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Abstract: For any language L over an alphabet X, we de�ne the root set, root(L)
and the degree set, deg(L) as follows: (1) root(L) = fp 2 Q j 9i; i � 1; pi 2 Lg where
Q is the set of all primitive words over X, (2) deg(L) = fi j 9p 2 Q; pi 2 Lg. We deal
with various decidability problems related to root and degree sets.
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1 Introduction

Throughout this paper, X denotes a (�nite) alphabet having at least two letters.

By X+ and X� we denote the free semigroup and the free monoid generated by

X , respectively. Morover, � denotes the empty word over X , i.e., the identity of

X�. By juj we denote the length of a word u 2 X� (j�j = 0). For a grammar

G, L(G) denotes the language gennerated by G. Regarding de�nitions and no-

tatioins concerning formal languages and automata, not de�ned in this paper,

refer, for instance, to [Gi66], [Sa73], [Ha78] and [HoUl79]. A word u 2 X� is

said to be primitive if u 6= � and u 6= pi for any i � 2 and p 2 X+; all other

elements of X� are called nonprimitive. By Q(X) (or simply by Q if X is �xed)

we denote the set of all primitive words over X . The following Theorem A plays

an important role in combinatorics of words, and we will use it in the sequel,

too.

Theorem A (N.J. Fine and H.S. Wilf, see, e.g., in [Ha78] or [Lo84]) Let x; y 2

X+. If two powers, xi and yj (i; j > 0) of x and y, respectively, have a common

pre�x (or a common suÆx) of length jxj+ jyj � gcd(jxj; jyj) (here gcd means the

greatest common divisor), then for some z 2 X+, x; y 2 z+.

It is a known important consequence of Theorem A that any word u 2 X+

can uniquely be written in the form u = pi where p 2 Q and i � 1. Therefore

the functions root : X+ ! Q(X) and deg : X+ ! f1; 2; : : :g can be de�ned by

putting root(u) = p and deg(u) = i, respectively (where p and i are taken from
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the above, unique representation u = pi of u). For any u 2 X+, root(u) and

deg(u) are called the \root of u" and the \degree of u", respectively. So clearly

u 2 X+ is primitive i� deg(u) = 1. We also need the following Theorem B, in

the sequel too.

Theorem B (H.-J. Shyr and G. Thierrin, see, e.g., in [Sh91]): Let x; y; u; v 2 X+

such that x = uv and y = vu, i.e., x and y are (nontrivial) cyclic permutations

{ or (nontrivial) conjugates, this term is also used { of one another. Then for

any i > 1, there exists a z 2 X+ such that x = zi i� there exists a z0 2 X+

such that y = (z0)
i
(z0, if exists, is a cyclic permutation of z). Therefore x 2 Q

i� y 2 Q.

By Theorem B, the value of the function deg is invariant under cyclic per-

mutation of its argument. From this it directly follows that the sets Q, X� nQ

and X+ nQ are closed under cyclic permutation of words.

The functions root and deg can be extended without any diÆculty - as is

done in [Ho95] -, to X� by putting root(�) = � and deg(�) = 0. However, in

this paper we need only the \natural extensions" of root and deg, from words

to languages, as follows. For any L � X�, we de�ne the root set and degree

set of L, as root(L) = froot(w) j w 2 Lg = fp 2 Q j 9i; i � 1; pi 2 Lg and

deg(L) = fdeg(w) j w 2 Lg = fi j 9p 2 Q; pi 2 Lg.

We recall that a language is called bounded if there are nonempty words

w1; : : : ; wk such that, L � w1
� : : : wk

� (e.g., the languages L = ; and fanbn j n �

1g are bounded languages), see, e.g., in [Gi66]. Concerning bounded languages

we will use the following.

Theorem C (Theorem 5.5.2 in [Gi66]) (a) It is decidable for an arbitrary

context-free grammar G, whether L(G) is bounded. (b) If the answer in point (a)

is \yes" then (nonempty) words w1; :::; wk can be constructed so that, L(G) �

w1
�:::wk

�.

Finally we mention a few related, earlier papers, [DoHoIt91], [DoHoIt93],

[ItKaShYu88], [DoHoItKaKa93], [DoHoItKaKa94], [Pe96] and [HoKu95], on prim-

itive words, for the interested reader. We also mention the following, still unset-

tled conjecture, which was �rst formulated in [DoHoIt91].

