
Generalized Weighted Finite Automata

Based Image Compression

Karel Culik II
Department of Computer Science
University of South Carolina
Columbia, S.C. 29208, U.S.A.

Peter C. von Rosenberg
Department of Computer Science
University of South Carolina
Columbia, S.C. 29208, U.S.A.

Abstract: The Culik-Kari recursive inference algorithm for WFA is based on an eÆ-
cient way of expressing subsquares of the given image as linear combinations of available
states. Here we improve it in two ways. First, we allow the use of rotations, ippings
and negations of the states in the linear combination. Second, in order to get the best
possible representation of simple fractal images we allow the creation of edges pointing
to ancestors of states under construction which, for technical reasons, was not done in
the original recursive algorithm.

Key Words: Image-data compression, �nite automata, WFA, fractal-image
compression.

1 Introduction

Finite automata can be used to represent fractal images in the following way.
One state in the automaton is used to describe the original image. The other
states describe other images that are used. All images are of size 2n � 2n for
some integer n. Each state's image is described by dividing the image into four
quadrants and then expressing each quadrant as a linear combination of states.
For each quadrant, edges are drawn to these states. Each edge is labeled with a
quadrant number and a \weight", its coeÆcient in the linear combination. We
refer to such an automaton as a \Weighted Finite Automaton" (WFA).

Mathematical properties of WFA have been studied in [4]. The �rst infer-
ence program to generate a WFA from an image is described in [5]. The recur-
sive inference algorithm designed by �rst author and J. Kari is described in [6].
This algorithm yields an automaton with near optimal size as the amount of
space needed to store is concerned. Because of this algorithm an eÆcient image-
compression software has been implemented. A summary of [5] and [6] can be
found in [7]. Another algorithm for inferring an automaton from an image was
described in [14].

The recursive inference algorithm compresses an image by constructing a
WFA which describes an approximation of the image. We implement an exten-
sion of the recursive algorithm that allows transformations (rotations, ippings,
and negations) to be used in the linear combinations. That is, each quadrant is
now expressed as a linear combination of transformations of states. This requires

Journal of Universal Computer Science, vol. 5, no. 4 (1999), 227-242
submitted: 1/12/98, accepted: 20/4/99, appeared: 28/4/99 Springer Pub. Co.

the edges to be labeled with a transformation as well. We refer to the automa-
ton obtained by this process as a \Generalized Weighted Finite Automaton"
(GWFA). This approach creates an automaton with fewer states, the drawback
being that more information must be stored for each edge.

If we disregard the negative weights, WFA and GWFA are a special case
of PMRFS [3] where only four aÆne transformations, the mappings of the unit
square into the four quadrants, are used for WFA, and the compositions of these
four mappings with 90o rotations, and ippings are used for GWFA. Another
special case of MRFS are IFS of Barnsley where arbitrary aÆne transformations
are allowed but only one variable (state) is used. There is no encoding algorithm
known for PMRFS, the edge optimizing algorithm for WFA clearly outperforms
the IFS based algorithms [2, 10], both in compression ratio and speed. Clearly,
the possibility to express a subsquare as a linear combination of other subsquares
in WFA is more important than the possibility to use general aÆne transforma-
tion in IFS based systems. In this work we try a small compromise. GWFA
unlike PMRFS or IFS use only a special kind of aÆne transformations but have
a somewhat wider selection than WFA.

2 Grayscale images and WFA

A grayscale image of �nite resolution m � n can be expressed by assigning a
grayness value to each of the m � n pixels. Typically the values are digitized
using integers between 0 and 2k � 1 for some positive integer k. Often k = 8 is
used, giving values from 0 (black) to 255 (white) which is the method used in
our implementation.

This section gives de�nitions and terminology from [6]. First, we will de-
scribe the method they used to represent multiresolution images as functions on
words. An image consists of four quadrants labeled 0, 1, 2, and 3 as shown in
Fig. 1. These quadrants can also be divided into quadrants. This process can be
continued thereby yielding smaller and smaller subsquares.

De�nition 1. Consider a subsquare of a 2n � 2n resolution image.

1. Its address is the string of quadrant labels listed in the order in which they
were chosen to arrive at the subsquare.

