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Abstract: EÆcient hashing is a centerpiece of modern Cryptography. The progress
in computing technology enables us to use 64-bit machines with the promise of 128-
bit machines in the near future. To exploit fully the technology for fast hashing, we
need to be able to design cryptographically strong Boolean functions in many variables
which can be evaluated faster using partial evaluations from the previous rounds. We
introduce a new class of Boolean functions whose evaluation is especially eÆcient and
we call them rotation symmetric. Basic cryptographic properties of rotation-symmetric
functions are investigated in a broader context of symmetric functions. An algorithm
for the design of rotation-symmetric functions is given and two classes of functions are
examined. These classes are important from a practical point of view as their forms are
short. We show that shortening of rotation-symmetric functions paradoxically leads to
more expensive evaluation process.

1 Introduction

Hashing algorithms are important cryptographic primitives which are indis-
pensable for an eÆcient generation of both signatures and message authenti-
cation codes [23]. They are also widely used as one-way functions in key agree-
ment and key establishment protocols [9]. Hashing can be designed using either
block encryption algorithms or computationally hard problems or substitution-
permutation networks (S-P networks).

Parameters of hashing algorithms based on block encryption algorithms, are
restricted by properties of underlying encryption algorithms. Assume that an
encryption algorithm operates on n-bit strings. A single use of the cipher pro-
duces n-bit hash value. This means that the n-bit strings have to be at least
128-bit long. Otherwise, the hash algorithm is subject to the birthday attack.
The attack �nds colliding messages in 2n=2 steps with a high probability (larger
than 0:5). If the hash algorithm applies more than one encryption, it becomes
slower than underlying cipher. The use of a \strong" encryption algorithm does
not guarantee a collision-free hash algorithm. There have been many spectacular
failures that prove the point [13].

Design of hashing algorithms using intractable problems can be attractive
as the security evaluation can sometimes be reduced to the proof that �nding a
collision is as diÆcult as solving an instance of a computationally hard problem.
Numerous examples have shown that the application of hard problems does not
automatically produce sound hash algorithms. The misunderstanding springs
from the general characterisation of the problem. For example, a problem is con-
sidered to be diÆcult if belongs to the NP-complete class [6]. Any problem is a
collection of instances. Some of them are intractable but some are easy. If a hash
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algorithm applies easy instances, it is simply insecure. The main shortcoming of
this class of hash algorithms is that they are inherently slow.

The class of hash algorithms based on S-P networks includes fastest algo-
rithms. They apply the well-known concept of confusion and di�usion introduced
by Shannon [22]. Representatives of this class are MD4 [15], MD5 [16], SHA [17]
and many others [19]. Despite of demolishing MD4 and weakening MD5 by Dob-
bertin [2, 3], their structural properties look sound and they are frequently used
as benchmarks for eÆciency evaluation.

2 Motivation

The MD family of hash algorithms uses the Feistel structure [3, 11]. The structure
can be de�ned as follows. Let the input be (Li�1; Ri�1) and the output be
(Li; Ri). Then Li = Ri�1 and Ri = Li�1 � f(Ri�1;Ki�1), where the function f
is controlled by the subkey Ki�1 and � stands for bitwise XOR. Rivest used a
modi�cation of the structure for his MD4 and MD5 algorithms. A single iteration
is described as

Ai = Di�1; Bi = Ai�1 + F (Bi�1; Ci�1; Di�1) +mi�1;
Ci = Bi�1; Di = Ci�1;

where (Ai; Bi; Ci; Di) is a 128-bit string split into four 32-bit words de�ned for
the i-th iteration, F : f0; 1g96 ! f0; 1g32 is a function which takes three 32-
bit words and generates a 32-bit output word, mi is the message hashed in the
i-th iteration and \+" stands for addition modulo 232. In fact, the function
F is a collection of 32 Boolean functions evaluated in parallel using bitwise
binary operations. Note that rotation has been ignored. For eÆciency reasons,
the function F is generated on the y by using bitwise operations such as ,̂ &,
j accessible in C/C++ languages.