Conjecture Q is not context-free.

2 Results concerning root sets

In this section, we provide various results concerning root sets. The following

theorem was proved in [HoKu95], using the elaborate machinery of L system

theory.
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Theorem 2.1 ([HoKu95]) It is decidable for an arbitrary regular grammar G,

whether L(G) � Q.

However, we think that it is worthwile to give here an elementary proof for

this theorem, as follows.

Lemma 2.1 Let L � X� be a regular language. If L � (X+ nQ), then root(L)

is �nite.

Proof By Theorem 1 in [ItKa91], L can be represented as L = L1 [L2 where L1

and L2 are both regular and L1 � Q(2) and L2 � [i�3Q
(i) where Q(j) = fqj j

q 2 Qg for j; j � 2. Moreover, root(L2) is �nite. Therefore, to prove the lemma,

it is enough to show that L1 is �nite. Suppose L1 is in�nite. Let u
2 2 L1 where

u 2 Q and juj is large enough. Since L1 is regular, there exists a decomposition

of u, i.e., u = u1u2u3 such that u2; u3 2 X+ and (u1u
t
2u3)(u1u2u3) 2 L1 for

any t; t � 0. Thus (u1u
3
2u3)(u1u2u3) 2 L1. Notice that (u1u

3
2u3)(u1u2u3) 2 Q(2)

and hence (u3u1u2)
2u22 2 Q(2). However, by Sch�utzenberger's theorem (see, for

instance, [Lo84, Sh91]), (u3u1u2)
2u22 2 Q, a contradiction. Hence L1 must be

�nite. This comletes the proof of the lemma.

Lemma 2.2 Let L � X� be regular and let L be accepted by a �nite deterministic

automaton A = (S;X; Æ; s0; F ) with jSj = n where jSj denotes the cardinality of

S. If root(L) is regular and f2f� \ L 6= ; for f 2 Q, then jf j � nn.

Proof Since root(L) is regular, Lnroot(L) is regular. By Lemma 2.1,K := fg 2 Q

j g2g� \ (L n root(L)) 6= ;g is �nite. Let f 2 K with jf j = maxfjgj j g 2 Kg.

Let fm 2 L where m � 2. We can assume that 2 � m � n + 1. Suppose

jf j > nn.Then f can be represented as f = f1f2f3 where f2; f1f3 2 X+ and

Æ(s0; f
tf1) = Æ(s0; f

tf1f2) for any t, 0 � t � m�1. This implies that (f1f
i
2f3)

m 2

L for any i, i � 1. By the maximality of jf j, f1f i2f3 =2 Q for any i, i � 1. Hence

f i2f3f1 =2 Q and f22f
i
2f3f1 =2 Q. Let f i2f3f1 = gj where g 2 Q ang j � 2. Then

f22 f
i
2f3f1 = f22g

j =2 Q. By Sch�utzenberger's theorem, f2 = gk for some k,k � 1.

Since gj = f i2f3f1 = f i�1
2 f2f3f1 = gk(i�1)(f2f3f1) and f3f1 6= 1, f2f3f1 = gd for

some d, d � 2. Hence f2f3f1 =2 Q and f1f2f3 =2 Q, a contradiction. Consequently,

jf j � nn.

Lemma 2.3 Let L � X� be regular and let L be accepted by a �nite deterministic

automaton A = (S;X; Æ; s0; F ) with jSj = n. If L \ (L+ n Q) 6= ;, then there

exists f 2 Q with jf j � nn such that f2f� \ L 6= ;.

Proof By assumption, there exist g 2 Q and i, i � 2 such that gi 2 L. Since L is

accepted by A, we can assume that 2 � i � n+1. If jgj � nn, we are done. Now

let jgj > nn. Then g can be represented as g = g1g2g3 where g2, g1g3 2 X+ and

Æ(s0; g
tg1) = Æ(s0; g

tg1g2) for any t, 0 � t � i� 1. This implies that (g1g3)
i 2 L.
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Remark that 0 < jg1g3j < jgj. Hence there exists g0 2 Q such that 0 < jg0j < jgj

and g0
2
g0 \L 6= ;. If jg0j > nn, we continue the same procedure. Finally, we can

obtain some f 2 Q with jf j � nn such that f2f� \ L 6= ;.

