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Abstract: We investigate the application of automated deduction techniques to re-
trieve software components based on their formal speci�cations. The application pro�le
has major impacts on the problem solving process and requires an open system archi-
tecture in which di�erent deductive engines work in combination because the proof
problems are too di�cult for a single monolithic system. We describe our system ar-
chitecture, a pipeline of �lters of increasing deductive strength, and concentrate on
the �nal �lter, in which theorem provers are applied. Here, we use the Ilf-system as
a control and integration shell to combine di�erent provers. We support two di�erent
combination styles, competition and cooperation. Experiments con�rm our approach.
With moderate timeouts we already achieve an overall recall of approximately 80%.

1 Introduction

Progress in automated deduction has made the application of automated the-
orem provers (ATPs) to problems in software engineering a more realistic idea
than ever before. With Nora/Hammr (cf. [Fischer, Schumann, and Snelting 98]
for a detailed account) we investigate an application in software reuse, deduction-
based software component retrieval. It uses formal speci�cations as component
indexes and as queries, builds proof tasks from these, and checks the validity of
the tasks using an ATP. A component is retrieved if the prover succeeds on the
associated task|retrieval becomes a deductive problem.

Solutions of this deductive problem, however, are constrained by peculiari-
ties of its software engineering roots which set it apart from other applications
domains, e.g., mathematics or program veri�cation:

{ The users are no ATP experts; they are not even interested in successful
proofs but only in retrieved components.

{ Response times matter; from the user's point of view it is better to be fast
than complete (\results-while-u-wait").

{ Every single user task spawns a large number of proof tasks.
{ If a task is provable, its proof is often rather simple but in most cases it is
unprovable (i.e., no valid theorem) because it belongs to a non-match.
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The di�erent user and problem pro�les have major impacts on a realistic imple-
mentation of deductive retrieval. First, the deductive engine must be encapsu-
lated completely. The \novice" users must be able to formulate their problems
in their own, application-oriented language (e.g., Nora/Hammr uses Vdm-Sl).
Thus, its e�cient translation and the automatic construction of prover-speci�c
tasks become important parts of the problem-solving process. Then, the time
requirements and the large number of tasks render a na��ve generate-and-test
approach infeasible. Instead, more intelligent architectures are required which
prevent the actual ATP from \drowning". Simpli�cation of the proof tasks and
detection and removal of non-theorems can no longer be taken for granted and
must be done explicitly.

These requirements prompt an open system architecture (cf. [Section 3.1]), in
which di�erent deductive engines work in combination on a practical application
which is too di�cult for a single monolithic system. We support two di�erent
combination styles, competition and proper cooperation following the Techs
concept [see Fuchs and Denzinger 97; Denzinger and Fuchs 98]. Both styles
increase the success rate and require merely small internal changes in the engines
itself. However, the single engines still require a substantial amount of system
tuning which must be done by an \expert user" or reuse administrator. For
this process (cf. [Section 6]), interactive theorem proving systems with good
presentation and prototyping facilities as for example the Ilf-system [Dahn et
al. 97] proved to be suitable.

2 Application Background

Component retrieval is one of the technical key issues in software reuse: \You
must �nd it before you can reuse it!"1 A variety of di�erent approaches has
been investigated, deduction-based retrieval [see Moorman Zaremski and Wing
97; Cheng and Jeng 92; Schumann and Fischer 97] being the most ambitious
(cf. [Krueger 92] for a general overview of software reuse and [Mili, Mili, and
Mittermeir 98] for library issues). In contrast to the other approaches, it exploits
exact semantic information on the components and retrieves proven matches
only. Its basic idea is very simple.

1. Each component c is associated with a contract, a formal speci�cation which
captures the relevant behavior in form of a pre- and postcondition, e.g.,

run (l : list) r : list
pre true
post exists l1 : list & l = r y l1 ^ ordered(r)
^ forall i : item, l2 : list & l = r y [i] y l2 ) :ordered(r y [i])

which computes the longest ordered initial subsegment (i.e., run) of a list.2

2. Contracts also serve as queries q, e.g.,

segment (l : list) r : list
pre true
post exists l1, l2 : list & l = l1 y r y l2

1 The First Golden Rule of Software Reuse, attributed to W. Tracz.
2 In Vdm-Sl, y denotes list concatenation, [ ] the empty list, [i] a singleton list with
item i. & reads as \such that" and ordered is a user-de�ned predicate.
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can be used to retrieve any function which returns an arbitrary continuous
sublist of the argument.

3. For each possible candidate, a proof task is constructed comprising the re-
spective pre- and postconditions.

4. A component quali�es if an ATP can establish the validity of the associated
task.

The exact form of the proof task determines the nature of the reuse. The most
common form is plug-in compatibility

(preq ) prec) ^ (preq ^ postc ) postq)

which supports black box reuse|retrieved components may be reused \as is",
without further proviso or modi�cation. Other notions of compatibility support
white box reuse but then manual checks or code modi�cations are required in
order to guarantee the applicability of the retrieved components.

3 The Deductive Infrastructure

3.1 System Architecture

The key problem in deduction-based software retrieval is to maintain a balance
between fast responses and high recall (i.e., number of proofs found.) The large
number of tasks makes this also a hard problem. Thus, a architecture is required
which prevents the actual ATP from \drowning".Nora/Hammr uses a pipeline
of �lters of increasing deductive strength in order to reduce the number of proof
problems stepwise. Several pre�lters based on signature matching and rewrit-
ing try to identify non-matches as fast and early as possible and only for the
remaining proof problems a real ATP is started.

Yet, all experiments show that still no single ATP on its own is powerful
enough to be \the" deductive engine for all the tasks passing the pre�lters.
Nora/Hammr thus integrates di�erent ATPs, using the Ilf-system (cf. [Sec-
tion 3.3]) as an \ATP-scheduler" to control them. Ilf allows us to use di�erent
provers for the same problem in parallel. Currently, we use resolution- (Otter
and Spass) and tableau-style systems (Setheo). Even a proper cooperation of
provers following the Techs approach (cf. [Section 4]) is supported, e.g., be-
tween Spass, Discount and Setheo. Further parallelization is achieved along
another dimension: Nora/Hammr can generate di�erent variants of the same
problem, e.g., using di�erent axiom sets which are handled by Ilf in the same
way.