2. Its depth is the integer d such that the subsquare is of size 2d � 2d. The
entire image has depth n.

In computer graphics quadtrees whose leaves are pixels of an 2n� 2n digitelized
image. With the obvious labeling of the edges, the address of a pixel shows the
path in the quadtree from the root to the pixel. Some examples of subsquares
and their addresses are shown in Fig. 1. Let � = f0; 1; 2; 3g denote the 4-letter
alphabet of quadrant labels. Given an image of resolution 2n�2n, the pixels are
the subsquares with addresses of length n. Letting �n denote the set of strings
of length n in the alphabet � and using this addressing scheme, we can represent
the image as a function g : �n ! R. A multiresolution image refers to one in
which the image is described at an in�nite number of resolutions. By letting ��

denote the set of all strings in the alphabet � we can represent a multiresolution
image as a function f : �� ! R. We will let " denote the empty string. The
subsquare with address " is the entire image. The set of functions g : �� ! R

228 Culik II K., von Rosenberg P.C.: Generalized Weighted Finite Automata ...

0 2

1 3

00 02

01 03

20 22

21 23

10 12

11 13

30 32

31 33

Figure 1: The addresses of the quadrants, of the subsquares of resolution 4 � 4, and
the subsquare with address 3203.

 j subsquare

w = 203

 i subsquare

aw = 3203

Figure 2: Example with a = 3 and w = 203.

can be added and multiplied by scalars and so forms a vector space. For any
functions f1; f2 : �

� ! R and any c 2 R we de�ne

(f1 + f2)(w) = f1(w) + f2(w) for any w 2 ��

(cf1)(w) = cf1(w) for any w 2 ��:

Weighted Finite Automata (WFA) introduced in [4, 5] give an eÆcient tool
to describe these functions on ��

De�nition 2. A weighted �nite automaton orWFA A = (Q;�;W ; I; F) is
speci�ed by

1. Q = fq1; q2; : : : ; qng is a �nite set of states,
2. � is a �nite alphabet (here we use the alphabet � = f0; 1; 2; 3g),
3. W = fWa : a 2 �g, where Wa : Q�Q! R are the weights at edges labeled

by a,
4. I : Q! R is the initial distribution,
5. F : Q! R is the �nal distribution.

229Culik II K., von Rosenberg P.C.: Generalized Weighted Finite Automata ...

In the following I will be used to denote the row vector (I(q1); : : : ; I(qn)) and
F the column vector (F (q1); : : : ; F (qn)). We say that (p; a; q) 2 Q���Q is an
edge (transition) of A if Wa(p; q) 6= 0. This edge has label a and weightWa(p; q).
For jQj = n we will usually view Wa as an n� n matrix of real numbers and I
and F as real vectors of size n. The WFA A de�nes a �nal multiresolution image
fA : �� ! R by

fA(a1a2 : : : ak) = I �Wa1 �Wa2 � : : : �Wak � F:

Each state qi of the WFA de�nes a multiresolution image i : �
� ! R, the

state image. Another way to de�ne fA is to use these images. We will de�ne

the i's by de�ning a function : �� ! R
n such that i(w) is the i

th entry of
the vector (w). Let (") = F and

 (aw) =Wa � (w)

where a 2 � and w 2 ��. This says that each quadrant of each state image is a
linear combination of state images since

 i(aw) =
nX

j=1

(Wa)ij � j(w)

where (Wa)ij is the (i; j)
th entry of the matrix Wa. Note that aw is the address

of a subsquare in quadrant a of of image i and w is the address of the corre-
sponding subsquare in the images j . See Fig. 2 for an example. Note that we
can also de�ne by

 (a1a2 : : : ak) =Wa1 �Wa2 � : : : �Wak � F:

Finally fA is de�ned by

fA(w) = I � (w) =
nX
i=1

Ii � i(w)

whereIi is the i
th entry of I . And so the �nal image is a linear combination of

the state images as speci�ed by I . Note that since (") = F , F speci�es the
average grayness for each state.

We display WFA using diagrams that are similar to those used for �nite
automata. States are represented by circles containing their initial and �nal

distributions. If the (i; j)th entry of Wa is (Wa)ij 6= 0, then there is an edge
from state i to state j labeled with \a : (Wa)i;j". (Multiple edges with the same
weights are often combined in the diagram.) The following example is from [6].

