
Advanced Fault Tree Modeling

Winfrid G. Schneeweiss
(Computer Engg., Fern University, D - 58084 Germany

winfrid.schneeweiss@fernuni-hagen.de)

Abstract: Fault trees show which joint components' faults mean system faults. Fault
trees can often be used to determine dependability parameters of systems. Here it is
shown that i) binary decision diagrams (BDDs) can also be used to calculate system
mean failure frequency, ii) modeling dynamics of fault trees does not always mean
Markov modeling, iii) a deeper understanding of interrelations between s-dependent
components is supported, rather, by Petri nets than by state transition graphs.

Key Words: Fault tree, Shannon tree, Binary decision diagram, Markov approach,
Petri net

Category: F.2.2, G.3

1 Introduction

To this author's surprise quantitative dependability investigations are often \for-
gotten" in the context of fault tolerant systems design. But any such design
should be regarded as incomplete unless values of unavailability/unreliability,
MTBF etc. are included.

In these days fault tree modeling reaching back to the early 60s has gained a
maturity that allows for little monographs, e.g., [see Limnios (91)],[see Schnee-
weiss (99,1)] to be published. But fault tree analysis is not yet at its end. Ad-
vances are still possible, as will be shown here.

1.1 Motivation and overview

In recent papers on fault tree analysis, typically in [see Pullum, Bechta Dugan
(96)],[see Schneeweiss (96)], one �nds certain opinions which, even though correct
in their main thrust, su�er from certain restrictions some of which are going to
be discussed here.

The �rst point concerns the emphatically appraised binary decision diagrams
[see Coudert, Madre (93)],[see Bouissou (96)],[see Drechsler, Becker (98)], whose
usefulness for the determination of mean failure frequency is disputed in [see
Schneeweiss (96)]. However, here we will show a way to overcome the major
problem discussed in [see Schneeweiss (96)] by using subtrees as \condensed"
leaves of a binary decision tree. Furthermore, it will be shown that even for
determining system unavailability with many small size subsystems or, rather,
modules a well designed Shannon decomposition tree, being a binary decision
tree, is simpler than a binary decision diagram with reconverging branches. De-
tails are given in section 2.

The second point concerns the all too general statement [see Pullum, Bechta
Dugan (96)] that fault tree dynamics must be modeled by the Markov approach.
It will be shown { again for smaller modules { that this is not necessarily true.

Journal of Universal Computer Science, vol. 5, no. 10 (1999), 633-643
submitted: 21/4/99, accepted: 29/9/99, appeared: 28/10/99 Springer Pub. Co.

Rather, under fairly mild restrictions as to the s-dependence of diverse com-
ponents' state durations, much more general results can be found; see section
3.

In connection with the second main point it will be shown (also in section 3)
that often randomly timed Petri nets give a better insight into system dynamics
than standard state transition graphs do.

A few general conclusions follow in section 4.

1.2 Notation and acronyms

A availability (with index i for component i)
E(Z) expected value of Z
FL; fL probability distribution (Cdf), -density function (pdf) of L
' Boolean fault tree (structure) function
� failure rate, � � 1=(MTTF)
� repair rate, � � 1=(MTTR)
L life (time)
n number of components
� mean failure frequency; � � 1=(MTBF); (MTBF) = (MTTF) + (MTTR)
pi place i of a PN
Prf�g probability of �
S index for system
U unavailability
Xi fault tree input variable; Xi = 1 for the faulty component or module i
�Xi negated Xi; arithmetically: �Xi = 1�Xi

Xfi;jg indicator of the connectedness of nodes i and j
_ disjunction operator (Boolean OR)
BDD, BDT binary decision diagram, - tree
DAG directed acyclic graph
FT fault tree
PN Petri net
ST Shannon decomposition tree = BDT. It is based on the decomposition

of the Boolean function ' (here that of the fault tree):

' = Xi '=Xi=1 +
�Xi '=Xi=0 : (1)

In pictures of the above BDDs and BDTs the above \+" (meaning arithmetic
addition) is written inside of the nodes, andXi and �Xi (sometimes with cofactors
extracted from '=Xi=1 and '=Xi=0, respectively) are the edge marking.