The resulting system architecture is shown in [Fig. 1]. Users communicate
only withNora/Hammr, using a graphical interface described in [Fischer, Schu-
mann, and Snelting 98]. The tasks are piped through the pre-processing stages
provided by Nora/Hammr. At the end of the pipeline, Ilf takes over control
and dispatches the tasks to the ATPs. Since the users need no proofs, Ilf just
returns whether a proof has been found at all, and Nora/Hammr eventually
displays the component.
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Figure 1: System architecture

3.2 Pipeline Elements

3.2.1 De-Customization

Vdm-Sl o�ers a wide variety of syntactic constructs, e.g., let-expressions, pat-
tern matching, built-in datatypes, dynamic types using type invariants and many
more. The process to cut this variety down is called de-customization. It trans-
lates the proofs tasks into LPF, the logic of partial functions [see Barringer,
Cheng, and Jones 84] which we use as core language. De-customization replaces
binding expressions on the term level (e.g., let- or cases-expressions) by standard
quanti�ers such that non-deterministic expression evaluation (due to Vdm-Sl's
loose semantics) and unde�ned expressions (due to partial functions) are mapped
correctly [see Middelburg 93]. It also eliminates dynamic types and replaces them
with their static super-types by relativization with the type invariants, similar
to the standard relativization technique [Oberschelp 62].

A second step takes care of the partial functions and translates LPF into FOL,
following [Jones and Middelburg 94]. The translation is provability-preserving,
i.e., `LPF ' () `FOL '

0 holds. It uses a set of signed functions to map any LPF-
formula which contains an unde�ned subterm to an unprovable FOL-formula.
E.g., the LPF-formula 8l : List � hd l = hd l which has the truth value unde�ned
becomes 8l : List � l 6= [ ] ^ hd l = hd l which is unprovable in FOL. Since the
quanti�ers in LPF range only over proper (i.e., de�ned) values, we can optimize
the handling of formulas and terms which contain no occurrences of partial
functions.

The original translation by Jones and Middelburg uses in�nitary logic to
deal with recursively de�ned datatypes. Since we translate only into pure FOL
but do not apply proper inductive provers, we need �rst-order approximations
for those datatypes. This approximation comprises two steps.

In the �rst step, the free generation property of the datatype is encoded
by additional �rst-order axioms, similar to [Harrison 95]. In detail, we have to
encode (i) the constructor property of the constructor functions (i.e., that terms
with di�erent top-level constructors are never equal), (ii) the surjectivity of the
constructors wrt. the datatype domain (i.e., that the top-level function symbol
of each element in the domain is one of the constructor functions), and (iii) the
freeness or injectivity of the constructor functions (i.e., if two terms with the
same top-level constructor are equal then their respective arguments are equal,
too). Although these axioms do not capture the �nite generation property, they
work quite well in practice. For example, in the usual theory of lists which is
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freely generated by nil and cons, the three properties give rise to the following
axioms3 (i) 8i : item ; l : list �nil 6= cons(i; l), (ii) 8l : list � l = nil _9i : item; m :
list � l = cons(i;m), and (iii) 8i; j : item; l;m : list � cons(i; l) = cons(j;m) )
i = j ^ l = m.

However, we can even improve this and incorporate cardinality information
which we can infer from the constructors and the signature information contained
in the theory database. If a sort is freely generated by at least two constructors
and all argument domains are guaranteed to be non-empty (e.g., because the sig-
nature contains constants of the necessary types), then we know that it contains
at least two di�erent elements. In the list example, we can thus add a fourth
axiom (iv) 8l : list � 9m : list � l 6= m.

A second step deals with the induction scheme which follows from a datatype
de�nition. Obviously, it cannot be encoded by �rst-order axioms. However, the
special nature of our proof tasks allows the very powerful heuristic to use the
formal parameter(s) of a candidate component as induction variable(s) and to
instantiate the induction scheme appropriately.

3.2.2 Simpli�cation

Unlike the problems in benchmark collections as the TPTP [Sutcli�e, Suttner,
and Yemenis 94], proof tasks in applications are generated automatically and
thus not simpli�ed. E.g., in our case they may still contain the propositional con-
stants true and false from the original contracts or redundant equations which
may be used to simplify the task. Hence, rigorous simpli�cation is a necessary
�rst step.

InNora/Hammr, we use a rewrite-based simpli�cation procedure, and since
we are working with extensions of FOL, the applied set of rewrite rules is two-
tiered. The core tier deals with the FOL operators and equality. It eliminates
the propositional constants, rewrites the tasks into conjunctive normal form and
then further into anti-prenex form to minimize quanti�er scopes.

The custom tier deals with all other symbols. It can also be separated into
two subsets. One subset contains all rules which can be extracted from \suit-
able" axioms and lemmas in the database, i.e., universally closed unit literals,
equations, and equivalences. Unit literals are rewritten into true or false, de-
pending on their sign. For equations and equivalences we only check whether
they decrease the size of the terms but do not use a proper termination order-
ing. The other subset follows from the generator information for datatypes. Of
course, the constructor property and injectivity of the constructor functions in-
duce the usual rewrite rules. The surjectivity gives rise to a witness rule, e.g.,
9x : List � x = t ; true (provided that the bound variable x does not occur
free in t.) Similarly, the cardinality information can be turned into rewrite rules.
Note that both rules consider the quanti�er as an ordinary operator symbol.

