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Abstract: In the early 1980s, Selman's seminal work on positive Turing reductions
showed that positive Turing reduction to NP yields no greater computational power
than NP itself. Thus, positive Turing and Turing reducibility to NP di�er sharply unless
the polynomial hierarchy collapses.
We show that the situation is quite di�erent for DP, the next level of the boolean
hierarchy. In particular, positive Turing reduction to DP already yields all (and only)
sets Turing reducibility to NP. Thus, positive Turing and Turing reducibility to DP
yield the same class. Additionally, we show that an even weaker class, PNP[1], can be
substituted for DP in this context.
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1 Background and De�nitions

A quarter century ago, Selman initiated the study of polynomial-time positive
Turing reductions. A truth-table version of this reducibility had been introduced
a few years earlier, by Ladner, Lynch, and Selman [LLS75]. Polynomial-time
positive Turing reductions are de�ned as follows.

Let � will be any �xed alphabet having at least two letters. For speci�city,
in this paper we will take � = f0; 1g, but that is not essential. For any machine
M , L(M) denotes the set of strings accepted by machine M , and for any set A,
L(MA) denotes the set of strings accepted by machine M running with oracle
A. A �p

T B exactly if there is a polynomial-time Turing machine M such that
A = L(MB).

De�nition 1. 1. [Sel82b,Sel82a] We say that a Turing machine M is pos-
itive if

(8A;B � ��)[A � B ) L(MA) � L(MB)]:

2. [Sel82b] Let A and B be sets (A;B � ��). We say that A positive
Turing reduces to B (A �p

pos B) if there is a polynomial-time positive Turing

machine M such that A �p
T B via M .

Since Selman's work, alternate de�nitions have been examined in some de-
tail [HJ91], and positive reductions have been seen to play a role in a number
of places in complexity theory. Most notably, Selman introduced them in the
context of the P-selective sets, and to this day they continue to help in the in-
vestigation of those sets. Positive reductions have also been used to characterize
the class of languages that can be \helped" by unambiguous sets [CHV93].
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Henceforth, we will use \positive Turing reductions" as a shorthand for
\polynomial-time positive Turing reductions." Selman's seminal work exactly
pinpointed the power of positive Turing reductions to NP, namely, the class of
languages that positive Turing reduce to NP is in fact NP itself. The class of
languages that Turing reduce to NP, PNP, is a strictly larger class than this, un-
less NP = coNP. So, assuming that the polynomial hierarchy does not collapse
to NP, Turing reductions to NP are strictly more powerful than positive Turing
reductions to NP.

In this paper, we study the power of positive Turing reductions to DP. DP
was introduced by Papadimitriou and Yannakakis [PY84].

De�nition 2. [PY84] A set C is in DP if there exist an NP set A and a
coNP set B such that C = A \ B.

DP is the next level beyond NP in the boolean hierarchy [CGH+88], a struc-
ture that has been used in contexts ranging from approximation [Cha] to query
order [HHW99]. DP, by de�nition, is simply the class of languages that are the
intersection of an NP and a coNP set, though this class is quite robust and has
many equivalent de�nitions. DP has natural complete problems (Graph Mini-
mal Uncolorability [CM87] and many others [Wag87]), and plays a central role
in the study of bounded access to NP, due to its central role in the key nor-
mal form for the boolean hierarchy, which turns out to be exactly the �nite
unions of DP sets [CGH+88]. DP also plays a role in the study of which sets are
P-compressible ([GHK92], see also [Wat93]).

Clearly, NP � DP � PNP. Recall that Selman proved that positive Turing
reductions to NP are surprisingly weak; they yield just the NP sets. In this
paper, we prove that positive Turing reductions to DP are surprisingly strong;
they yield all the PNP sets. That is, they yield all the sets that can be computed
via Turing reductions to NP (equivalently, via Turing reductions to DP).

We will note that our proof even establishes the same level of power for
PNP[1], the class of languages computed by P machines making at most one
query to an NP oracle.

2 On the Power of Positive Reductions to DP Sets

We now prove our main result. As is standard, for any class C and any reducibil-
ity r,

Rp
r(C) = fL j (9L0 2 C)[L �p

r L
0]g;

that is, Rp
r(C) is the class of sets that r-reduce to sets in C.

Theorem3. Rp
pos(DP) = PNP.

Proof: Clearly Rp
pos(DP) � PDP = PNP. So we have only to prove that

Rp
pos(DP) � PNP.