1.3 The role of fault trees in dependability modeling

The fault tree is the picture of a Boolean (switching) function describing which
combinations of components' faults mean system fault.

As is obvious from Fig. 1, a system's or mission's fault tree is only the peak of
an iceberg. The more involved problems of modeling concern the binary processes
which are inputs of the fault tree. Hence it should be no surprise that only the
case of stationary s-independent binary random processes fX1(t)g; :::; fXn(t)g
are easily modeled down to numerical results. Yet even a partial FT analysis is

634 Schneeweiss W.G.: Advanced Fault Tree Modeling

of some value also in the general case. (The usefulness of the FT for gaining a
qualitative insight into the redundancy structure of as system is obvious.)

Fig. 1: The fault tree as the simpler part of a dependability model.

2 Limitations of BDDs partially renounced

There is little doubt that, by and large, BDDs are superior to BDTs [see Drech-
sler, Becker (98)], i.e., trees of the recursive complete Shannon decomposition
(short: Shannon trees, STs [see Pullum, Bechta Dugan (96)]). The obvious rea-
son is that certain subtrees have to be decomposed only once. Yet there are
exceptions which should be kept in mind in the present euphoria towards BDDs
[see Coudert, Madre (93)],[see Bouissou (96)]. A major limitation is concerned
with diÆculties when trying to calculate mean system failure frequency (or in-
tensity). Details are discussed in [see Schneeweiss (96)], where it is pointed out
that in that context BDTs are superior.

However, in addition to [see Schneeweiss (96)] I should like to point out that
the criticsm expressed there was a bit too radical. The main point of BDDs as
compared to BDTs is not the \loss" of the property of being a tree, but rather
the fact that multiple subtrees need to be evaluated only once. In fact, doing
the latter, but staying with a BDT with equal subtrees condensed like modules
[see Schneeweiss (93)] to single new { even though not independent { variables,
drawn as leaves in the condensed tree, retains the more important advantage of
BDDs. This is illustrated by the following example.

Example 1: Proper use of a BDD for calculating system mean fail-
ure frequency
Have a look at Fig. 2, where the subtree () is not a module [see Schneeweiss
(93)], since it depends also on Xk.

635Schneeweiss W.G.: Advanced Fault Tree Modeling

With U ; � , and � as unavailability, failure rate and repair rate of the
subsystem with the FT function , respectively, system unavailability is (by
Fig. 2b):

US = Ui(UjAk +AjU) +AiUjU ; U = E() : (2)

Fig. 2: BDD transformed to a BDT with equal pseudo-leaves of \value" .

This follows readily from the fault tree's arithmetical form of �g. 2b:

XS = ' = Xi(Xj
�Xk + �XjX) + �XiXjX ;

on taking expectations. (By de�nition, U = PrfX = 1g = E(X) , [see Henley,
Kumamoto (92)].)

Furthermore, system mean failure frequency is [see Schneeweiss (99,1)],[see
Schneeweiss (93)]

�S = Ui[UjAk(�i + �j � �k) +AjU (�i � �j + �)]

+AiUjU (��i + �j + �) ; (3)

where
U = UkAl +Ak ; � = UkAl(�k � �l) +Ak(��k) ; (4)

and � and � follow from the well known de�ning equations [see Schneeweiss
(99,1)]

� = U � = A � : (5)

Notice that in (3) an explicit use of � and � can be avoided, since in (3)
i) � doesn't show up, ii) � can be multiplied with U to yield � of (4).

636 Schneeweiss W.G.: Advanced Fault Tree Modeling

Now it is shown that also in other (small-size) cases BDTs can be better than
BDDs.

This \problem" with BDDs was stimulated by an indepth study of [see Pul-
lum, Bechta Dugan (96)]. In the context of analyzing modules of FTs, i.e.,
sub-FTs with \private" sets of variables [see Pullum, Bechta Dugan (96)],[see
Schneeweiss (93)] the sub-FTs are often so small that in the ST development
single variables or groups of them can be factored out in order to abbreviate the
decomposition substantially. In [see Pullum, Bechta Dugan (96)] the following
example is discussed.

