
Issues Related to Distributed Processing of Picture

Languages

Padmanabhan Krishnan
Department of Computer Science

University of Canterbury, PBag 4800
Christchurch, New Zealand

E-mail: paddy@cosc.canterbury.ac.nz

Abstract: In this article we show that the parallel processing of pictures requires
extending the notion of pictures with blank spaces. For the purposes of this article,
parallel processing is defined in terms of a product construction.

Key Words: picture language, synchronisation, product language

Category: F.1.1

1 Introduction and Motivation

The term visual programming is used to mean two distinct aspects of program-
ming. In the first context visual programming means representing, developing,
manipulating programs using graphical objects. But the behaviour of the pro-
grams follow the usual semantics. Usually the graphical objects can be mapped
onto some program fragment expressed in a particular language. For example,
the article by [Usher and Jackson, 1998] discussing the use of Petri Nets to rep-
resent concurrent programs falls in this class. In the second context visual pro-
gramming means programming where graphical objects are manipulated. The
programs in this case need not be visual. An example of such work is presented in
[Erwig and Meyer, 1995]. The volume [Marriott and Meyer, 1998] discusses var-
ious issues. For the purposes of this article we assume the second interpretation.
That is, we are concerned with the processing of pictures (and not representing
the programs which process the pictures as pictures themselves).

There are various issues related to visual computation including spatial repre-
sentation (exact geometry), logical connectedness (via description logics), gener-
ating pictures using grammars or rewrite systems, using algebraic techniques etc.
The proceedings [Marriott and Meyer, 1998] and the book [Glasgow et al., 1995]
together provide a good overview.

The introductory tutorial [Giammarresi and Restivo, 1997] presents various
models describing computation over pictures. These include four way automata,
regular expressions involving horizontal and vertical composition, tessellation
automata and tiling systems. These models are not interested in spatial layout
but in logical connectedness. Thus pictures are represented as a two-dimensional
matrix. Given a picture P , the symbol Pi,j is dependent on the symbol Pi−1,j

and Pi,j−1. That is, a symbol is dependent on its row and column predecessor.
One of the most advanced theoretical models is that of a two dimensional on-

line tessellation automata (2OTA). The class of 2OTA’s is strictly more powerful
than the class of four way automata and two dimensional right linear grammars.

Journal of Universal Computer Science, vol. 5, no. 9 (1999), 542-551
submitted: 10/6/99, accepted: 15/7/99, appeared: 28/9/99  Springer Pub. Co.

The main aim of this article is to present a model of concurrent computation
for two-dimensional or picture languages. We use the well understood concur-
rency model of shared variables (or synchronisation). Although two dimensional
languages appear in the context of parallel processing or cellular automata, the
theory of finite state recognisability is more or less based on sequential compu-
tation [Giammarresi and Restivo, 1997]. Even though models like 2OTA involve
parallelism, there are some restrictions. For example, one only has a single wave
front that propagates through the picture. There is no general notion of syn-
chronisation and distributed execution. That is, the state at position (i, j) is
computed by the transition relation δ(qi−1,j , qi,j−1, ai,j). Thus in the first step
q1,1 is calculated, in the second step q1,2 and q2,1 are calculated, in the third
step q2,2, q1,3 and q3,1 are calculated etc. The following example illustrates the
key concepts.

Example 1. Consider an automaton over a single symbol (a) whose behaviour is
described as follows. Let the set of states be {0,1,2,3} with 0 as the initial state
and 1 as the only final state. The transitions of the automaton are
δ(0, 0, a) = δ(2, 3) = 1,
δ(0, 1, a) = δ(0, 2, a) = δ(2, 1, a) = δ(2, 2, a) = 2 and
δ(1, 0, a) = δ(3, 0, a) = δ(1, 3, a) = δ(3, 3, a) = 3.

Thus the state 1 is associated with the diagonal, with the state 2 associated
with all elements above the diagonal and state 3 associated with all elements
below the diagonal. An accepted picture requires that the final state (associated
with the lowest, rightmost corner) be 1, only square pictures are accepted.

In the case of linear words, models such as product automata or asynchronous
automata [Zielonka, 1987] are based on (a) combining words to form “larger”
words and (b) synchronisation on common symbols. Computations with 2OTAs
do not involve the combinations of pictures to form larger pictures. That is, there
is no notion of multiple 2OTAs working in parallel.