3.2.3 Rejection

Simpli�cation can also be used in a rejection �lter: if a proof task G can be
simpli�ed to false, the candidate may obviously be rejected. Unfortunately, only

3 The necessary sort information can easily be obtained from the function speci�cations
in the theory database (cf. [Section 3.2.4]).
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very few of the inherent inconsistencies can already be detected by the simpli-
�cations so far. For rejection purposes it is necessary to make much more of
them explicit. To this end, we can again exploit the generator information for
datatypes and use the surjectivity of the constructor functions to \unroll" sorted
quanti�ers, e.g., 8l : list �H [l] becomes H [nil ]^8i : item; l : list �H [cons(i; l)]. By
repeated unrolling and re-simpli�cation we are then able to detect almost half
of the mismatches.

Even though this rewrite-based simpli�cation is a good low-cost rejection
�lter, it is still too coarse and more methods to show A 6j= G formally are
necessary. The obvious approach is to negate the goal and to check A ` :G.
However, this is only a su�cient and not a necessary condition and in many
cases we have that A 6j= G and A 6j= :G both hold.

Another approach is to look for explicit countermodels, i.e., structures in
which the axioms A hold but not G. We have experimented with model checking
techniques [see Schumann and Fischer 97] but since A includes the theory of
lists, we can only approximate the necessary �nite structures and the approach
becomes unsound. However, as humans we can spot the countermodels easily
because usually only a small part of the structure is required. Moreover, this
part is even quite similar for most tasks. Hence, in order to show A 6j= G, we
formalize the countermodel by additional axioms CM and try to deduce the
negated goal, i.e., we have to solve the task A[CM ` :G. This approach relies
of course on the fact that the extension CM is consistent with the original axioms
A. However, this cannot be proven automatically but must be shown manually
by the reuse administrator.

3.2.4 Axiom Selection

The proof tasks contain a variety of extra-logical symbols which need to be ax-
iomatized by the reuse administrator.Nora/Hammr provides a theory descrip-
tion kernel which resembles in some ways a logical framework, e.g., Isabelle
[Paulson 94]. The main di�erence is that it does not support the speci�cation of
new logics but only of conservative or inductive extensions of order-sorted FOL
or theories. The application of such a dedicated theory description language is
nevertheless worthwhile because it explicitly captures meta-information which
is essential for many specialized techniques and which cannot easily extracted
automatically from a 
at list of FOL-formulas.

A theory description comprises a set of sort, function, and predicate declara-
tions together with axioms, lemmas, and rules which describe properties of the
declared symbols. Theories are hierarchically ordered by the extension relation
in the same way modules are ordered by the import relation. The example theory
TList

theory TList = FOL +
classes CListEq :: CEq
types "List" :: CListEq;

"Nil" < "List"

directly extends the base theory FOL. It introduces the class (i.e. collection of
sorts) CListEq of list sorts with equality as a subclass (i.e. subcollection) of the
general equality class CEq. CListEq comprises the sort List and a Nil-subsort.
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Based on these domains, predicates and functions can be declared. The theory
kernel supports di�erent operator �xities and priorities as well as variable arity
operators. For the list example, typical declarations are

consts "nil" : "Nil" (0);
"#" : "[Item; List] => List" (infix 2 45);
"^" : "[List; List] => List" (infix 2 45);
"mem" : "[Item; List] => o" (2)

which introduce a nil-constant, two binary in�x operators # (cons) and ^ (ap-
pend) with priority 45 and a non�x binary predicate mem (membership), respec-
tively.

Properties of these symbols can be speci�ed in di�erent ways. As usual, ar-
bitrary FOL-formulas can be used but the kernel allows a distinction between
proper axioms and lemmas where it is assumed (but not checked) that the lem-
mas are inductive consequences of the axioms, e.g.,

axioms
memDef "forall I:Item, L:List .

mem(I,L) <-> exists L1:List, L2:List . L = L1 ^ (I # L2)"
lemmas

memNil "forall I:Item . ~ mem(I, nil)"

The kernel also provides explicit notations for properties which are exploited by
other steps, e.g., associative-commutative operator or freely generated datatype:

"List" freely generated by "nil", "#";

The large number of axioms and lemmas contained in a theory database
requires a reduction mechanism which selects only those which are necessary
to �nd a proof at all or are likely to shorten it and omits all those which only
increase the search space.

In Nora/Hammr, we use signature-based heuristics similar to that in [Reif
and Schellhorn 98]. Their basic assumption is that rules are redundant if they
contain no symbols which occur in the problem, or more precisely, if they are
de�ned in redundant theories. A theory is redundant if it introduces only symbols
not occurring in the problem and is not referred (directly or indirectly) by other
non-redundant theories.

Due to the distinction between axioms and lemmas the strategy of Reif and
Schellhorn can be modi�ed in several ways, e.g., (i) select only axioms, (ii)
additionally, select lemmas if they contain only symbols which occur in the
original problem, (iii) additionally, select lemmas if they contain at least one
symbol which occurs in the original problem but no symbol from non-redundant
theories, or (iv) select all axioms and lemmas from non-redundant theories.
Nora/Hammr currently implements the variants (i) and (iv).

3.3 Ilf

The last element in the processing pipeline is the Ilf-system (Integrating Logical
Functions). It can, roughly speaking, be regarded as an integration and control
shell for working with di�erent ATPs.

The main input-output of Ilf behavior is the solving of a �rst-order proof
problem by giving the answers 'yes' or 'no' within a speci�c time limit. Due to
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the undecidability of the �rst-order logic, the answer 'no' does not mean that
the goal does not follow from the theory. This is exactly the kind of behavior
that all ATPs show if the search time for a proof attempt is restricted.

Internally, Ilf converts the original proof problem into variants suitable for
the supported state-of-the-art theorem provers, e.g. Setheo, Spass, Otter,
Discount, and launches these provers in parallel on a local computer network.
If one of the provers can solve the problem within the time limit, Ilf gives the
answer 'yes', otherwise 'no'.

The sketched restricted functionality makes it easy to incorporate Ilf into
other systems because it can work as a shell script. However, originally Ilf
was developed for interactive work. In order to gain acceptance, it provides
much more functionality than only saying 'yes' or 'no' and|as we can see in
[Section 6]|this functionality is also very useful for our retrieval application.

