma_1^{-1}(c) \cap O_1$ with $y_{\pi(i)} \in \gamma_2^{-1}(c) \cap I_2$. If $\exists c \in C : |\gamma_1^{-1}(c) \cap O_1| = |\gamma_2^{-1}(c) \cap I_2| > 0$

then define the resulting graph $G=(V,E,C,\gamma)\in\{G_1\}\odot\{G_2\}$ by

 $V = V_1 \cup V_2 - \bigcup_{c \in C} \gamma_1^{-1}(c) \cap O_1$, $E = E_1 \cup E_2$ (with identification of vertices) . $I = I_1, O = O_2$

 $\gamma(z) = \gamma_1(z)$ if $z \in V_1 - \bigcup_{c \in C} \gamma_1^{-1}(c) \cap O_1$ and $\gamma(z) = \gamma_2(z)$ if $z \in V_2$.

Only $G = (V, E, C, \gamma)$ defined in such a way are elements of $\{G_1\} \odot \{G_2\}$.

If $\forall c \in C : |\gamma_1^{-1}(c) \cap O_1| = |\gamma_2^{-1}(c) \cap I_2| = 0$

then define the resulting graph $G = (V, E, C, \gamma)$ by

 $V = V_1 \cup V_2, E = E_1 \cup E_2, I = I_1 \cup I_2, O = O_1 \cup O_2$

 $\gamma(z) = \gamma_1(z)$ if $z \in V_1$ and $\gamma(z) = \gamma_2(z)$ if $z \in V_2$.

 $\{G_1\}\odot\{G_2\}=\{G\}$

In all other cases let $\{G_1\} \odot \{G_2\} = \{X^{\mu(G_1) + \mu(G_2)}\},\$

where $X = (\{0,1\}, \{(0,1)\}, \{\#\}, \gamma)$ with $\# \not\in C$ and $\gamma(0) = \gamma(1) = \#$, $\{G\} \odot \{X^k\} = \{X^k\} \odot \{G\} = \{X^{\mu(G)+k}\}, \{X^k\} \odot \{X^m\} = \{X^{k+m}\}, 0 < k, m, X^1 = X.$

Thus graphs are connected only if the numbers of vertices in O_1 with the same colour coincide with those in I_2 . Especially, if all such numbers are 0 then the graphs are put in parallel.

Let furthermore Λ be the *empty graph*, the neutral element, with the following properties :

$$\{\Lambda\}\odot\{G\}=\{G\}\odot\{\Lambda\}=\{G\},\{\Lambda\}\odot\{\Lambda\}=\{\Lambda\},\{\Lambda\}\odot\{\Omega\}=\{\Omega\}\odot\{\Lambda\}=\{\Omega\}.$$

Extend ⊙ to sets of graphs by

$$A \odot B = \bigcup_{G \in A, H \in B} \{G\} \odot \{H\} ,$$

Then $(\{G_1\} \odot \{G_2\}) \odot \{G_3\} = \{G_1\} \odot (\{G_2\} \odot \{G_3\})$, and also for sets $(A \odot B) \odot D = A \odot (B \odot D)$, i.e. \odot is an associative operation.

Let $\mathcal{G}_{\#} = \mathcal{G} \cup \{X^k \mid k > 0\}$. Then the structure $\mathcal{S} = (\mathcal{P}(\mathcal{G}_{\#}), \cup, \odot, \emptyset, \{\Lambda\})$ is an ω -complete semiring. Therefore \odot -rational, \odot -linear, and \odot -algebraic languages can be defined.

The norm satisfies $max(\mu(G_1), \mu(G_2)) \leq \mu(G) \leq \mu(G_1) + \mu(G_2)$ for all $G \in \{G_1\} \odot \{G_2\}$, and extended to sets of graphs, fulfills all conditions. Therefore the iteration lemmata hold also for \odot -languages.

Example 4.12: Now consider two such graphs, $G_1 = (V_1, E_1, C, \gamma_1)$ and $G_2 = (V_1, E_2, C, \gamma_2)$. Assume $V_1 \cap V_2 = \emptyset$. An operation \otimes will be defined for singletons of such graphs.

Let $c \in C$ be a colour, and consider the sets $\gamma_1^{-1}(c) \cap O_1$, $\gamma_2^{-1}(c) \cap I_2$.