Example 2: (See Fig. 2 of [see Pullum, Bechta Dugan (96)])
Let a fault tree's Boolean function be

XS = (X1 _X2X5)(X3 _X4X5) : (6)

(In [see Pullum, Bechta Dugan (96)]

X1 � A1; X2 � A2; X3 � B1; X4 � B2; X5 � AB .)

The sequential, i.e., repeated Shannon decomposition of (6) with respect to
X1, X3, etc. results in

XS = X1(X3 + �X3X4X5) + �X1(X3X2X5 + �X3X2X4X5) ; (7)

see the syntax diagram, i.e., the BDT of Fig. 3 and the BDD of Fig. 4.
The algebraic form corresponding to Fig. 3 is found by starting each path

bottom up with the value 1 of its leaf and by multiplying intermediate values
by the edge marking. (If an inner node has only one input edge, then there is a
trivial addition of the type A+ 0 = A.)

In this context it is a bit awkward to expand XiXjXk � � � according to (1) as

XiXjXk � � � = Xi(XjXk � � �) + �Xi0 = Xi(XjXk � � �)

which is trivial.
However, extracting common factors, an ST of smaller depth (height) is read-

ily found. Instead of (7), (6) yields as a decomposition with respect to X1:

XS = X1(X3 _X4X5) + �X1X2X5(X3 _X4X5) : (8)

Using
X5(X3 _X4X5) = X5(X3 _X4) ; (9)

a single further decomposition gives the �nal result; see Fig. 5:

XS = X1(X3 + �X3X4X5) + �X1X2X5(X3 + �X3X4) : (10)

This ST is simpler (smaller in size and of a more regular form) than the BDD
of Fig. 4.

Similar results are obtained for other small-scale examples. One such exam-
ple is the following.

637Schneeweiss W.G.: Advanced Fault Tree Modeling

Fig. 3: ST of (6).

Fig. 4: BDD found from Fig. 3.

638 Schneeweiss W.G.: Advanced Fault Tree Modeling

Example 3: Simpli�ed ARPA net
Fig. 6 shows the ubiquitous strongly simpli�ed ARPA net, where there should be
a path from the source (node 1) to the target (node 4) via fallible links (and ideal
nodes). From the 6 obvious mincuts we �nd the FT function [see Schneeweiss
(99)]

Xf1;4g = X1X6 _X2X4X6 _X3X4X5X6

_X1X4X5X7 _X2X5X7 _X3X7 : (11)

This function shows qualitatively the degree of fault tolerance of the net-
work: A minimum of 2 edges (communication links) have to be down for the
communication from source to target to fail.

Fig. 5: An extremely small ST for (6).

Fig. 6: An s,t-problem in the simpli�ed ARPA net; s = 1; t = 4.

The ST, i.e., a BDT rather than a general BDD with common subtrees, is
found via the simple heuristic \shortest terms �rst and in them most frequently
appearing variables �rst" as follows. Even in the �rst expansion step, i.e., in

Xf1;4g = X6(X1 _X2X4 _X3X4X5 _X2X5X7 _X3X7)

+ �X6X7(X1X4X5 _X2X5 _X3) ; (12)

639Schneeweiss W.G.: Advanced Fault Tree Modeling

the extraction of a common factor, is possible; see the last addend of (12).
Furthermore, expanding the �rst addend of (12) sequentially with respect to
X1; X3; X4; the algebraic form of the ST is

Xf1;4g = X6(X1 + �X1fX2[X4 + �X4X7(X3 + �X3X5)] + �X2X3

�(X7 + �X7X4X5)g) + �X6X7[X3 + �X3X5(X2 + �X2X1X4)] ; (13)

and it would make little sense to construct a BDD.
It is easy to check the correctness of (12) using the following special form of

(1).
' = Xi _ '

0(X1; : : : ; Xi�1; Xi+1; : : : ; Xn) = Xi + �Xi'
0 : (14)

Again \system unavailability", i.e., here the probability of not �nding a viable
path from source to target, is found via (13) on replacing X by U , and �X by
�U = 1� U = A for any index.