Example 1. A WFA can be speci�ed as a diagram with states f1; : : : ; ng. There
is an edge from state i to state j with label a 2 � and weight r 6= 0 if and only if
(Wa)ij = r. The initial and �nal distribution values are shown inside the nodes,
as illustrated in Fig. 3, where the left circle is state 1, the right circle is state 2,
I = (1; 0), F = (1

2
; 1),

W0 =

�
1

2

1

2

0 1

�
; W1 =

�
1

2

1

4

0 1

�
; W2 =

�
1

2

1

4

0 1

�
, and W3 =

�
1

2
0

0 1

�
.

230 Culik II K., von Rosenberg P.C.: Generalized Weighted Finite Automata ...

��
��

��
��

1, 1
2

0,1

0,1,2,3 : 1
2

0,1,2,3 : 1

1,2 : 1
4

0 : 1
2

j

*

� �

Figure 3: A diagram for WFA A de�ning the linear grayness function fA.

Figure 4: The image fA in resolutions 2� 2, 4� 4, and 128 � 128.

The multiresolution image fA can be read as follows. Considering subsquare 03
and using the above formula we get fA(03) = IW0W3F = 5

8
. To read this o� of

the WFA diagram we consider all two edge paths that exist with the �rst edge
labeled 0 and the second edge labeled 3. Each of these contributes a weight w
obtained by multiplying the initial distribution of the starting state, the edge
weights, and the �nal distribution of the �nal state. In this case there are three
such paths: take the state 1 loop twice (w = 1 � 1

2
� 1
2
� 1
2
= 1

8
), take the state 1 loop

and then take the bottom edge to state 2 (w = 1 � 1
2
� 1 � 1 = 1

2
), or take the state

2 loop twice (w = 0 �1 �1 �1 = 0). Adding these weights gives fA = 1

8
+ 1

2
+0 = 5

8
.

The image fA for resolutions 2� 2, 4� 4, and 128� 128 is shown in Fig. 4.

De�nition 3. A function f : �� ! R is an average preserving function or
ap-function if

f(w) =
1

j�j

X
a2�

f(wa)

for each w 2 ��.

For � = f0; 1; 2; 3g this says that

f(w) =
1

4
(f(w0) + f(w1) + f(w2) + f(w3))

or that f evaluated on a subsquare equals the average of f evaluated on its 4
quadrants. This is usually required of multiresolution images since it makes the

231Culik II K., von Rosenberg P.C.: Generalized Weighted Finite Automata ...

resolution levels compatible. Note that the set of ap-functions forms a linear
sub-space of the vector space mentioned above since any linear combination of
ap-functions is an ap-function.

De�nition 4. A WFA A is average preserving ifX
a2�

Wa � F = p � F;

or equivalently X
a2�

 (a) = p � F

where p = j�j is the cardinality of the alphabet �. In other words, a WFA
A is average preserving if its �nal distribution is an eigenvector of

P
a2�Wa

corresponding to its eigenvalue j�j.

The below result comes from [5] by combining Theorems 1 and 3 from that
paper.

Theorem5. Let f : �� ! R be a multiresolution image computable by a WFA.
Then the following hold:

1. if f is computed by an average preserving WFA then f is average preserving,
2. if f is average preserving then f can be computed by an average preserving

WFA.

h1 h2 h3 h4 h5 h6 h7 h8

h1 h2 h3 h4 h5 h6 h7 h8

Figure 5: The image transformations

3 Grayscale images and GWFA

In [8] and [9] the �rst author and Valenta de�ned generalized �nite automata
(GFA) by adding transformations to �nite automata. GWFA were used to rep-
resent bi-level images. By combining the de�nitions for WFA and GFA we obtain
the following.

232 Culik II K., von Rosenberg P.C.: Generalized Weighted Finite Automata ...

 j subsquare

h�1k (w) = 321

hk maps it to

w = 203

 i subsquare

aw = 3203

Figure 6: Example with a = 3, w = 203, and k = 4.

De�nition 6. A generalized weighted �nite automaton (GWFA) is a �ve-
tuple A = (Q;�;W ; I; F) where

1. Q = fq1; q2; : : : qng is a �nite set of states,
2. � is a �nite alphabet (here we use the alphabet � = f0; 1; 2; 3g),
3. h1; : : : ; hr : �

� ! �� are letter-to-letter permutation morphisms (transfor-
mations) where r � 1,

4. W = fWak;W ak : a 2 �; i 2 f1; 2; : : : ; rgg where
Wak : Q�Q! R, the weights at edges labeled by a and hi, and
W ak : Q�Q! R, the weights at edges labeled by a and hi,