Here we present a product like construction for two dimensional languages
and 2OTA based on the notion of independence presented in [Mazurkiewicz, 1984]
and [Zielonka, 1987]. The model we develop is an extension of the model for
words. Thus the model when restricted to pictures of sizes (1,n) or (n,1) one
gets the usual model for words.

This work can be viewed as generalising the notion of row/column com-
position of compatible pictures to parallel composition. That is, we are tak-
ing many pictures and constructing a larger picture that contains the infor-
mation from the original pictures. This work can also be viewed as two au-
tomata working together on a single picture. The only related work is on com-
bining two sets of commands to draw pictures so that the result is a connected
picture [Ratoandromanana and Robilliard, 1994]. However, it is more to deal
with sequential composition than concurrency and synchronisation. That is,
[Ratoandromanana and Robilliard, 1994] consider the picture obtained via the
sequential composition of commands associated with the drawing of p1 and p2.

To keep the presentation notationally simple, we assume only two agents.
That is, we consider combining only two picture components. This can easily
be extended to a n agent system. Although one could define a notion of hor-
izontal independence distinct from vertical independence, we assume a single
independence structure for the sake of simplicity. This allows us to generalise
the behaviour of 2OTAs without drastically altering the alphabet structure.

543Krishnan P.: Issues Related to Distributed Processing ...

As in [Zielonka, 1987] we associate the alphabets Σ1 and Σ2 with the two
agents. We let Σ denote Σ1 ∪ Σ2. For a, b ∈ Σ we say aIB (a and b are inde-
pendent) if and only if a and b belong only to distinct alphabet sets. That is, if
a belongs to Σ1 then a cannot belong to Σ2 and b will belong only to Σ2. If a
symbol (say c) belongs to both Σ1 and Σ2 the two agents must synchronise on
it. This is akin to performing consistent operations on shared variables.

Before we present the technical details in the next section, we present a few

examples to motivate the various definitions. Consider the pictures
(

a b b
a a b

)
over

{a, b} and
(

b b c
c c b

)
over {b, c}. As the symbol b is common to both the alphabets,

the combination of the two pictures should synchronise on a b. The symbols a and
c are independent. If we perform a row-wise synchronised shuffle we obtain the
rows (a b b c) and ([a a c c] b) where [w] represents the set of words obtained by
exchanging the positions of adjacent independent symbols [Zielonka, 1987]. Thus
([a a c c] b) stands for the set containing the sequences (a a c c b), (a c a c b),
(a c c a b), (c a a c b), (c a c a b) and (c c a a b). As pictures are rectangular, it
is not possible to put together the two rows to obtain a larger picture. Thus
under a rectangular definition of pictures, the combination of the two pictures is
undefined as the resulting rows are of different sizes. If we perform a column-wise
synchronisation, we obtain the columns ∅, (b [c a]) and ∅. Once again we cannot
put these together to form a picture. One has to define the synchronised shuffle
in the above case to be empty as the sizes do not tally.

However, insisting that all the shuffled rows or columns are of identical size is

also not sufficient. Consider the picture
(

a b
b a

)
over {a, b} and

(
c b
b c

)
over {c, b}.

Now the row-wise shuffle can produce the rows (a c b) and (b a c) which can be

combined to produce the picture
(

a c b
b a c

)
. Similarly, the column-wise shuffle

can yield the columns (a c b) and (b a c) which can be combined to obtain the

picture

(
a b
c a
b c

)
.

Both the resulting pictures are unsatisfactory. Recall that one of the aims
was to maintain the original logical dependence when the two pictures were
combined. The property of logical dependence is violated. In the picture obtained
by row-wise shuffle the b in row 2 column 1 is positioned incorrectly. In the
component pictures, the b is dependent on the a and the c in row 1 column 1 of
the constituent pictures. However the c has been pushed to row 1 column 2 in
the larger picture. Hence in the combined picture the b is no longer dependent
on the c.

Similarly in the picture obtained by the column-wise shuffle, the b in row 1
column 2 is positioned incorrectly. Therefore, when we shuffle pictures a concate-
nation of shuffled rows or columns is not sufficient. We have to pay attention to
the various spatial (i.e., two dimensional) dependencies that exist in the original
pictures.

One could deem the composition of such pictures to be invalid, but that
restricts the parallel composition to a very small subclass of pictures. We present
a technique that is applicable to a reasonable set of pictures.