The determination of system mean failure frequency (intensity) is also pos-
sible directly from (13) without further calculations; see [see Schneeweiss (99,1)]
for details.

3 Solving selected dynamic fault tree problems at a generality

far beyond that of conventional Markov modeling

In [see Pullum, Bechta Dugan (96)] the �rst paragraph of subsection 2.1 ends
with the following surprising statement. \Dynamic fault trees can not be solved
with standard combinatorial approaches, but rather depend on Markov solution
techniques."

The �rst thing that comes to one's mind in this context is the trivial FT of
the 1-out-of-2:G system (with cold standby of component 2 for component 1):
XS = X1X2 . The general solution for the case of no repairs is well known [see
Henley, Kumamoto (92)] to be possible by convolution, i.e., the system life's Cdf
(or strict-sense unreliability)

FLS(t) = fL1

 FL2(t) �

Z t

0

fL1(�)FL2
(t� �)d� : (15)

Why think of Markov modeling here?
Furthermore, the case of a fallible switch for activating the spare, which is of-

ten modeled via the concept of coverage [see Sahner, Trivedi, Pulia�to (96)], i.e.,
the probability of recovering from the �rst fault, is easily modeled (see (18),(19))
by

FLS (t) =

Z t

0

fL1
(�)FL2

(t� �) �FL3(�) d� ; L3 � life of the switch ; (16)

where �FL3(�) is the probability that the switch is o.k. when the �rst component
fails (at L1 = �).

640 Schneeweiss W.G.: Advanced Fault Tree Modeling

Also the slightly more involved (sub-)system of Fig. 1 of [see Pullum, Bechta
Dugan (96)] poses no real problem as to a general non-Markov-type solution.
From Fig. 1 of [see Pullum, Bechta Dugan (96)] we have extracted Fig. 7, where
Pi and Si mean changes of system state due to failure of processor i and (cold)
spare i, respectively of a system consisting of a pair of processors with a dedicated
spare each. (The unorthodox notation Pi and Si is that of [see Pullum, Bechta
Dugan (96)].)

The DAG of Fig. 7 contains 3 paths corresponding to 3 (disjoint) random
events. It is a peculiarity of the system that S2 cannot fail prior to a failure of P1
and that the case of S1 failing last is of no concern. (For details see [see Pullum,
Bechta Dugan (96)].)

Fig.7: State diagram of a special 4 components system. Movements along edges
marked by Pi(Si) occur, once processor i (spare i) fails.

For s-independent lives of all 4 components the 3 paths of Fig. 7 result in 3
non too complex 3-fold integrals whose sum is system unreliability:

FLS (t) =

Z t

0

fLP1
(�)

Z t��

0

fLS1(�
0)

Z t

�+� 0

fLP2(�
00)FLS2(t� � 00)d� 00d� 0d�

+

Z t

0

fLP1
(�)

Z t

�

fLP2
(� 0)

Z t��

� 0��

fLS1(�
00)FLS2(t� � 0 � � 00)d� 00d� 0d�

+

Z t

0

fLP2
(�)

Z t

�

fLP1
(� 0)

Z t�� 0

0

fLS1(�
00)FLS2(t� � � � 00)d� 00d� 0d� :

(17)

(This lengthy formula follows directly from Fig. 7 by inspection based on (15).)
A high-precision Markov modeling of this system would be quite complex

[see Sahner, Trivedi, Pulia�to (96)].
Since the state diagram's modeling power for system dynamics is, usually,

far inferior to that of a Petri net graph [see Schneeweiss (99,2)], I have depicted
system dynamics for the above example via the timed PN of Fig. 8, where the
initial marking is given. The right hand part of Fig. 8 contains a priority AND,
\working" only when place 1 is marked prior to place 2.