5. I : Q! R is the initial distribution,
6. F : Q! R is the �nal distribution.

Letting H = fh1; h1; : : : ; hr; hrg, we say that (p; a; h; q) 2 Q � � � H � Q

is an edge (transition) of A if Wak(p; q) 6= 0 when h = hk or W ak(p; q) 6= 0

when h = hk. This edge has label a, transformation h, and weight Wak(p; q) or
W ak(p; q). For jQj = n we will usually view Wak and W ak as n� n matrices of
real numbers and I and F as real vectors of size n. The permutations used are
as follows:

h1 is the identity morphism,
h2(0) = 2; h2(1) = 0; h2(2) = 3; h2(3) = 1;
h3(0) = 3; h3(1) = 2; h3(2) = 1; h3(3) = 0;
h4(0) = 1; h4(1) = 3; h4(2) = 0; h4(3) = 2;
h5(0) = 1; h5(1) = 0; h5(2) = 3; h5(3) = 2;
h6(0) = 0; h6(1) = 2; h6(2) = 1; h6(3) = 3;
h7(0) = 2; h7(1) = 3; h7(2) = 0; h7(3) = 1;
h8(0) = 3; h8(1) = 1; h8(2) = 2; h8(3) = 0:

The interpretation of these morphisms as transformations on images is shown in
Fig. 5 with their negations in the second row.

Each state qi of the GWFA has a corresponding multiresolution image i :
�� ! R, the state image. The GWFA A determines a �nal multiresolution
image fA : �� ! R which can be de�ned in terms of these state images. We will

233Culik II K., von Rosenberg P.C.: Generalized Weighted Finite Automata ...

de�ne the i's by de�ning a function : �� ! R
n such that i(w) is the i

th

entry of the vector (w). Let (") = F and

 (aw) =

rX
k=1

Wak � (h
�1

k (w)) +

rX
k=1

W ak � [X � (h�1k (w))]

where a 2 �, w 2 �� and X is the vector containing all 1's. This says that
each quadrant of each state image is a linear combination of transformations

of state images. Consider the ith entry i(aw) of (aw). Note that aw is the
address of a subsquare in quadrant a of of image i. Given some hk and some
 j , h

�1

k (w) is the address of the subsquare in the image j which hk maps onto
address w (which corresponds to aw). See Fig. 6 for an example. If a negated

transformation hk is involved, then the second summation is used. The result is
negated by subtracting from X and W ak is used. Finally fA is de�ned by

fA(w) = I � (w) =

nX
i=1

Ii � i(w)

where Ii is the i
th entry of I . And so the �nal image is a linear combination of

the state images as speci�ed by I . Again, since (") = F , F speci�es the average
grayness for each state.

An example of a GWFA is shown in Fig. 7. The image of each state is shown
in the diagram. The corresponding WFA is shown in Fig. 8. In this example the
GWFA requires only half as many states as the WFA and also uses fewer edges.
In general the GWFA will use fewer states than the WFA but will also require
a transformation to be stored for each edge.

The concept of average preserving can be applied to a GWFA as follows.

De�nition 7. A GWFA A is average preserving if

X
a2�

"
rX

k=1

Wak � F +

rX
k=1

W ak[X � F]

#
= p � F;

or equivalently X
a2�

 (a) = p � F

where p = j�j is the cardinality of the alphabet �.

Clearly every WFA is also a GWFA. For all a 2 � let Wa1 = Wa, Wak = 0
for all k 6= 1 and W ak = 0 for all k. Also, if the WFA is average preserving then
this GWFA is also average preserving since

X
a2�

"
rX

k=1

Wak � F +
rX

k=1

W ak[X � F]

#
=
X
a2�

Wa � F = p � F:

234 Culik II K., von Rosenberg P.C.: Generalized Weighted Finite Automata ...

q
1

R

�

-

�

3 : 1
2
,h1

0,1,2,3 : 1,h1

0 : 1,h1

3 : 1,h2

1 : 1,h4

2 : 1,h3

Figure 7: GWFA for a framed square.

�
�
�
�
�
�
�
�
��

@
@
@
@
@
@
@
@
@R

��
��

��
��

�1

PPPPPPPPPq

�
�
�
�
�
�
�
�
��

��
��

��
��

�1

PPPPPPPPPq

@
@
@
@
@
@
@
@
@R

�

0,1,2,3 : 10 : 1

1 : 1

2 : 1

3 : 1

3 : 1
2

2 : 1
2

1 : 1
2

0 : 1
2

Figure 8: WFA for a framed square.