Proof of Theorem 2.1 Notice that a �nite deterministic automaton A =

(S;X; Æ; s0; F ) that accepts L(G) can be e�ectively constructed from the regular

grammar G. Let jSj = n and let H = fh 2 Q j jhj � nng. By Lemma 2.3, if

([h2Hh2h�)\L(G) 6= ;, then L(G)\ (X+ nQ) 6= ;. Otherwise, L(G) � Q. This

completes the proof of the proposition.

Theorem 2.2 It is decidable for an arbitrary regular grammar G, whether

root(L(G)) is regular.

Proof Let L(G) � X� be a regular language that is accepted by a �nite de-

terministic automaton A = (S;X; Æ; s0; F ) with jSj = n. Let H = fh 2 Q j

jhj � nng. Consider LH = L(G) n ([h2Hh2h�). Obviously, LH is regular. By

Lemma 2.2, root(L(G)) is regular i� LH � Q. From Theorem 2.1, it follows that

it is decidable whether root(L(G)) is regular.

Corollary 2.1 It is decidable for an arbitrary regular grammar G, whether

root(L(G)) is �nite.

Proof The theorem follows from the fact that it is decidable for a regular language

L, whether L is �nite.

Theorem 2.2 can be considered as a generalization of Corollary 2.1. Now we

prove another generalization of Corollary 2.1.

Theorem 2.3 It is decidable for an arbitrary context-free grammar G, whether

root(L(G)) is �nite.

Proof If root(L(G)) is �nite and nonempty, say, root(L(G)) = fp1; :::; pmg(�

Q);m � 1, then we have L(G) � p1
� [ � � � [ pm

� � p1
� : : : pm

�, so in this case

L(G) is a bounded language. We recall that a language L is called bounded if

there are nonempty words w1; :::; wk such that, L � w1
� : : : wk

� { e.g., the empty

language L = ; is trivially a bounded language { (see, e.g., in [Gi66]). There-

fore, if L(G) is not bounded then root(L(G)) is necessarily in�nite. Furthermore,

by using Theorem C, we can give the following e�ective procedure for deciding

whether root(L(G)) is �nite. If in applying point (a) of Theorem C, the answer

is \no" then root(L(G)) is in�nite. If, however, this answer is \yes", i.e., L(G)

is bounded, then in point (b) we construct a suitable sequence of (nonempty)

words w1; :::; wk . We can suppose that the sequence w1; :::; wk consists of prim-

itive words (otherwise we can replace it by the sequence root(w1); :::; root(wk),

furthermore, in this new sequence equal neighbouring terms can be identi�ed),
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and clearly that even the set fw1; : : : ; wkg is closed under cyclic permutation

(by this we mean that if w 2 fw1; : : : ; wkg and w0 is a cyclic permutation of w,

then also w0 2 fw1; : : : ; wkg). Now, if

L0 := L(G) n (w1
� [ � � � [ wk

�)

is �nite, then of course, root(L(G)) is �nite, too. The �niteness of the (context-

free) language L0 is clearly decidable, since a context-free grammar G0 for L0

can e�ectively be constructed from G, etc. If, however, in the former decision

procedure the language L0 proves to be in�nite, then we can show that root(L0)

is in�nite, too, which, of course, implies that also root(L(G)) is in�nite. Suppose

now indirectly that L0 is in�nite but root(L) is �nite, say,

root(L0) = fp1; : : : ; psg � Q.

Then the following properties (1) - (6) must simultaneously hold:

(1) w1; : : : ; wk; p1; : : : ; ps 2 Q,

(2) fw1; : : : ; wkg is closed under cyclic permutation,

(3) fw1; : : : ; wkg \ fp1; : : : ; psg = ;,

(4) L0 = L(G) n (w1
� [ � � � [ wk

�) � L(G) � w1
� : : : wk

�,

(5) L0 � p1
� [ � � � [ ps�,

(6) L0 is in�nite.

This is, however, impossible, by Theorems A and B.

Now, let

(I) m := maxfjp1j; : : : ; jpsjg.