In general, we can view a hashing algorithm as a sequence of iterations. A
single iteration takes an input X = (Xk; : : : ; X0) and a message word (block)M
(for the sake of simplicity we assume that M has been already merged with the
corresponding constant) and produces the output Y = (Yk ; : : : ; Y0) according to

Y0 =M + F (Xk�1; : : : ; X0) +ROT (Xk; s) and Yi+1 = Xi (1)

for i = 0; : : : ; k�1, where words or blocks are n-bit sequences (n = 32; 64; 128; : : :),
+ stands for addition modulo 2n and ROT (Xk; s) is circular rotation of the word
Xk by s position to the left. Assume that we have a parallel machine and we
wish to examine how fast the iteration (1) can be produced. Parallel implemen-
tations of MD4/MD5 are used as benchmarks. For the sake of clarity, we assume
that all bitwise operations, addition modulo 2n and the rotation ROT take one
instruction. In our analysis, we ignore all initial steps necessary to setup hashing.

The computational complexity of a single iteration (1) equals the number of
instructions necessary to produce Y0. The evaluation of the function F seems to
be the major component. Note that the function can be evaluated after X0 is
known. The evaluation of X0 can be done concurrently with the evaluation of
two parts of the function F as

F (Xk�1; : : : ; X0) = G1(Xk�1; : : : ; X1)�X0G0(Xk�1; : : : ; X1):
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where XOR and logical multiplication are done bitwise. The correctness of the
above representation is justi�ed at the beginning of the next section. When
X0; G0 and G1 are available then the function F can be evaluated using two
instructions: one to produce X0G0 and the second to generate the �nal evalu-
ation. To obtain Y0, one would need a single addition only as the rotation and
M +ROT (Xk; s) can be executed in parallel. All together, a single iteration of
any member of the MD family takes three instructions assuming that the evalu-
ation of G1 and G0 can be done in parallel [1]. This is the absolute upper bound
for eÆciency of hashing with members of the MD family. Can we do better ?

Before we answer the question, let the eÆciency of hashing algorithms be
expressed by the number of bits of a compressed message per instruction. The
MD4 speed is then 512

48�3 = 3:55 bits of compressed message per instruction. The
length of message block in MD4 is 512 bits, the number of instructions is 144 (48
rounds and each round takes 3 instructions). Consider an algorithm implemented
on a 64-bit machine. Assume that the algorithm takes 4096-bit messages and
compresses them into 1024-bit digests using 3 passes with 64 iterations each.
Its speed is 4096

192�3 = 7:1 so twice as fast as MD4 (and seems to be much more
secure as it employs 192 iterations). The crucial issue becomes the design of the
function F which needs to be based on a Boolean function in 15 variables.

3 De�nition of Rotation-Symmetric Boolean Functions

Let n be a positive integer and Vn = f0; 1gn be the space of binary vectors. Con-
sider a Boolean function f : Vn ! V1. The function can be uniquely represented
as

f(x) = f(x1; : : : ; xn) = g1(x1; : : : xn�1)� xng0(x1; : : : xn�1)

where
g1(x1; : : : xn�1) = f(x1; : : : ; xn�1; 0) and g0(x1; : : : xn�1) = f(x1; : : : ; xn�1; 1)�
g1(x1; : : : xn�1). Clearly, to check that the representation is correct it is enough
to check whether it holds for both xn = 0 and xn = 1. Let us study the rela-
tion between functions f(x) and f(y) used in two consecutive iterations. The
rotation operation binds variables yi with xi according to the following assign-
ments yi+1 = xi for i = 1; 2; : : : ; n� 1. Note that y1 is evaluated after the �nal
evaluation of f(x) and is equal to y1 = m+ f(x) + c where m is a binary mes-
sage and c is a bit extracted from a block Xn. After substituting yi+1 = xi for
i = 1; 2; : : : ; n� 1, the function f(y) becomes

f(y) = f(y1; : : : ; yn) = h1(x1; : : : ; xn�1) + y1h0(x1; : : : ; xn�1):

The conclusions of the above considerations, can be formulated as the following
corollary.