4 WFA encoding algorithm

In this section we reviw the WFA encoding algorithm from [6], in the next section
we modify it for GWFA. We consider the set of depth d images to be an `2 space.
Given depth d images �; : �d ! R we de�ne the inner product by

h�; id =
X
w2�d

�(w) � (w)

235Culik II K., von Rosenberg P.C.: Generalized Weighted Finite Automata ...

and the norm by

k�k2d = h�; �id:

Sometimes in the program recursion is used to compute these values, using the
fact that

h�; id =

3X
i=0

h�i; iid�1

and

k�k2d =

3X
i=0

k�ik
2

d�1

where �0, �1, �2, and �3 are the four quadrants of �.
Algorithm 4.1 is the recursive algorithm we used to construct a WFA which

approximates a given image.

Algorithm 4.1
build(�; d; c)
1. Find the edges c0; c1; : : : ; cn�1 such that cost1 is small

�0 = c0 0 + � � �+ cn�1 n�1

cost1 = k�� �0k2d +G �mem(edges for ci 6= 0)
2. Execute the following: (�i is quadrant i of �)

n0 = n
cost2 = G �mem(new state and one edge)
for i = 0 to 3
cost2 = cost2+ build(�i; d� 1; cq[i])

3. If cost2 < cost1 then
ci = 0 for i = 0; 1; : : : ; n0 � 1
cn = 1
add state(n; cq) [generate n]
n = n+ 1
return(cost2)

4. If cost1 � cost2 then
remove states n0, : : : ,n� 1 (added in step 2)
set n = n0
return(cost1).

Initially the WFA contains only the basis states, the black (or white) square
and perhaps some other simple images. At any given point the state images are
denoted by 0, 1, : : : , n�1 where n is the number of states. The parameters
passed to build are the image � and its depth d. The �nal parameter c is an
array which is used to return the coeÆcients c0, c1, : : : , cn�1 of the edges used
to describe the image. (If ci 6= 0 then there is an edge to state i with weight
ci.) Also the cost is returned. In general,

cost = error+G �memory:

236 Culik II K., von Rosenberg P.C.: Generalized Weighted Finite Automata ...

Here G is a constant, memory is the number of bits needed to store the WFA
additions, and

error = k�� �0k2d

where �0 is the WFA approximation of the image �. The value of G is an input
to the program. The smaller the value of G is, the smaller the �nal error (re-
generated image of higher quality) and the larger the resulting WFA. (A small
value of G implies a small penalty for memory used.)

When an image � is sent to build two costs are calculated. The value of cost1
is the cost if the image is expressed in terms of existing states. The value of
cost2 comes from creating a new state for the image and processing each of its
four quadrants with calls to build. If cost2 is less than cost1 then a new state
is added (using information from the four calls to build), the coeÆcients are set
to indicate a single edge to the new state, and cost2 is returned. Otherwise, the
states added by the four calls to build are removed from the WFA and cost1 is
returned.

The �rst step is the diÆcult one: expressing the image in terms of existing
states. Algorithm 4.2 shows how this is done. For more details see [6].

Algorithm 4.2
�nd edges(�; d; c)
1. Initialization: price = 0, error = 0, and �i = i for all i with 0 � i < n.
2. Loop until there is a break at step b.

a. Find next edge { the one with the largest �cost where

�cost =
D
�; �i

k�ik

E2
d
�G � (memory for edge):

b. If this �cost is negative or very small then break out of the loop

c. Update error = error�
D
�; �i

k�ik

E
d

and price = price + (memory for edge).

d. Store edge information: into[n] = i and weight[n] = h�;�ii
k�ik2d

e. Make unused �j orthogonal to �i, that is, for all unused �j

�j = �j �
D
�j ;

�i
k�ik

E
d
� �i
k�ikd

:

3. Compute the actual edge weights and store in array c. (The array weight
contains weights for \orthogonalized states" rather than actual states.)

4. Return(error+G � price).

Initially the �i values are set equal to the states i. The loop �nds the edges.
At the end of each loop the unused �j values are adjusted so that they are
orthogonal to the chosen state �i. The weights from the loop correspond to the
\orthogonalized states". These are used to compute the actual edge weights.

5 New encoding algorithm for GWFA

Algorithm 5.1 is the recursive algorithm we used to construct a GWFA which
approximates a given image.