The most striking di�erence to other existing veri�cation tools is the presen-
tation of theories and proofs from several automated provers in a human readable
form. The possibility to inspect the feedback of the automated provers easily is
extremely important in order to detect inconsistencies in the used theory. The
detection of really abstruse proofs by a prover is an indication that the theory
is inconsistent and every goal could be proved.

Another useful advantage is that Ilf is highly customizable. It is possible to
con�gurate Ilf in such a way that it controls the proof attempts of all integrated
theorem provers for hundreds of tasks and evaluates all results. This makes it
feasible to obtain statistical data for a speci�c class of proof tasks.

4 Cooperation between ATPs

After we described the pipelining process and the Ilf tool, which manages the
ATPs for the emerging proof problems, we now investigate cooperation between
ATPs. Our experiments (cf. [Section 5.2]) show that the success rate of ATPs can
be increased if the provers work in a cooperative style.

We describe the underlying concept for cooperation in detail because the prin-
ciples may also be interesting for other applications in which systems should in-
teract and cooperate with each other. The general idea of our underlying Techs
(TEams for Cooperative Heterogeneous Search) approach is to interchange se-
lected clauses between heterogeneous provers in regular time intervals.

4.1 Basics of Techs

The Techs approach requires several di�erent provers running in parallel on
di�erent computing nodes. In our context of component retrieval problems proof
problems are speci�ed in �rst-order logic (with equality). The provers employ
either calculi which are complete for �rst-order logic (universal provers) or calculi
which are complete for a sub-logic of �rst-order logic (specialized provers). We
allow for the use of saturation-based calculi, like resolution and superposition,
and of analytic or tableau-style calculi, like the connection tableau calculus. We
assume that unique numbers are assigned to the provers.

As alreadymentioned, the provers exchange information in regular time inter-
vals. Thus, the working scheme of each prover is characterized by certain phases
similar to the Teamwork approach [Denzinger 95]. The sequence of phases is

59Baar T., Fischer B., Fuchs D.: Integrating Deduction Techniques ...



Pinit; P
0
w; P

0
c ; P

1
w; P

1
c ; : : : , i.e. after an initialization phase (Pinit), working (P

i
w)

and cooperation phases (P i
c) alternate each other.

In the initialization phase Pinit each prover j obtains the initial clause set C to
be refuted and forms an initial search state S0j out of this state. In each working

phase P i
w a prover j starts with an initial search state Si

j and transforms this

search state with its inference rules into successor states Si
j = Si

j;0 ` : : : ` S
i
j;ni

j

.

In a cooperation phase P i
c , the provers exchange clauses which are proven to

be logic consequences of C. The information exchange takes place synchronously .
Each prover j can extract clauses from the search states fSi

j;0; : : : ; S
i
j;ni

j

g enumer-

ated in the working phase P i
w. Note that|especially for an analytic prover|this

is more sensible than simply extracting clauses from Si
j;ni

j

. Since such provers

usually perform a search with backtracking it is sensible to consider also expe-
riences made during the search. Obviously, a prover should not communicate
too many clauses to others. This would entail negative consequences for both
saturation-based and analytic provers. A receiving saturation-based prover like
Spassmust process all these clauses (i.e. perform all possible inferences involving
them) which can take a rather long time. Moreover, since these clauses persist
in the search state they might slow down the prover because they can be used
in many inferences in future. An analytic prover like Setheo can also not pro�t
from too many clauses since they increase the branching rate of the search tree
too much. Furthermore, it is wise to send only a small number of clauses so as
to decrease the amount of communication. Hence, we decided to exchange only
a subset of the clauses which is selected by using so-called referees.

All in all, in a cooperation phase P i
c following activities are performed by

each prover j:

{ Extraction of clauses from the search states fSi
j;0; : : : ; S

i
j;ni

j

g of working

phase P i
w.

{ Selection of a �xed number of clauses via referees and exchange of these
clauses with selected clauses of other provers.

{ Building a new start state Si+1
j for working phase P i+1

w considering the

clauses received from other provers and the current search state Si
j;ni

j

.

Note that a team based on the Techs approach can easily be integrated
into the Ilf-system. It is only necessary that Ilf launches the provers and gives
them information on the proof problem and their cooperation partners. After
that, the provers can cooperate independently of Ilf.

4.2 General Techs Architecture

When selecting clauses from a prover i which should be sent to prover j, it is
sensible to utilize as much knowledge as possible in the selection process so as
to perform an \optimal" selection regarding i and j. Further, the selection and
transmission of clauses should be very e�cient in order to reduce the overhead
caused by the cooperation. However, these are con
icting goals: if we for example
merely use local knowledge for selecting clauses, i.e. knowledge about the current
search state of the sender and its history, we can select and transfer clauses very
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e�ciently. We can select clauses at the site of the sender and send these clauses
via broadcast to all receivers. However, concrete needs of receiving provers are not
considered. The other extreme is to select clauses according to global knowledge
about the sender and the receiver. If we have so much knowledge it is possible to
perform an optimal selection regarding i and j. But this kind of selection requires
the highest (communication) costs because the complete search states of sender
and receiver (and probably their history) must be simultaneously evaluated.

Thus, we have chosen an approach that realizes a compromise between the
use of local and global knowledge or success-driven and demand-driven selection.
We employ an individual send-referee for each receiver of clauses at the sender
site which selects clauses from the sender. Moreover, each receiver employs an
additional receive-referee which �lters some clauses from the set of clauses it
receives from the send-referees of other provers. This receive-referee takes needs
of the receiver into account. Thus, on the one hand send- and receive-referee can
use knowledge about the sender and the receiver of clauses, respectively. On the
other hand, the selection process is rather e�cient: In the case that our team
consists of n provers, n� 1 selections take place at each sender site, then n� 1
(rather small) sets of clauses must be transferred to the receiving provers, and
then one additional selection out of the incoming clauses must be performed.