We will show that the standard PNP-complete problem OddMaxSat [Kre88]
is in Rp

pos(DP). OddMaxSat is the set of Boolean formulas � whose variables
are x1; x2; : : : ; xnumvars(�) and whose lexicographically maximum satisfying as-
signment is odd. (Here, we are associating 0 with false, 1 with true, and the
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assignment x1 = b1; x2 = b2; : : : ; xnumvars(�) = b
numvars(�), bi 2 f0; 1g, with the

integer b1b2 � � � bnumvars(�).)
In order to prove this, we will construct a polynomial-time positive Turing

machineM such that L(MSat�Sat) = OddMaxSat. For any sets A and B, A�B
denotes fx0 j x 2 Ag [ fx1 j x 2 Bg. The construction is reminiscent of the
proof that positive-truth-table reductions to tally sets are as strong as truth-
table reductions to tally sets [BHL95].

De�ne M as follows. M will reject all strings that are not Boolean formulas
� whose variables are x1; x2; : : : ; xnumvars(�). Suppose � is a Boolean formula
whose variables are x1; : : : ; xn.

Let �1 = �. For i := 1 to n:

1. Query �i[xi := 1]0 and �i[xi := 1]1.
2. If the answer to �i[xi := 1]0 is \yes" and the answer to �i[xi := 1]1 is \no,"

then �i+1 := �i[xi := 1]. If i = n, then accept.
3. If the answer to �i[xi := 1]0 is \no" and the answer to �i[xi := 1]1 is \yes,"

then �i+1 := �i[xi := 0]. If i = n, then reject.
4. If the answer to both queries is \yes," then accept.
5. If the answer to both queries is \no," then reject.

Clearly, M runs in polynomial time. If we run M on input � with oracle
Sat � Sat, the answer to �i[xi := 1]0 is \yes" if and only if �i[xi := 1] 2 Sat

and the answer to �[xi := 1]1 is \yes" if and only if �i[xi := 1] 62 Sat. So, for
each iteration, M will be in case 2 or 3, so that M will accept � if and only
if �'s lexicographically maximum satisfying assignment is odd. It follows that

L(MSat�Sat) = OddMaxSat. Since Sat� Sat 2 DP, it remains to show that M
is positive.

Let C;D;E; F be such that C � D � E � F . Then C � E and D � F .
We will show that for any string x, if MC�D accepts x, then ME�F accepts
x. This is immediate for strings x that are not Boolean formulas, because they
are rejected no matter what. So, suppose that x is a Boolean formula � with
variables x1; : : : ; xn and suppose for a contradiction that MC�D accepts � and
ME�F rejects �.

Let i be the �rst iteration of the \for" loop such that MC�D and ME�F

behave di�erently.
If �i[xi := 1] 2 E and �i[xi := 1] 2 F then ME�F accepts, contradicting our

assumption that � is rejected by ME�F .
If �i[xi := 1] 62 E and �i[xi := 1] 62 F , then �i[xi := 1] 62 C and �i[xi :=

1] 62 D, and MC�D rejects, contradicting our assumption that � is accepted by
MC�D.

So, it must be the case that either �i[xi := 1] 2 E or �i[xi := 1] 2 F , but
not both. Since MC�D and ME�F behave di�erently at this stage, and since
C � E and D � F , it follows that �i[xi := 1] 62 C and �i[xi := 1] 62 D. But this
implies that MC�D rejects, contradicting our assumption that � is accepted by
MC�D.

This concludes the proof that M is positive. So, M is a polynomial-

time positive Turing machine such that L(MSat�Sat) = OddMaxSat. Since
Sat � Sat 2 DP, this implies that OddMaxSat 2 Rp

pos(DP), which implies that

Rp
pos(DP) � PNP, since OddMaxSat is complete for PNP. 2
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In fact, note that Sat � Sat is not merely a DP set, but is even in PNP[1].
Thus, as an immediate corollary to the proof, we can claim the following result

Theorem4. Rp
pos(P

NP[1]) = PNP.

Earlier, we mentioned that Selman's positive Turing reductions were them-
selves inspired by the earlier notion of (polynomial-time) positive truth-
table reductions (see [LLS75] for a detailed formal de�nition of any notions
used without de�nition in this paragraph). The reader may wonder what
the power of positive truth-table reductions to DP is. In fact, the answer
to this is already implicit in the existing literature. Namely, it is known
that Rp

disjunctive-truth-table(DP) = Rp
truth-table(NP) [HHR97,BH91]. So, we may

immediately conclude that Rp
truth-table(NP) = Rp

disjunctive-truth-table(DP) �

Rp
positive-truth-table(DP) � Rp

truth-table(NP). Thus,

Rp
positive-truth-table(DP) = Rp

truth-table(NP):

The class Rp
truth-table(NP), usually referred to as the \�p

2" level of the polyno-
mial hierarchy (see [Wag90]), has been extensively studied, and is widely be-
lieved to di�er from PNP (which obviously contains it). However, \�p

2 = PNP?"
remains a major open research question, and it is not even known whether this
equality implies the collapse of the polynomial hierarchy. From the main re-
sult of this paper, it is clear that \�p

2 = PNP?" can equivalently be stated as
\Rp

positive-truth-table(NP) = Rp
pos(NP)?"
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