From Fig. 8, rather than from Fig. 7, there follows that the system will fail,
if place 1, p1, should be marked prior to p2. So, given a token is reaching p1 at

641Schneeweiss W.G.: Advanced Fault Tree Modeling

� < t, the system will be down at t, if p2 receives a token between � and t. This
can be formulated according to the well known law of total probability, viz.

Prfag =
mX
i=1

PrfajbigPrfbig ; a �
m[
i=1

bi ; bj \ bk = ; (18)

in an in�nitesimal form, viz.

Prfa(t)g =

Z t

0

Prfa(t)j� < L � � + d�gfL(�) d� (19)

where a(t) is the random event connected with the parameter (time) t.

Fig. 8: PN model for (sub-)system with the state diagram of Fig. 7.

The speci�c result is here system (strict-sense) unreliability:

FLS (t) =

Z t

0

fLP1+LS1(�) �FLP 2+LS2(�) d� ; (20)

where the convolution

fLPi+LSi(�) =

Z �

0

fLPi(�
0)fLSi(� � � 0)d� 0 (21)

is the pdf of LPi + LSi and the convolution

FLPi+LSi(�) =

Z �

0

fLPi(�
0)FLSi(� � � 0)d� 0 (22)

is the Cdf of LPi + LSi; i = 1; 2.
Note the compactness and obvious plausibility of (20) (including (21) & (22))

as compared to (17).

642 Schneeweiss W.G.: Advanced Fault Tree Modeling

4 Conclusions

Based on several conclusive examples, it could be shown that certain modern
dependency-related paradigms like BDD- or Markov model-based approaches
should be regarded with due skepticism. Sometimes, though not for really large
systems, binary decision trees are better than BDDs, and Petri nets are a better
basis for rather compact general results (for non-repairable systems) than the
state graphs and the di�erential equations of typical Markov modeling.

Hence the selection of the most appropriate method of dependability analysis
is not a trivial task. If possible, more than a single solution method should be
tried in order to �nd possible errors (of analysis) and to gain a deeper under-
standing of the problem at hand.

References

[Limnios (91)] N. Limnios: \Arbres de D�efaillance". Hermes, Paris (1991).
[Schneeweiss (99,1)] W. Schneeweiss: \The Fault Tree Method". LiLoLe, Hagen
(1999).
[Sahner, Trivedi, Pulia�to (96)] R. Sahner, K. Trivedi, A. Pulia�to: \Performance
and Reliability Analysis of Computer Systems". Kluwer, Dordrecht (1996).
[Pullum, Bechta Dugan (96)] L. Pullum, J. Bechta Dugan: \Fault tree models
for the analysis of complex computer-based systems". Proc. Ann. Reliab. &
Maintainab. Symp. IEEE (1996), 200-207.
[Coudert, Madre (93)] O. Coudert, J. Madre: \Fault tree analysis: 1020 prime
implicants and beyond". Proc. Ann. Reliab. & Maintainab. Symp. IEEE (1993),
240-245.
[Bouissou (96)] M. Bouissou: \An ordering heuristic for building binary deci-
sion diagrams from fault-trees". Proc. Ann. Reliab. & Maintainab. Symp. IEEE
(1996), 208-214.
[Drechsler, Becker (98)] R. Drechsler, B. Becker: \Graphenbasierte Funktions-
darstellung: Boolesche und Pseudo-Boolesche Funktionen". Stuttgat: Teubner
1998.
[Schneeweiss (96)] W. Schneeweiss: \Limited usefulness of BDDs for mean failure
frequency calculation". J. Automatic Contr. Production Syst. (1996), 1131-1136.
[Schneeweiss (93)] W. Schneeweiss: \Calculating MTBF for modularized fault
trees". Proc. Ann. Reliab. & Maintainab. Symp. IEEE (1993), 206-213.
[Henley, Kumamoto (92)] E. Henley, H. Kumamoto: \Probabilistic Risk Assess-
ment". New York: IEEE Press (1992) (reprint from 1982).
[Schneeweiss (99,2)] W. Schneeweiss: \Petri Nets for Reliability Modeling".
LiLoLe, Hagen (1999).

643Schneeweiss W.G.: Advanced Fault Tree Modeling