544 Krishnan P.: Issues Related to Distributed Processing ...

Our solution to obtain a satisfactory solution is to introduce ε (the empty
symbol) in various positions. These εs will ensure that valid picture shuffles from
the individual pictures are obtained . The shuffle in the second example can be

defined to be
(

a c b ε
ε b a c

)
which satisfies the rectangular as well as the causality

requirements. The first b in the second row has been pushed to the right and is
now dependent on the c. Being the first non-empty symbol on the second row it
has no left-hand predecessor. The column-wise shuffle can similarly be defined

to be




a ε
c b
b a
ε c


.

Note that the introduction of ε means that the logical dependence has to be
defined with care. In both the row and column shuffle, the last c does not depend
on ε (it actually depends on the b). The dependence on the ε has to be reflected
(in different directions) to the dependence on the b.

But having one ε is not sufficient. There is a need to have row and column
εs to record the fact that the εs were introduced due to row and column shuffle

respectively. Consider the picture fragment

(· a b
c ε d
e f ·

)
. If the ε was introduced

during a row shuffle, the symbol d has a causal dependency on the symbols c
and b. It is this dependence on b that introduces the ε. The symbol f depends
on e and c. Note that f cannot depend on d as that would have required the
introduction of an ε between e and f . If the ε was introduced during a column
shuffle, the symbol f depends on a and e (not on e and c). Again note that the
dependence on e is what introduces the ε. The symbol d depends on a and b.
This shows that it is important to know how the ε symbols were introduced. We
use εr for those introduced during the row shuffle and εc for those introduced
during the column shuffle.

In this paper we focus only on the row-wise shuffle. A theory for the column
wise shuffle can be developed in a similar fashion. But we continue to write εr to
differentiate it from ε and emphasise the fact that we are dealing with row-wise
shuffle. It is easy to see that a given composite picture will not contain both εr

and εc.

2 Technical Details

This section can be viewed as consisting of two parts. The first deals with lan-
guage theoretic constructs while the second part is concerned with automata
theoretic constructs. This section will conclude by presenting a relationship be-
tween the two views.

We define a shuffle of words which retains positional information. This po-
sitional information will be used to concatenate rows in a fashion that respects
the logical dependencies.

As for product automata, synchronisation has to occur on common alphabets.
Independent actions can occur in any order. This is defined below. Here ε stands
for the empty string.

545Krishnan P.: Issues Related to Distributed Processing ...

Definition 1. For w1 ∈ Σ∗
1 and w2 ∈ Σ∗

2 , the shuffle denoted by w1 0‖0 w2 is
defined inductively as follows.

1. ε l‖m ε = ε
(l,m)
r

∗

2. ε l‖m (b · bs) = S ∪ {ε(l,m)
r

∗ · w w ∈ S} provided b 6∈ Σ1 where
S = {b(l,m+1) · w′ w′ ∈ (ε l‖m+1 bs)}

3. (a · as) l‖m ε = S ∪ {ε(l,m)
r

∗ · w w ∈ S} provided a 6∈ Σ2 where
S = {a(l+1,m) · w′ w′ ∈ (as l+1‖m ε)}

4. (a · as) l‖m (b · bs) = S ∪ {ε(l,m)
r

∗ · w w ∈ S} where

S = {a(l+1,m) · w a 6∈ Σ2, w ∈ (as l+1‖m (b · bs))} ∪
{b(l,m+1) · w b 6∈ Σ1, w ∈ ((a · as) l‖m+1 bs)} ∪
{a(l+1,m+1) · w a = b, w ∈ (as l+1‖m+1 bs)}

The above definition is an extension of the usual definition of a synchronised
shuffle of two languages. It permits the insertion of εr at arbitrary column lo-
cations. Hence combining empty words can yield a sequence of εrs. In general
α l‖m β indicates that α will start from the lth position and β will start from the
mth position in the shuffled words. Or in other words, α and β are the residues
after removing l − 1 symbols from and m − 1 symbols the original words.

In a string a symbol of the form a(p1,p2) indicates that p1 − 1 symbols from
the left hand side and p2 − 1 symbols from the right hand side have been con-
sumed before consuming a. This will be taken into account while defining the
concatenation of rows to obtain pictures. Given a symbol s of the form a(p1,p2)

we use pos(s) = (p1, p2) to indicate the position associated with the symbol. We
use the term positioned-word and positioned-picture to indicate a word and a
picture whose symbols have a position associated with them. If w is a positioned
word we let w the word obtained by erasing the positions associated with all the
symbols in w.

Example 2. Consider a · b 0‖0 c · b with a and c being independent. The result of
the shuffle will contain a(1,0) · c(1,1) · b(2,2) and c(0,1) · a(1,1) · b(2,2). It shows that
a is the first symbol in the first string while b is the second symbol in both the
strings.