Proposition1. Given two consecutive iterations of a hashing algorithm from
the MD family (an MD-type hash algorithm) based on the function f(x1; : : : ; xn).
Then the evaluation of the function f(y1; : : : ; yn) in the second iteration may
use some terms of f(x1; : : : ; xn) evaluated in the previous iteration. Ideally, the
evaluation f(y) may take as little as three operations if

1. the partial functions g1(x1; : : : xn�1) = h1(x1; : : : ; xn�1) and
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2. the partial functions g0(x1; : : : xn�1) = h0(x1; : : : ; xn�1),

assuming that y1 is given.

Consider some examples. Let our function f be one of the functions used
in MD4. Namely, f(x1; x2; x3) = x1x2 + �x1x3 = x1x2 � x1x3 � x3. If we apply
rotation y2 = x1, y3 = x2 then f(y) = x2 � y1(x1 � x2). The evaluation of f(y)
cannot be supported by partial evaluations of f(x) as g1 = x1x2 is di�erent from
h1 = x2 and g0 = x1 � 1 is di�erent from h0 = x1 � x2. The situation will vary
from iteration to iteration.

Let a function f(x1; x2; x3; x4; x5) = x1x2 � x2x3 � x3x4 � x4x5 � x5x1. It
can be represented as f(x) = x1x2 � x2x3 � x3x4 � x5(x1 � x4) The function
f(y) with y2 = x1, y3 = x2, y4 = x3, y5 = x4 becomes f(y) = x1x2 � x2x3 �
x3x4�y1(x1�x4) The evaluations of both x1x2�x2x3�x3x4 and x1�x4 done
for the function f(x), can be reused for the evaluation of f(y).

To avoid a confusion, we have to stress that it is necessary to run two (or
more) concurrent processes. One for evaluation of the function f(y) and the
others to prepare partial evaluations for the next iteration or in other words
f(y) = g1(y1; : : : yn�1)� yng0(y1; : : : yn�1).

It can be argued that if the \in�nite" parallelism is allowed then the form of
the function f does not matter. In practice, however, this is never the case. Most
of the computers are still using a single processor architecture and for them an
eÆcient evaluation of the function f is crucial. If a tradeo� between processing
time and memory is allowed, all partial evaluations could be stored and reused.

De�nition 1. The class of rotation-symmetric functions includes all Boolean
functions f : Vn ! V1 such that f(x1; : : : ; xn) = f(y1; : : : ; yn), where yi+1 = xi
for i = 1; 2; : : : ; n� 1 and y1 = xn or shortly f(x) = f(ROT (x)).

The aim of this work is to investigate cryptographic properties of rotation-
symmetric functions and discuss how to construct such functions.

4 Cryptographic Characteristics of Boolean Functions

Given the space Vn of binary vectors. Denote �0 = (0; 0; : : : ; 0; 0), �1 = (0; 0;
: : : ; 0; 1), and so forth until �2n�1 = (1; 1; : : : ; 1; 1). Vectors � may be treated
as integers and then they can be ordered as �0 < �1 < � � � < �2n�1. Let
� = (a1; : : : ; an) and x = (x1; : : : ; xn), we say that x = � if xi = ai for all i.
Boolean functions will be considered in their normal forms so

f(x) =
M
�2Vn

c�x
� =
M
�2Vn

c�x
a1
1 : : : xann (2)

where � stands for binary XOR operation (or addition modulo 2) and c� 2
f0; 1g. The truth table of the function f is the binary sequence
(f(�0); : : : ; f(�2n�1)). A function f is balanced if its truth table consists of 2n�1

ones and zeros. The Hamming weight of a binary vector is de�ned as the num-
ber of ones it contains. In particular, the Hamming weight of a function f is
the number of ones in its truth table and is denoted by wt(f). The Hamming
distance between two functions f; g : Vn ! V1 is the Hamming weight of f � g
or d(f; g) = wt(f � g).
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Consider the function from Equation (2). If c� = 0 for all wt(�) > 1, then f
is called aÆne function. An aÆne function is linear if c�0 = 0 [8].