The architecture of a system based on Techs is depicted in [Fig. 2]. The
send-referees (SR) and receive-referees (RR) are displayed half inside and half
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outside the provers because they can be realized either as parts of the provers
or as independent processes. Realizing referees as parts of the provers requires
more implementational e�ort but allows to have access to internal data of the
provers. Since this allows the development of more powerful referees we decided
to choose this alternative for our experiments.

In order to exchange clauses between referees it is important that they employ
a communication language that both send- and receive-referees understand. Con-
sider the situation that a send-referee obtains clauses in format i and its associ-
ated receive-referee has to give some clauses to a prover which employs format j.
Then, it is possible to implement receive-referees that understand many di�erent
formats of clauses and can transform them into the relevant format j. Another
possibility is to employ a speci�c transfer language: Send-referees transfer their
selected clauses from format i into this transfer language, receive-referees then
transform received clauses into format j. The main disadvantage of the latter
method is that two transformations are needed. However, it has the advantage
that a new prover can simply be added to the cooperative system because its
send- and receive-referee must only understand two clause formats. We used this
second alternative and employed the syntax format of the DFG Schwerpunkt De-
duktion [see H�ahnle, Kerber, and Weidenbach 96] for exchanging clauses.

4.3 Achieving Cooperation between Provers

In the following, we describe the activities which are necessary for achieving
cooperation between theorem provers. These are the extraction of clauses, the
selection with send- and receive-referees, and the integration of extracted clauses.

4.3.1 Extraction of Clauses

The �rst step of an exchange of information is the extraction of clauses from the
search states fSi

j;0; : : : ; S
i
j;ni

j

g a prover j has enumerated in the working phase

P i
w. We distinguish between saturation-based and analytic provers.
The extraction of valid clauses from search states of saturation-based provers

is very easy because search states are sets of clauses. Even more, a theorem
prover j can take all interesting clauses to be selected from the actual search
state Si

j;ni
j

at the beginning of cooperation phase P i
c . This is because the provers

only derive new clauses, delete unnecessary clauses, or simplify clauses. Hence,
the sequence of enumerated search states (clause sets) is not needed but it is
su�cient to consider the most recently derived clause set.

The analytic provers that we consider are based on the connection tableau
calculus and conduct a search with iterative deepening and backtracking in the
search tree T of all connection tableaux. A single search state is only one of these
tableaux. Hence, it is only possible to extract information on one proof attempt
from a search state. If the proof attempt represented by the search state does
not lead to a proof it might be that all clauses which can be extracted from it
are unnecessary. Then, send-referees might have to choose from a pool consisting
of unnecessary clauses only. This shows that clauses must be extracted from all
search states enumerated during a working phase, i.e. they must essentially be
extracted from the search tree of all tableaux.
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Because of the fact that the search tree T of all tableaux is in general not
given explicitly, clauses must be extracted from the enumerated tableaux during
the search process. A possible method to do this is to utilize bottom-up lemma
mechanisms [see Letz, Mayr, and Goller 94] of connection tableau-based theo-
rem provers. In addition, top-down lemmas, so-called subgoal clauses [see Fuchs
98b], might be extracted from a tableau. Before a send-referee is applied to the
set of extracted lemmas it is reasonable to compute a minimal lemma set by
eliminating subsumed clauses.

4.3.2 Realization of Send-Referees

A send-referee in a system based on the Techs approach consists of a pair (S; ')
of a �lter predicate S and a selection function '. The prover that receives the
results of the send-referee will get those clauses in the cooperation phases that
pass through the �lter and that are selected by '.

The �lter predicate S limits the set of clauses that are eligible for transmis-
sion. Typically, clauses are �ltered out that are redundant w.r.t. the receivers.
In the following those are clauses that a receiver cannot use in its inference
mechanism (e.g. non-unit clauses are redundant for an equational prover).

The selection function ' can employ several judgment functions  1; : : : ;  n.
These functions  i associate a natural number with each clause C, and C is
considered the better the higher the value  i(C) is. ' eventually selects the
clauses with the best judgments.

The judgment functions that we have used consider on the one hand gen-
eral syntactic features of clauses. E.g., they prefer general clauses which con-
tain many variables and only few function symbols. These clauses are useful for
saturation-based provers because they might often take part in contracting infer-
ences (subsumption, rewriting). They are often also useful for analytic provers
because open tableau branches can be closed. On the other hand we employ
functions that judge the derivation history of a clause w.r.t. its possible useful-
ness for the receiver. E.g., if the receiver of a clause is an analytic prover and
the sender a saturation-based prover, we consider whether the clause is the re-
sult of an equality inference like superposition. Such clauses are especially useful
for analytic provers since they have di�culties with equality handling. Similar
criteria can be developed for other combinations of sender and receiver.

Due to lack of space we cannot describe the referees in detail. For exact
realizations of send-referees for saturation-based provers we refer to [Fuchs and
Denzinger 97]. Exact descriptions of send-referees for analytic provers can be
found in [Fuchs 98a; Fuchs 98b].

4.3.3 Realization of Receive-Referees

A receive-referee is a selection function ' which also uses judgment functions for
measuring the quality of clauses. Receive-referees can only select clauses from the
set of clauses they have received from the send-referees of other provers. Thus,
they have to choose from a small set of clauses and can therefore employ more
sophisticated (and time-consuming) criteria than a send-referee. Nevertheless,
the knowledge about the receiver is somewhat limited and can only facilitate the
selection a little bit. (In order to go beyond the limitation, for each clause the
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whole future proof and the role of the clause in it has to be computed, which is
not feasible.) Since the receive-referee can only estimate which consequences the
integration of certain clauses will have we must employ heuristic criteria again.