By (6) there is a t 2 L0 with

(II) jtj � (jw1j+m� 1) + � � �+ (jwk j+m� 1).

By (4) , t is of the form t = w1
r1 : : : wk

rk . By (II) and the pigeonhole principle,

there is a j 2 f1; : : : ; kg such that,

536 Horvath S., Ito M.: Decidable and Undecidable Problems ...



(III) jwj
rj j � jwj j+m� 1

By (5) there are n 2 f1; : : : ; sg and e � 1 such that, t = pn
e. So wj

rj is a

subword of pn
e, and by (I) and (III) we have

(IV) jwj
rj j � jwj j+ jpnj � 1 � jwj j+ jpnj � gcd(jwj j; jpnj).

Furthermore, by Theorem B,

(V) there is a cyclic permutation p0n of pn and an e0 � 2 such that, p0n 2 Q

and wj
rj is a pre�x of p0n

e0

, and so

(VI) jp0n
e0 j � jwj

rj j � jwj j+jpnj�gcd(jwj j; jpnj) = jwj j+jp
0
nj�gcd(jwj j; jp

0
nj).

Now, by (VI) and Theorem A, there should be a nonempty word z such that,

wj ; p
0
n 2 z+, so by (1) , p0n = wj , and by (V) and (2), even pn 2 fw1; : : : ; wkg,

i.e., we should have pn 2 fw1; : : : ; wkg \ fp1; : : : ; psg, in contradiction with (3).

Notice that Theorem 2.3 implies Corollary 2.1 as well. Now we consider the

context-freeness of root sets.

Theorem 2.4 The problem, whether root(L(G)) is context-free for an arbitrary

context-free grammar G, is undecidable (or not even partially decidable).

Proof Let � = f(ui; vi) j ui; vi 2 fa; bg+; i = 1; : : : ; ng (n � 1) be an (instance

of the) PCP (Post Correspondence Problem) on the alphabet fa; bg. We recall

that a solution of � is a �nite, nonempty sequence (i1; : : : ; ik) 2 f1; : : : ; ng+ such

that, ui1 : : : uik = vi1 : : : vik . It is a well-known result that the problem, whether

an arbitrary PCP � (on the alphabet fa; bg) has a solution, is undecidable (see,

e.g., in [Sa73]). By a simple, re�ned analysis of this undecidability result, it can

easily be seen that the set of PCP 0s � having no solution, is not even recur-

sively enumerable. Now, to an arbitrary PCP � we assign the following three

context-free languages (the �rst two of which we take from the above mentioned

book [Sa73]):

L�;u := fui1 : : : uikca
ikb : : : ai1b j k � 1; i1; : : : ; ik 2 f1; : : : ; ngg,

L�;v := fvi1 : : : vik ca
ikb : : : asi1b j k � 1; i1; : : : ; ik 2 f1; : : : ; ngg,

L(�) := L�;ucL�;vc
2(L�;vcL�;vc

2)
+
.
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It is easy to see, that a context-free grammar for each of the languages L�;u,

L�;v and L(�) can simply be constructed from �, in an e�ective way, and that

L�;u \ L�;v = ; i� � has no solution. Therefore, if � has no solution, then

L(�) � Q holds, so in this case root(L(�)) = L(�), context-free. If, however, �

has a solution, then root(L(�)) is not context-free because intersecting it with

the regular language

R := (fa; bg+c)
4
c,

we get a non-context-free (but context-sensitive) language:

root(L(�))\R = f(ui1 : : : uikca
ikb : : : ai1bc)

2
c j (i1; : : : ; ik) is a solution of �g.

(The non-context-freeness of this language is easily seen by using the Bar-Hillel

lemma.) So we have: root(L(�)) is context-free i� � has no solution, and this

proves the theorem.

Theorem 2.5 Let jX j � 3. The problem, whether root(L(G)) is regular for an

arbitrary context-free grammar G, is undecidable (or not even partially decid-

able).

To prove this, we need the following lemma that can be easily shown.

Lemma 2.4 Let c 2 X and let Y = X n fcg. Let L be a context-free language

over Y . Then L is regular if and only if cL is regular.

Proof of Theorem 2.6 Suppose that the problem in Theorem is decidable.