If $\forall c \in C : |\gamma_1^{-1}(c) \cap O_1| = |\gamma_2^{-1}(c) \cap I_2| = k(c)$ then take a permutation π on $\{1, \dots, k(c)\}$, and identify $x_i \in \gamma_1^{-1}(c) \cap O_1$ with $y_{\pi(i)} \in \gamma_2^{-1}(c) \cap I_2$.

If $\exists c \in C : |\gamma_1^{-1}(c) \cap O_1| = |\gamma_2^{-1}(c) \cap I_2| > 0$

then define the resulting graph $G = (V, E, C, \gamma) \in \{G_1\} \otimes \{G_2\}$ by

 $V = V_1 \cup V_2 - \bigcup_{c \in C} \gamma_1^{-1}(c) \cap O_1$, $E = E_1 \cup E_2$ (with identification of vertices) . $I = I_1, O = O_2$

$$\gamma(z) = \gamma_1(z)$$
 if $z \in V_1 - \bigcup_{c \in C} \gamma_1^{-1}(c) \cap O_1$ and $\gamma(z) = \gamma_2(z)$ if $z \in V_2$.
Only $G = (V, E, C, \gamma)$ defined in such a way are elements of $\{G_1\} \otimes \{G_2\}$.

If
$$\forall c \in C : |\gamma_1^{-1}(c) \cap O_1| = |\gamma_2^{-1}(c) \cap I_2| = 0$$

then define the resulting graph $G = (V, E, C, \gamma)$ by

 $V = V_1 \cup V_2, E = E_1 \cup E_2, I = I_1 \cup I_2, O = O_1 \cup O_2$

$$\gamma(z) = \gamma_1(z)$$
 if $z \in V_1$ and $\gamma(z) = \gamma_2(z)$ if $z \in V_2$.

$$\{G_1\} \otimes \{G_2\} = \{G\}$$

In all other cases define $\{G_1\} \otimes \{G_2\} = \{\Omega\}$ where Ω is a zero element with the following properties by definition:

$$\{G\} \otimes \{\Omega\} = \{\Omega\} \otimes \{G\} = \{\Omega\} \otimes \{\Omega\} = \{\Omega\}.$$

Let furthermore Λ be the *empty graph*, the neutral element, with the following properties:

$$\{\varLambda\}\otimes\{G\}=\{G\}\otimes\{\varLambda\}=\{G\},\{\varLambda\}\otimes\{\varLambda\}=\{\varLambda\},\{\varLambda\}\otimes\{\varOmega\}=\{\varOmega\}\otimes\{\varLambda\}=\{\varOmega\}.$$

Then $(\{G_1\} \otimes \{G_2\}) \otimes \{G_3\} = \{G_1\} \otimes (\{G_2\} \otimes \{G_3\})$, i.e. the operation \otimes is associative.

Extend \otimes to sets of graphs by

$$A\otimes B=\bigcup_{G\in A,H\in B}\{G\}\otimes\{H\}\ ,$$

Then $(\{G_1\} \otimes \{G_2\}) \otimes \{G_3\} = \{G_1\} \otimes (\{G_2\} \otimes \{G_3\})$, and also for sets $(A \otimes B) \otimes D = A \otimes (B \otimes D)$, i.e. \otimes is an associative operation.

Let $\mathcal{G}_{\Omega} = \mathcal{G} \cup \{\Omega\}$. Then the structure $\mathcal{S}_{\Omega} = (\mathcal{P}(\mathcal{G}_{\Omega}), \cup, \otimes, \emptyset, \{\Lambda\})$ is an ω -complete semiring. Therefore \otimes -rational, \otimes -linear, and \otimes -algebraic languages can be defined.

Now similar relations as between the structures from examples 4.5 and 4.6 can be stated between the structure $S = (\mathcal{P}(\mathcal{G}_{\#}), \cup, \odot, \emptyset, \{\Lambda\})$ from example 4.11 and the structure from example 4.12, $\mathcal{S}_{\Omega} = (\mathcal{P}(\mathcal{G}_{\Omega}), \cup, \otimes, \emptyset, \{\Lambda\}).$

Therefore the iteration lemmata also hold for \otimes languages without Ω .