Our �rst judgment function judges whether a received clause may be part
of a proof that can quickly be found. E.g., for superposition-based provers we
judge whether many short clauses can be derived from a clause received and
clauses from the actual clause set. In our approach, analytic provers employ
receive-referees only if they receive clauses from saturation-based provers. There,
we judge whether a received clause might contribute to close tableaux derived
during the proof search. We simply compute the di�erence of the number of
tableau branches which can be closed by a received clause and the number of
branches that remain open. A second judgment function prefers clauses which
need not be part of a proof but are nevertheless able to decrease the search e�ort
in future. We use this function for saturation-based provers only. Our function
produces higher values if many contracting inferences are possible with a clause.
Again, exact de�nitions can be found in [Fuchs and Denzinger 97].

4.3.4 Integration of Clauses

The integration of clauses into the search state of a saturation-based prover is
very simple since it works on sets of clauses [see Fuchs 98c]. Thus, a clause can
be integrated by adding it to the current clause set and performing all inferences
possible with it.

For the integration of clauses into the search state of an analytic prover there
exist two possibilities. The �rst is to add the new clauses to the old axioms and to
perform a re-start of the proof run. The second is to additionally avoid a re-start
and to continue the search at the current choicepoint. The �rst variant has the
disadvantage that the whole search of an analytic prover is lost and must possibly
be repeated. However, the variant has the advantage that it can be implemented
very easily. Moreover, in contrast to the second variant it guarantees that during
the iterative deepening process a proof can be found in a minimal segment of
the search space. Since the segments usually grow exponentially we have chosen
the simple �rst variant.

4.4 Related Work

There are some related approaches that try to employ several provers for solving
proof problems. Many of them are pure parallelization approaches and do not
achieve cooperation by information exchange. For instance, the theorem prover
Partheo [Letz and Schumann 90] is a parallel prover for the analytic connection
tableau calculus. There exist also parallel versions of provers for saturation-based
calculi as, e.g., PaReDuX [B�undgen, G�obel, and K�uchlin 94].

Cooperation of provers by information exchange was so far mainly consid-
ered for homogeneous systems, i.e. systems where all provers employ the same
calculus. For instance, the approaches Teamwork [Denzinger 95] and clause
di�usion [Bonacina and Hsiang 95] are suitable for coupling di�erent instances
of a saturation-based prover. The prover Cptheo achieves cooperation between
di�erent instances of a connection-tableau-based prover [see Fuchs and Wolf 98].
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The closest relationship to our approach has the work done in [Sutcli�e 92]
where a heterogeneous cooperation concept for automated deduction was pro-
posed. The central concept was a distributed implementation of a shared memory
(a so-called tuple-space), into which each agent wrote all formulas it generated.
In contrast to our approach, no selection process was involved and no existing
provers could be used. Therefore, the published experiments were not convincing.

5 Experiments

We used a library of 119 speci�cations of list processing functions. Approximately
75 of them describe actual functions (e.g., tail, rotate, or delete minimal) while
the rest simulates queries. We thus included under-determined speci�cations
(e.g., the result is an arbitrary front segment of the argument list) as well as
speci�cations which do not refer to the arguments (e.g., the result is not empty).
We then cross-matched each speci�cation against the entire library, using plugin-
compatibility as match relation. This yielded a total of 14161 proof tasks where
1839 or 13.0% were valid.

Although our experimental setup represents the most serious attempt to
deduction-based software component retrieval so far, the library is still rather
simple. The resulting proof tasks, however, are already rather hard, compared
to standard theorem proving benchmarks, e.g., the TPTP. The tasks are not
biased towards any particular prover because the component speci�cations have
been completed before the experimental evaluation started; however, the applied
logics (i.e., many-sorted �rst-order logic with equality) and the speci�cation style
should favor provers with built-in support for equality and sorts.

We expect that our approach easily scales up to other container datatypes,
e.g., sets, bags, or graphs; obviously, more complicated speci�cations will lead
to more complicated proof tasks. As all related work in deduction-based compo-
nent retrieval, our approach is also essentially con�ned to components which can
speci�ed in a pure input/output-style, as for example functions, procedures, or
methods; support for more elaborate component models (e.g. JavaBeans [Java-
soft 98]) is currently planned.

5.1 Competition Experiments

With competition we denote that the ATPs work in parallel on basically the
same problem but do not exchange information. We can distinguish two di�erent
competition modes which work along independent dimensions:

{ variant competition: multiple identical instances of a single prover work on
di�erent task formulations of a problem.

{ system competition: di�erent provers or di�erent instances of a prover (e.g.,
using di�erent strategies or control parameters) work on the same proof task.

In Nora/Hammr, we have experimented with both competition modes.

5.1.1 Variant Competition

Di�erent preprocessing steps, e.g., simpli�cation or axiom selection can give rise
to quite di�erent search spaces. Variant competition can then be used to exploit
these di�erences.
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In a �rst experiment we used Otter to check four increasingly simpli�ed
variants of the proof tasks. All variants are obtained by application of the rewrite-
based simpli�cation procedure mentioned in [Section 3.2.2]. The respective re-
sults for di�erent timeouts 4 are shown in [Tab. 1]. Here, base denotes the unsim-
pli�ed base case, FOL the usual �rst-order simpli�cations, subst the additional
substitution of equations x = t throughout the task and full the application of
the full custom tier of simpli�cations.

Tmax (secs.) base FOL subst full comp bf comp all

1 749 711 729 952 970 979
10 1152 1147 1144 1247 1303 1319
30 1229 1215 1207 1282 1348 1363
60 1270 1263 1236 1293 1385 1397
90 1274 1267 1236 1293 1387 1399

Table 1: Results of variant competition experiments|simpli�cation

This experiment clearly demonstrates the bene�ts of variant competition.
The di�erent competitive runs solve 7.27% and 8.20% more tasks than the best
single variant; at the same time the elapsed real time drops by 13.52% to 15.80 %,
resp., provided that each variant runs on an own processor. However, even for
a single processor an improvement can be achieved, provided that the compe-
tition is restricted to the most complementary variants. E.g., for a timeout of
30 seconds comp bf solves 4.25% more tasks than the single best variant (full)
within 60 seconds. Simultaneously, the elapsed total proof time drops by 1.73%
which represents a superlinear speed-up.