237Culik II K., von Rosenberg P.C.: Generalized Weighted Finite Automata ...

Algorithm 5.1
build(�; d; c; t)
1. Find the edges: c0; c1; : : : ; cn�1 and t0; t1; : : : ; tn�1 such that cost1 is small

�0 = c0t0(0) + � � �+ cn�1tn�1(n�1)
cost1 = k�� �0k2d +G �mem(edges for ci 6= 0)

2. Execute the following: (�i is quadrant i of �)
n0 = n
cost2 = G �mem(new state and one edge)
for i = 0 to 3
cost2 = cost2+ build(�i; d� 1; cq[i]; s[i])

3. If cost2 < cost1 then
ci = 0 and ti = id for i = 0; 1; : : : ; n0 � 1
cn = 1 and tn = id
add state(n; cq; s) [generate n]
n = n+ 1
return(cost2)

4. If cost1 � cost2 then
remove states n0, : : : ,n� 1 (added during the recursive calls)
set n = n0
return(cost1).

The di�erence between this algorithm and algorithm 4.1 is that, for each edge,
a transformation must be returned (in array t) as well as a coeÆcient. We only
allowed one transformation to be used for each state. Algorithm 4.2 to �nd the
edges is the same except that instead of just searching through each state in step
2a we search through all transformations of each state.

6 Encoding the Automaton

The GWFA is encoded in four parts. For a WFA the method is the same except
that the �nal transformation part is omitted. Each part is expressed as a list
of symbols which is then encoded using adaptive arithmetic encoding. The four
parts are as follows.

1. The tree of edges which point to newly created states. These edges all have
weight 1 and transformation h1 (the identity transformation). The tree T
for a given state is listed as T = X0X1X2X3 where

Xi =

�
1Ti if quadrant i is given by a new state with tree Ti
0 otherwise.

The tree stored here is of course the tree for the root state (the �nal image).
2. The matrix which lists all edges not indicated in the tree. The rows of the

matrix are all of the (state,label) pairs which are marked with a 0 in the
tree, listed in order. The columns are all of the states listed in order. A 1
in the matrix indicates that there exists an edge from the row state to the
column state labeled with the row quadrant number. Each row must contain
zeros for all states with numbers greater than or equal to the row state (since

238 Culik II K., von Rosenberg P.C.: Generalized Weighted Finite Automata ...

Original

bpp=8.00

WFA

bpp=0.53 psnr=32.57 dB

GWFA (4 trans)

bpp=0.46 psnr=32.57 dB

Figure 9: Framed image of resolution 256� 256 using 6-state basis.

these states were not created until after the row state was created). These
zeros are removed from the matrix and the remaining numbers are encoded
column by column.

3. The transformations of the edges are listed in the order in which they
appear in the matrix.

4. The weights of the edges are listed in the order in which they appear in
the matrix. The number line is divided into intervals and the number of
the interval containing the weight is encoded. The intervals (�1;�0:5) and
[1;1) are always used as the �rst and last intervals. The portion of the
number line from �0:5 to 1 is divided into intervals whose length depends
upon the desired precision. For precision 0 these intervals are [�0:5; 0) and
[0; 1). For a precision of k bits with 1 � k � 3 these intervals have length 2�k.
For precisions higher than 3 these intervals are of length 2�3 = 1

8
. In this

last case, and also when (�1;�0:5) or [1;1) is the interval chosen, extra
bits are appended to the end of the �le to provide the desired accuracy.

239Culik II K., von Rosenberg P.C.: Generalized Weighted Finite Automata ...

Original

bpp=8.00

WFA

bpp=0.0022 psnr=45.01 dB

WFA { fractal mode

bpp=0.0014 psnr=57.43 dB

Figure 10: Fractal image of resolution 512 � 512 using 1-state basis.