Example 4.13: Consider any $N_1 \subseteq (\bigcup_{c \in C} \gamma_1^{-1}(c)) \cap O_1$ and

$$M_2 \subseteq (\bigcup_{c \in C} \gamma_2^{-1}(c)) \cap I_2$$
 with

$$\forall c \in C : |\gamma_1^{-1}(c)| \cap N_1| = |\gamma_2^{-1}(c)| \cap M_2|.$$

 $M_{2} \subseteq (\bigcup_{c \in C} \gamma_{2}^{-1}(c)) \cap I_{2} \text{ with }$ $\forall c \in C : |\gamma_{1}^{-1}(c)) \cap N_{1}| = |\gamma_{2}^{-1}(c)) \cap M_{2}|.$ If $\gamma_{1}^{-1}(c)) \cap N_{1} = \{x_{1}, \dots, x_{k}\}, \gamma_{2}^{-1}(c)) \cap M_{2} = \{y_{1}, \dots, y_{k}\}, \text{ and } \pi_{c} \text{ is any }$ permutation on $\{1, \dots, k\}$ then identify x_i with $y_{\pi_c(i)}$ (for all colours). Let π denote the total permutation $\Pi_{c \in C} \pi_c$, i.e. the one to one mapping $N_1 \leftrightarrow M_2$. Thus $M_2 = \pi(N_1)$ and $|N_1| = |M_2|$.

Let $I = I_1 \cup (I_2 - M_2)$ and $O = (O_1 - N_1) \cup O_2$, $V = V_1 \cup (V_2 - M_2)$, $E = E_1 \cup E_2$, $\gamma(z) = \gamma_1(z)$ if $z \in V_1$, and $\gamma(z) = \gamma_2(z)$ if $z \in (V_2 - M_2)$. Define $G = (V, E, C, \gamma)$. Put any G defined in such a way into $\{G_1\} \circ \{G_2\}$.

Extend o to sets of graphs by

$$A \circ B = \bigcup_{G \in A, H \in B} \{G\} \circ \{H\} .$$

• is an associative operation.

If Λ is defined as the neutral element, i.e. $\{\Lambda\} \circ \{G\} = \{G\} \circ \{\Lambda\} = \{G\}$, then the structure $\mathcal{S} = (\mathcal{P}(\mathcal{G}), \cup, \circ, \emptyset, \{\Lambda\})$ is an ω -complete semiring, and \circ -rational, \circ -linear, \circ -algebraic languages can be defined.

As for the norm trivially holds: $max(\mu(G_1), \mu(G_2)) \leq \mu(G) \leq \mu(G_1) + \mu(G_2)$ for any graph $G \in \{G_1\} \circ \{G_2\}$, the iteration lemmata are valid for such \circ languages.

5 Conclusion

It has been shown that there exists a variety of associative structures for which iteration lemmata are valid. Especially, certain operations on graphs are important for concurrent systems [8]. In another paper process algebras related to some graph structures have been considered [1].

References

- [1] L. Czaja, M. Kudlek: Rational, Linear and Algebraic Process languages and Iteration Lemmata, submitted for Fundamenta Informaticae.
- [2] V. Diekert, Y. Métivier: Partial Commutation and Traces. in Handbook of Formal Languages. (ed. G. Rozenberg, A. Salomaa) vol. 3, pp.457-533, Springer, Berlin, 1997.
- [3] V. Diekert, G. Rozenberg: The Book of Traces. World Scientific, Singapore, 1995.
- [4] J. S. Golan: The Theory of Semirings with Application in Mathematics and Theoretical Computer Science. Longman Scientific and technical, 1992.
- [5] H. J. Hoogeboom, G. Rozenberg: Dependence Graphs. in Book of Traces. (ed. V. Diekert, G. Rozenberg), pp 43-67, World Scientific, Singapore, 1995.
- [6] W. Kuich, A. Salomaa: Semirings, Automata, Languages. EATCS Monographs on Theoretical Computer Science, Springer, Berlin, 1986.
- [7] M. Kudlek: Generalized Iteration Lemmata. PU.M.A., Vol. 6 No. 2, 211-216, 1995.
- [8] W. Reisig: Petri Nets. An Introduction. EATCS Monographs on Theoretical Computer Science 4, Springer, Berlin, 1985.