One could also insert arbitrary number of εr’s with the appropriate position
information. Hence a(1,0) · c(1,1) · b(2,2) · ε(2,2)

r also belongs to the shuffle as does
a(1,0) · ε1,0

r · c(1,1) · b(2,2). The usefulness of the having εr at the end of the string
was demonstrated via an example in section 1.

Similarly, the shuffle a · a0‖0 b · c will contain the strings b(1,1) · a(2,1) · c(2,2)

and ε
(0,0)
r · b(1,1) · a(2,1) · c(2,2).

When the shuffled rows are combined to form a picture, it is not always the
case that the result is a well formed picture. For instance, the result may not be
rectangular. Even if the result is rectangular, it may not satisfy all the logical
constraints.

The following definition formalises the latter point. The rectangular require-
ment is as for standard pictures and is not reproduced here. That is, from now
on we will assume that our pictures implicitly satisfy the requirements for being
rectangular.

546 Krishnan P.: Issues Related to Distributed Processing ...

Definition 2. A rectangular positioned picture p is well formed if and only if the
following conditions hold for every relevant i and j. For the following conditions
we let pos(p(i,j)) be (l1, l2) and pos(p(i−1,j)) be (l3, l4).

1. If p(i,j) ∈ Σ1 ∩ Σ2 then l1 = l3 and l2 = l4.
2. If p(i,j) ∈ Σ1 − Σ2 then l1 = l3.
3. If p(i,j) ∈ Σ2 − Σ1 then l2 = l4.

In a picture without εrs the symbol pos(p(i,j)) depends on pos(p(i−1,j)). That
is, the column positions must agree. The positions associated with symbols is
an indication of of the column positions in a positioned word and picture. The
dependence on row positions is automatically satisfied as we are performing the
row shuffle. If a symbol belongs to the alphabet of both the agents, the column
dependence of both agents has to be noted. If a symbol belongs to the alphabet
of only one agent, only its column dependence has to be satisfied. The relevant
column position of the other agent does not matter.

One can now verify that the examples considered in section 1 are valid (i.e.,
well formed) using the positional information.

Now to an impossible shuffle. Consider the shuffle of the pictures
(

a b
b a

)
over

{a, b} and
(

b c
c b

)
over {b, c}. While the row-wise shuffle essentially yields (a b c)

and (c b a), these two rows cannot be merged. Even if we add εrs, the positional
values are ((1, 0) (2, 1) (2, 2)) and ((0, 1) (1, 2) (2, 2)) respectively. These cannot
be combined as the position associated with the b is (1, 2) and no such position
can exist in the first row. As no other row-wise shuffles are possible, the shuffle
of pictures is undefined. Intuitively this is not surprising. The b on the second
row has to be both on the left (from the first picture) and the right (from the
second picture) of the b on the first row. This is clearly not possible.

Based on the above definition the notion of a shuffle of pictures and hence
languages can be described. As we are defining a row-wise shuffle, the number of
rows in the two pictures must agree. The number of columns could be different.
The number of columns in the resulting picture will depend on the specifics of
the two pictures.

Definition 3. Given a m × n picture p1 over Σ1 and a m × n′ picture p2 over
Σ2 define their parallel composition
p1 ‖ p2 = { x x is well formed where ∀ 1 ≤ i ≤ m, x(i) ∈ p1(i) 0‖0 p2(i)}

Extend this to languages as follows.
L1 ‖ L2 = { p p ∈ (p1 ‖ p2), p1 ∈ L1, p2 ∈ L2}

The projection of a picture over Σ1∪Σ2 to Σ1 or Σ2 is defined in two stages.
The first is to replace all symbols of the other alphabet with εr. The second stage
is to treat the εrs as empty symbols and compact the various rows. Denote the
projection of p into the ith alphabet as πi(p).

Lemma4. If p ∈ (p1 ‖ p2) then π1(p) = p1 and π2(p) = p2.

This shows that the projection result for strings more or less carries over
to pictures. The only extra work is removing the εrs. Note that definition 1

547Krishnan P.: Issues Related to Distributed Processing ...

permits the insertion of arbitrary εrs. That is, εrs may be inserted even when
not required.

The following lemma is useful in identifying the essential εrs. This provides
an initial description towards a canonical form for pictures.

Lemma5. Let a, c be symbols that are not εr. Also let p1, p2, p
′
1, p

′
2 belong to

Σ∗∗ and w1, w2, w
′
1, w2, , w

′′
2 belong to Σ∗.