Let c and Y be above-mentioned ones. Let L be any context-free language over

Y . Then cL is a context-free language over X . Now consider root(cL). Then

root(cL) = cL. By assumption, in this case, we can decide whether cL is a reg-

ular language over X . By Lemma 2.4, we can decide whether L is a regular

language over Y . However, it is known that the latter problem is undecidable.

Therefore, the problem in Theorem should be undecidable. Since the all consid-

ered undecidable problem can be deducted to the PCP problem, the problems

are also not even partially decidable.

Remark 2.1 In fact, making an appropriate coding on 2-letter alphabet, we can

show that the above theorem holds true for jX j = 2 as well.

3 Results concerning degree sets

In this section, we deal with two decidability problems of degree sets. The fol-

lowing lemma can be proved similarly as Lemmas 2.2 and 2.3.
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Lemma 3.1 If A is a �nite deterministic automaton having n (� 1) states,

k � 1, X is the alphabet of A, zk 2 L(A)(� X�); jzj > nn, then there exist

x; u; y 2 X� with xuy = z; juj > 0; jxyj > 0, such that (xy)
k 2 L(A).

Theorem 3.1 It is decidable for an arbitrary regular grammar G, whether

deg(L(G)) is �nite.

Proof By de�nition, deg(L(G)) = fk � 0 j pk 2 L(G) for some p 2 Qg. If here,

in a power pk 2 L(G) we have k � 1 and jpj � nn where n is the number of

states of an automaton A accepting L(G), i.e., L(A) = L(G) { such an A can

e�ectively be constructed from G, then by Lemma 3.1, there is a w1 2 X+ with

jw1j < jpj such that w1
k 2 L(G). Here the word w1 is not necessarily primitive.

If still jw1j > nn, then by applying Lemma 2.1 again, we obtain a word w2

with 1 � jw2j < jw1j such that, w2
k 2 L(G), and so on, and �nally we get

a word wr for which 1 � jwrj � nn and wr
k 2 L(G). This implies that k

deg(wr) 2 deg(L(G)) because wr = root(wr)
deg(wr). Therefore from the evident

estimations 1 � deg(wr) � jwrj � nn for all possible wr, it simply follows that

deg(L(G)) is �nite i� the regular language L0 := L(G) \ ([w2X+;jwj�nn w
+) is

�nite, and having G, we can e�ectively decide whether L0 is �nite.

Theorem 3.2 The problem, whether deg(L) is �nite for an arbitrary context-free

grammar G, is undecidable (or not even partially decidable).

Proof We use PCP � and the context-free languages L�;u and L�;v from the

proof of Theorem 2.5, and the fact that the set f�, a PCP on fa; bg+ j � has

no solutiong is not recursively enumerable.

Now for an arbitrary � we de�ne the context-free language

L(�)0 := L�;uc
2(L�;vc

2)
+
.

Then we clearly have the following chain of equivalencies:

deg(L(�)0) is �nite

i� deg(L(�)0) = f1g

i� L(�)0 � Q(fa; b; cg)

i� � has no solution.

This implies that the set fG, a context-free grammar j deg(L(G)) is �niteg is

not recursively enumerable.
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For the class of regular languages, we can show easily the following result.

Theorem 3.3 For every regular language L, the set deg(L) is ultimately periodic.

4 Conclusions

It is clear that all the above studied (or partly, only mentioned) properties of

the root and degree sets represent nontrivial �nitely invariant (shortly n.f.i.)

properties of the original languages, in both of the classes of type 1 and type 0

languages, see [DoHoItoKaKa94]. For instance, the properties \root(L) is �nite"

and \deg(L) is ultimately periodic", as properties of the original language L, are

n.f.i. properties of both the type 1 and type 0 languages. Therefore, by Theorem

5.9 of [DoHoItoKaKa94], if t is such a property, then the quanti�er complexity

of the decision problem, whether L(G) has property t, is strictly above the

�1 ��1 level in Kleene's arithmetical hierarchy, if G is an arbitrary type 1 or

type 0 grammar. This means that if Gi; i = 0; 1, is the set of type i grammars,

then neither the set Hi;t := fG 2 Gi j L(G) has property tg, nor its complement

Gi nHi;t is recursively enumerable.
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