In a second experiment, we used Spass to check the e�ect of the di�erent
axiom selection mechanisms. The respective results for di�erent timeouts5 are
shown in [Tab. 2]. Here, core and lemmas refer to variants where only axioms and
axioms and additional lemmas, resp., have been selected, using the techniques
described above while full refers to the base case containing the entire theory
database. The comp-entries again refer to the di�erent variant competitions.

As expected, the smaller search spaces induced by the core and lemmas selec-
tion mechanisms lead to a signi�cantly (approx. 40%{45%) higher number of fast
proofs which is especially important for our application. On the long run, how-
ever, too few lemmas are as bad as too much and both variants (and even their
competition) solve dramatically fewer tasks than the lemmas variant. While this
behavior is in accordance with the observations of [Reif and Schellhorn 98], the
respective competition entries show that|unlike in the experiments of [Reif and
Schellhorn 98]|in our case the lemmas variant does not completely subsume the
other variants. However, the achieved improvements are rather small and in this
case do not really warrant the higher computational e�orts of the competition.

4 All results were obtained using OTTER V3.0.5 in auto2-mode on a SUN Ultra-
SPARC 170.

5 All results were obtained using SPASS V0.90 on a SUN UltraSPARC 170.
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Tmax (secs.) core lemmas full comp cl comp cf comp lf comp all

1 1040 1099 751 1149 1040 1099 1149
10 1162 1422 986 1453 1211 1423 1454
30 1171 1533 1063 1547 1249 1534 1548
60 1178 1561 1102 1576 1272 1568 1583
90 1180 1565 1142 1580 1292 1575 1590

Table 2: Results of variant competition experiments|lemma selection

5.1.2 System Competition Controlled by Ilf

The experiments for system competition are based on a representative subset of
the original library. We selected 24 components; in the resulting 576 tasks, the
preprocessing methods integrated in Nora/Hammr identi�ed 23 provable and
336 unprovable tasks, which can be simpli�ed to true and false, respectively.

For the remaining 217 tasks, the provers Otter, Spass, and Setheo were
started, each with a timeout of 240 secs. For Spass and Setheo we used dif-
ferent type-encoding techniques provided by Ilf. Such techniques are needed to
transform formulas from sorted logic into an unsorted logic.

Otter Setheosub Setheote Spassrel Spasste comp

Otter 46 25 14 4 12 {

Setheosub 3 24 6 1 3 {

Setheote 9 23 41 3 6 {

Spassrel 21 40 25 63 17 {

Spasste 13 26 12 1 47 {

comp { { { { { 70

Table 3: Results for provable tasks within Ilf

The results are shown in [Tab. 3]; Spasste and Setheote denote variants
where a simple term-encoding technique was used (this was also used for Ot-
ter), Spassrel denotes a variant with standard predicate relativization tech-
nique, and Setheosub a more complicated term-encoding technique where the
type-subtype relation is coded by a term-instance relation on the codeterms for
types. Each prover (variant) is compared with every other one. For instance, the
�rst row shows that Otter solved 46 proof tasks, and of these 25 could not
be solved by Setheosub, 14 not by Setheote, 4 not by Spassrel, and 12 not by
Spasste. If all provers are run competetively, a total of 70 tasks can be solved, i.e.,
compared to the results of the best ATP, the recall rate can be increased signi�-
cantly by 11%. As a further remarkable point, we observe that no prover variant
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is subsumed by another variant. Even for Spass which has built-in support for
sorts, the term encoding yields an additional proof.

However, in order to show formally for every case, whether the query matches
or not, the remaining 147 tasks have to be shown unprovable. We thus started all
provers on the negated goals and obtained even better results as in the \a�rma-
tive" case|competition can solve 56% more tasks than the best single system.

Otter Setheosub Setheote Spassrel Spasste comp

Otter 41 31 27 16 24 {

Setheosub 7 17 7 9 12 {

Setheote 13 17 27 12 14 {

Spassrel 14 31 24 39 14 {

Spasste 9 21 13 1 26 {

comp { { { { { 64

Table 4: Results for unprovable tasks within Ilf

5.2 Cooperation Experiments

We performed our experimental studies in the light of the same problems as in
[Section 5.1.2]. All in all, we tackled 81 provable problems.

For our experimental study regarding cooperative provers we restricted our-
selves so far to the universal provers Spass and Setheo, and the specialized
equational prover Discount. Due to preliminary experimental results we re-
stricted the information exchange of the cooperative team. We allowed for a bidi-
rectional clause exchange between Spass and Discount and a uni-directional
clause transmission from Spass to Setheo. However, we forbid Discount and
Setheo to exchange clauses.

Cooperative runs were performed as follows. In each initialization phase all
provers obtained the results of Spass' normal form translator Flotter as initial
clause set. Sorts were encoded with the simple term encoding mechanism from
[Section 5.1.2]. Since Setheo is not able to utilize built-ins for equality the usual
equality axioms were added to its clause set. Since Discount is an equational
prover we deleted non-unit clauses from its clause set. Positive equations were
used as axioms, negative (in-)equations as proof goals. When using Setheo in
Ilf it usually obtains clauses from a di�erent normal form translator. It turned
out, however, that for cooperation purposes the use of identical normal forms
is unavoidable. If the provers work on di�erent kinds of normal forms (includ-
ing di�erent signatures due to di�erent Skolemization procedures) Setheo is in
general not able to close many tableau branches with the help of Spass lem-
mas because uni�cation failures arise immediately. It is to be emphasized that
Setheo's performance (when working alone) was not decreased when employ-
ing the Flotter normal form. We let the provers cooperate every 5 seconds.
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Tmax (secs.) Spass Setheo Discount competitive TECHS

10 37 39 0 48 49
30 47 39 0 54 57
60 48 45 0 55 58
120 50 48 0 56 63

solvability 62% 59% 0% 69% 78%

Table 5: Experiments with cooperating theorem provers

The referees were parameterized in the following way. In a cooperation phase,
Spass selected 40 clauses for Setheo, the receive referee of Setheo selected
30 of these clauses. Spass and Discount selected 10 clauses for each other via
send-referees, 5 of these clauses were �nally selected by their receive-referees.
Note that these parameters are not the result of exhaustive studies.