If the picture




p1

w1 a b w′
1

w2 εr c w′
2

p2


 belongs to a product language L such that the

picture




p′1
w1 a b w′

1
w2 c w′′

2
p′2


 does not belong to L for any p′1, p

′
2, w

′′
2 then the following

holds. {b, c} ⊆ Σi for some i.

Proof: Without loss of generality assume b ∈ Σ1. Let the position associated
with a in the accepted word be (x1, x2). If a ∈ Σ1, the position associated with
b will be (x1 + 1, x2). Now if c belongs only to Σ2, clearly c can be placed under
the a as the only requirement is that the second component of the position of c
be x2. The other case of a ∈ Σ2 yields a similar result. Hence c cannot belong
only to Σ2. 2

The above lemma identifies the situation where the c cannot be moved left
over an εr. Therefore, c does indeed depend on b and not on the a due to which
the εr is essential. If c depends on b they both belong to some common agent.

Thus far we have considered only the language aspects of computing with
pictures. Now we discuss the automata model for parallel computation. This is
done in two stages. The first is to extend the notion of run of a 2OTA to include
pictures containing εr. As a notational convenience, if the original automaton
is A, we denote the extended automaton as Aεr . Recall that the run of 2OTA
is map ρ where ρ(i, j) = q where (ρ(i − 1, j), ρ(i, j − 1))

pi,j−→ q. That is, the
state associated a given position is derived from the states associated with the
neighbouring positions.

Definition 6. Given A = (Q, Σ,−→, q0, F) define its run over a m × n picture
(pi,j) containing εr (i.e., the behaviour of Aεr) as follows.

The run ρ : {0..m} × {0..n} −→ Q is a function such that

1. ρ(0, i) = q0 for 0 ≤ i ≤ n.
2. ρ(j, 0) = q0 for 0 ≤ j ≤ m.
3. If pi,j = εr, ρ(i, j) = ρ(i, j − 1).
4. If pi,j 6= εr, ρ(i, j) = q where (q1, q2)

pi,j−→ q where q1 = ρ(i − 1, j) and
q2 = ρ(i, j − 1)

The run is accepting iff ρ(m, n) ∈ F .

The above definition is a slight modification of the definition used for 2OTA
[Giammarresi and Restivo, 1997]. It makes it clear that the εr’s are skipped.
That is, the state does not change and ρ(i, j) gets a copy of ρ(i, j − 1). It also
shows the row-wise shuffle reflects the dependence along the appropriate column.

548 Krishnan P.: Issues Related to Distributed Processing ...

The product of two automata is now defined in the standard way and is given
in definition 7.

Definition 7. Given 2OTAs (Q1,Σ1, −→1, q1
0 , F 1) and (Q2,Σ2, −→2, q2

0 , F 2)
define a product automaton (Q,Σ, −→, q0, F), where Q = Q1×Q2, Σ = Σ1∪Σ2,
q0 = (q1

0 , q2
0), F = F1 × F2.

The transition relation (q1, q2)
a−→ (q′1, q

′
2) is defined as follows.

If a ∈ Σ1 − Σ2 q2 = q′2 and q1
a−→1 q′1.

If a ∈ Σ2 − Σ1 q1 = q′1 and q2
a−→2 q′2.

If a ∈ Σ2 ∩ Σ1, q1
a−→1 q′1 and q2

a−→2 q′2.

The following result describes the relationship between the language and
automaton used in the shuffle.

Lemma8. Given A1 accepting L1 and A2 accepting L2. L1 ‖ L2 is precisely
accepted by (A1 ×A2)εr .

Proof: For every p belonging to L1 ‖ L2, there is a p1 belonging to L1 and p2

belonging to p2 such that p belongs to p1 ‖ p2. Therefore, there exist accepting
runs ρi over pi. We have to now construct an accepting run ρ over p. If pos(p(i,j))
= (l1, l2), then define ρ(i, j) to be (ρ1(i, l1), ρ2(i, l2)). Now from Definition 7 it
is easy to verify that ρ is an accepting run.

If p is accepted by (A1 ×A2)εr , there is an accepting run ρ. By appropriate
projections on p and ρ pictures pi with accepting runs ρi can be for Ai. 2

As expected, commuting of independent actions in a picture that is accepted
does not always result in an acceptable picture. This is because the standard
commuting takes only one dimension into account. Here one has to also take
into account the second dimension.