For more details see [12].
The WFA algorithm in [6] does not create loops or edges to ancestor states

since such edges would complicate the error computation. These edges are not im-
portant for real life images but are needed to obtain small WFA's or GWFA's for
simple fractal images. Therefore we added a new feature to the implementation
of the GFWA algorithm to allow it to produce edges from states corresponding
to subsquares of size 2n�1 � 2n�1 and 2n�2 � 2n�2 to the state corresponding
to the original image of size 2n� 2n. The advantages resulting from these edges
outweigh any error considerations. This is accomplished by temporarily inserting
the original image as a state in �nd edges (Algorithm 4.2) when these subsquares
are being processed. Normally, edges are only allowed to point to states which
have already been generated by the recursive algorithm. Another problem arising
from this fractal approach occurs during decompression. The �nal distribution
of the original image is needed during the computation. The �nal distribution
could have been stored during the encoding but this information would have

240 Culik II K., von Rosenberg P.C.: Generalized Weighted Finite Automata ...

been redundant. Instead, this problem was resolved by using a limiting process
as shown in Algorithm 6.1 where " is a small positive value. An example using
a fractal image is shown in Fig. 10.

Algorithm 6.1
1. Set fd = maximum possible �nal distribution.
2. Compute the image using fd in place of its �nal distribution.
3. Set fdnew = �nal distribution of the resulting image.
4. If j fdnew � fd j > " then

a. Set fd = fdnew,
b. Go to step 2.

7 Results

In testing the program we used only the �rst 4 or the �rst 8 transformations. The
negations are not as bene�cial since they can easily be obtained by subtracting
the image to be negated from the white square. The improvement in compres-
sion resulting from the transformations is best demonstrated when the image
clearly contains transformed portions. Such an example, a picture with a gray
frame, is shown in Fig. 9 where 4 transformations are used with the GWFA. For
most real life images the GFWA based compression resulted only in marginal or
no improvement in compression (for the same quality) compared to WFA. For
comparison of WFA performance to other methods, e.g. wavelets, see [6].

The GWFA image compression retains the advantages of the WFA approach.
It works well for all types of images, including e.g. cartoon-like images with
many edges, and it works especially well for color images. For a color image
the GWFA compression algorithm builds just one GWFA for all three color
components taking advantage of their similarities. All three color components
share the states and each has just its own initial distribution.

Acknowledgement. Research was supported by the National Science Foun-
dation under Grant No. CCR-9417384.

References

[1] Barnsley, M.: \Fractals Everywhere"; Academic Press, San Diego, CA (1988).
[2] Barnsley, M., Hurd, L.: \Fractal Image Compression"; AK Peters, Ltd., Wellesley,

Massachusetts (1993).
[3] Culik II, K., Dube, S.: \AÆne Automata and Related Techniques for Generation

of Complex Images"; Theoretical Computer Science 116, 373-398 (1993).
[4] Culik II, K., Karhum�aki, J.: \Automata computing real function"; SIAM J. on

Computing 23, 4, 789-814 (1994).
[5] Culik II, K., Kari, J.: \Image compression using weighted �nite automata"; Com-

put. Graphics 17, 305-313 (1993).
[6] Culik II, K., Kari, J.: \Image-data compression using edge-optimizing algorithm for

WFA inference"; Journal of Information Processing and Management 30, 829-838
(1994).

[7] Culik II, K., Kari, J.: \EÆcient inference algorithm for weighted �nite automata";
in: Fractal Image Encoding and Compression (Ed. Y. Fisher), Springer-Verlag
(1995).

241Culik II K., von Rosenberg P.C.: Generalized Weighted Finite Automata ...

[8] Culik II, K., Valenta, V.: \Finite Automata Based Compression of Bi-level and
Simple Color Images"; Computers & Graphics 21, 61-68 (1997).

[9] Culik II, K., Valenta, V.: \Generalized Finite Automata and Transducers"; Journal
on Automata, Languages, and Combinatorics 2, 3-17 (1997).

[10] Jacquin, J.: \Image coding based on a fractal theory of iterated contractive image
transformations"; IEEE Transactions on Image Processing 1(1), 19-30 (1992).

[11] Mauldin, R.D., Williams, S.C.: \Hausdor� Dimension in graph directed construc-
tions"; Trans. Am. Math. Soc. 309, 811-829 (1988).

[12] Rosenberg, von P.C.: \Generalized Weighted Finite Automata Based Image Com-
pression"; Master's Thesis, Dept. of Computer Science, University of South Carolina
(1998).

[13] Royden, H.L.: \Real Analysis"; Macmillan Publishing Company, New York, NY
(1988).

[14] Hafner, U.: \Re�ning image compression with weighted �nite automata"; Pro-
ceedings Data Compression Conference, (Ed. James A. Storer and Martin Cohn),
IEEE Computer Society Press, 359-368 (1996).

242 Culik II K., von Rosenberg P.C.: Generalized Weighted Finite Automata ...