Results can be found in [Tab. 5]. They are given in form of the number of
solved problems after 10, 30, 60, and 120 seconds. Results of Spass, Setheo,
and Discount are displayed in columns 2{4. Note that Discount is not able
to solve a problem since all proof problems contain non-unit clauses which are
needed in a proof. Column 5 shows the results of a competitive 3-prover team
consisting of Spass, Setheo, and Discount. Finally, column 6 gives the results
of an analogous cooperative 3-prover team.

The results show the high potential of cooperation. The number of solved
problems can be increased. After 120 seconds our cooperative team can solve 10%
more problems than the competitive team and even 17% more problems than the
best single prover Spass. In addition, run times can signi�cantly be decreased.
E.g., the cooperative team is able to solve more problems within the timeout
of 30 seconds than the competitive team within the timeout of 120 seconds.
Note that Discount, although it cannot solve a problem when working alone,
is important in the cooperative team. When working with a team consisting of
Spass and Setheo only, merely 61 problems can be solved. This shows that
our concept is well-suited for integrating specialized provers. Since only a very
small number of clauses is selected and exchanged, the overhead caused by the
communication is rather small. The results reveal that the gains provided by
exchanging clauses are much larger than the communication overhead.

6 Reuse Administration using Ilf

Nora/Hammr provides some general preprocessing methods, e.g., axiom se-
lection and rewriting mechanisms, and o�ers, in connection with Ilf, an open
system architecture which allows for the easy integration of further deductive
engines. However, their combination results in a useful retrieval tool only after
some domain-speci�c tuning of the entire system.

Since we consider the ATPs essentially as black boxes, we concentrate on
problem tuning, e.g., through additional lemmas or development of better sim-
pli�cation methods. This requires an experimental testbed which o�ers

69Baar T., Fischer B., Fuchs D.: Integrating Deduction Techniques ...



{ translation of the proof tasks generated by the application system into a
human readable form,

{ translation of example proofs found by an ATP into a human readable form,
{ prototyping of user-de�ned methods which exploit the task structure, and
{ good experimental support to gather statistical data and evaluate the meth-
ods.

Our experience has shown that Ilf is an excellent testbed and, especially, that
the combination of its presentation and prototyping facilities is very useful. The
former allows the detection of simpli�cation potential, the latter allows the ex-
ploitation of this potential. If a prototyped method turns out to be useful in the
experiments, it can be integrated into the system. This feedback from Ilf to
Nora/Hammr improves its overall performance.

However, \novice" users of Nora/Hammr never interact with Ilf|its ap-
plication as experimental testbed is restricted to the reuse administrator. His
skills must be exploited to achieve better results when the automated methods
and their combinations are exhausted.

We used reuse administration to develop better rejection methods. A special
property of the generated unprovable tasks is that in most cases only a few ad-
ditional countermodel axioms given by the reuse administrator allow a formal
refutation of the actual goal by an ATP (cf. [Section 3.2.3]). Fortunately, the
same set of axioms allows to dis-prove a large number of tasks. After inspec-
tion of some failed dis-proof attempts, it turned out that the necessary axioms
are rather simple and consistent with the given theory of lists, e.g., a > b or
memberP(cons(b; cons(a;nil)); b) for some new constants a and b.

Through proof task inspection we discovered that some complicated sub-
formulas occurred in many goals, sometimes even more than once, e.g., 9l :
list � app(l; cons(x;nil)) = y. Such formulas can be replaced by simpler terms
(e.g., last(x; y)) before the ATP is started if the appropriate axioms as 8x8y �
last(x; y) $ 9z � app(z; cons(x;nil)) = y) are added to the task. Because the
axioms are conservative extensions, this de�nitorial folding does not change the
semantics of a theory.

Both methods (i.e., countermodel axiomatization and folding) can be com-
bined, if suitable lemmas for the de�ned predicates are added. This combination
improves the results considerably|almost 95 % of the non-matches which re-
main after rewrite-based rejection can be dis-proved if the tasks are simpli�ed
according the sketched approach.

7 Conclusions

In this paper, we describe the integration of several deduction techniques and
ATPs to tackle a problem in software reuse, the retrieval of components based
on their formal speci�cations. Paradoxically, the key success factor of our system
Nora/Hammr is that it defers the application of ATPs as far as possible.

The problem pro�le makes it necessary to invest much e�ort in preprocessing
steps, e.g., logic conversion, simpli�cation, or detection of non-theorems. These
steps require domain-speci�c (i.e., depending on the particular component li-
brary) tuning and it turned out that pure integration of several systems is too
coarse for our purpose. In such a complicated technique as automated deduction
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the dependencies between the used approaches are still mostly unclear from the
theoretical point of view. So we have to exploit statistical information about
success rates to minimize unwanted e�ects caused by a bad combination of po-
tentially good systems. Here, we use the presentation and prototyping facilities
of Ilf. Experiences gained with this interactive use of Ilf can then be fed back
into Nora/Hammr and used to optimize the whole system.

On the actual deductive level, our main methods of attack are cooperation
between di�erent ATPs and competition, both between di�erent task variants
and between di�erent ATPs. Here, we use the Ilf-system to control the provers.
Our results show this attack is successful: competition increases the recall rates
considerably, by up to 50% compared to single systems. These results are further
improved by proper cooperation of the ATPs. In contrast to a competitive system,
also specialized provers can be useful in a cooperation environment. Currently,
we thus achieve an overall recall of approximately 80% with moderate timeouts
which indicates that deduction-based retrieval has become a feasible application
of automated theorem proving.
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