Consider shuffling the pictures
(

a a
b b

)
and

(
c c
b b

)
where a and c are indepen-

dent. The picture
(

a c a c
εr b εr b

)
belongs to the shuffle. However no picture with

the first row a a c c can be in the shuffle. This is because the first b cannot be
placed under the second a as it does not depend on the second a but depends
on the first c.

However a limited form of the commuting lemma (taking into account the
two dimensions) can easily be proven. This then identifies a class of essentially
equivalent pictures.

Lemma9. Let a product language L contain the picture




p1

w1 a b w2

w3 c d w4

w5 e f w6

p2


 where

p1, p2 belong to Σ∗∗, w1, w2, w3, w4, w5, w6 belong to Σ∗, {a, c, e} ⊆ Σ1 and
{b, d, f} ⊆ Σ2 with cId. There exists p′1, p

′
2 belonging to Σ∗∗, w′

2, w
′
4, w

′
6 belong-

ing to Σ∗ such that




p′1
w1 a b εr εr w′

2
w3 εr d c εr w′

4
w5 εr εr e f w′

6
p′2


 belongs to L

549Krishnan P.: Issues Related to Distributed Processing ...

Proof: We show that the causality requirements are not violated for one par-
ticular case. The other cases follow a similar argument. The exhibition of the
action b does not alter the first component of the composite state. As c depends
only on the first component of the sate associated it with a, placing it under the
εr adjacent to b does not violate any constraint. Similarly, f depends only on
d and the switching of d and c does not violate any causality constraint. The
sub-pictures p′1, w′

2, w′
4 and p′2 are derived from p1, w2, w4 and p2 by adding

suitable εrs. 2

The above lemma shows that if the context around independent symbols is
also constructed from independent symbols, the symbols can be commuted. In
the example considered earlier, the context around the as and cs involve b which
depends on both a and c. Note that we are not commuting a and b or e and f .

The lemma 9 may be useful in defining a product notion for tiling systems
which are equivalent to 2OTAs which is under investigation.

However, the result in lemma 9 is far from complete as in specific instances

limited commutation can be achieved. For example, if the picture

(
a b w1

εr c w2

p

)

where aIb and c ∈ Σ1 ∩Σ2 is accepted, then the picture

(
b a w1

εr c w2

p

)
will also be

accepted. This is because c is dependent on both a and b and there is nothing
that causally determines a and b.

3 Conclusion

We have studied the effect of taking the product of two 2OTAs. The key result is
that one has to introduce blank spaces (or εrs) for the results to be combined in
a meaningful way. These blank spaces stretch (or distort) the pictures so that the
logical connections are maintained. A limited form of commutation is presented.
Further work is required to obtain a complete characterisation of commutativity.

References

[Erwig and Meyer, 1995] Erwig, M. and Meyer, B. (1995). Heterogeneous visual lan-
guages –integrating textual and visual programming. In Proc. 1995 IEEE Symposium
on Visual Languages, pages 318–325. IEEE Computer Society Press.

[Giammarresi and Restivo, 1997] Giammarresi, D. and Restivo, A. (1997). Two-
dimensional languages. In Rozenberg, G. and Salomaa, A., editors, Handbook of
Formal Languages: Beyond Words, pages 215–267. Springer-Verlag.

[Glasgow et al., 1995] Glasgow, J., Narayanan, N. H., and Chandrasekaran, B. (1995).
Diagrammatic Reasoning: Cognitive and Computational Perspectives. AAAI Press.

[Marriott and Meyer, 1998] Marriott, K. and Meyer, B., editors (1998). Visual Lan-
guage Theory. Springer.

[Mazurkiewicz, 1984] Mazurkiewicz, A. (1984). Traces, histories, graphs : Instances of
a Process Monoid. In Mathematical Foundations of Computer Science, volume LNCS
176. Springer Verlag.

[Ratoandromanana and Robilliard, 1994] Ratoandromanana, B. and Robilliard, D.
(1994). Superposition in Picture Languages. In CAAP-94, volume LNCS 787, pages
322–334, Edinburgh. Springer Verlag.

550 Krishnan P.: Issues Related to Distributed Processing ...

[Usher and Jackson, 1998] Usher, M. and Jackson, D. (1998). A Concurrent Visual
Language Based on Petri-Nets. In Proc. 1998 IEEE Symposium on Visual Languages,
pages 72–73. IEEE Computer Society Press.

[Zielonka, 1987] Zielonka, W. (1987). Notes on Finite Asynchronous Automata.
RAIRO: Theoretical Informatics and Applications, 21(2):101–135.

551Krishnan P.: Issues Related to Distributed Processing ...