De�nition 2. Let f(x) be a Boolean function on Vn. The nonlinearity of the
function is de�ned by the minimum Hamming distance between the function and
an aÆne function ' so Nf = minfwt(f � ') j ' is an aÆne function on Vng.

De�nition 3. [5, 14] Let f(x) be a function on Vn and � be a vector in Vn.
We say that the function f(x) satis�es the propagation criterion of degree k if
f(x)� f(x� �) is balanced for all � such that 0 < wt(�) � k. If k = 1, we say
that f(x) satis�es the Strict Avalanche Criterion or SAC.

Given a set A = fa1; : : : ; ang. The set Sym(A) consists of all permuta-
tions which can be de�ned on the set A. Note that � 2 Sym(A) operates
on A and induces the permutation on indices f1; : : : ; ng so �(a1; : : : ; an) =
(a�(1); : : : ; a�(n)). Typically, a permutation �(1; : : : ; n) can be written in the
form of a sequence (�(1); : : : ; �(n)). So if A = f1; 2; 3; 4g, then �(1; 2; 3; 4) =
(�(1); �(2); �(3); �(4)) = (2; 4; 1; 3) where �(1) = 2, �(2) = 4, �(3) = 1 and
�(4)) = 3. The collection of permutations over the set f1; : : : ; ng creates a sym-
metric group Sn where the group operation is the composition of permutations.

De�nition 4. A Boolean function f(x) : Vn ! V1 is called symmetric with
respect to the permutation � if �(f(x)) = f(x�(1); : : : ; x�(n)) = f(x1; : : : ; xn).

5 Properties of Rotation-Symmetric Functions

The class of symmetric functions can be de�ned as a collection of all Boolean
functions f(x) : Vn ! V1 which are symmetric with respect to all permuta-
tions � 2 Sn (see [18]). For every Sn and each degree k = 1; : : : ; n, there is a
homogeneous symmetric function ek(x) : Vn ! V1 such that

ek(x) =
M

i1; : : : ; ik 2 N ;
i1 6= : : : 6= ik

xi1 :::xik (3)

where N = f1; : : : ; ng. In other words, each term in a homogeneous function has
the same degree. The functions ek(x) = ek(�(x)) for any � 2 Sn. Assume that
e0 = 1, then the function

nY
i=1

(1� xi) =

nM
k=0

ek(x)

For example, let n = 4, the functions be: e1(x) = x1�x2�x3�x4, e2(x) = x1x2�
x1x3�x1x4� x2x3� x2x4�x3x4, e3(x) = x1x2x3�x1x2x4� x1x3x4�x2x3x4,
e4(x) = x1x2x3x4. Clearly, e0�e1�e2�e3�e4 = (1�x1)(1�x2)(1�x3)(1�x4).

Let mk(x) = xi1 :::xik be a term where all indices i1; : : : ; ik are di�erent.
Given a permutation � 2 Sn, then �(mk) = x�(i1):::x�(ik), where 1 � k � n.
Observe that the permutation � generates a cyclic group Cr of order r � n and
Cr = f"; �; �2; : : : ; �r�1g where " is the identity permutation. The cyclic group
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acts on the term mk(x) and produces a homogeneous Boolean function of degree
k in the following form:

fk(x) = mk � �(mk)� : : :� �r�1(mk) (4)

Note that rotation � 2 Sn is de�ned as �(i) = i+1 for i = 1; : : : ; n�1 and �(n) =
1. Equation (4) can be used to generate a homogeneous rotation-symmetric
Boolean function of degree k and

fk(x) = mk � �(mk)� : : :� �n�1(mk) (5)

Lemma 1. Given a rotation-symmetric Boolean function in the form of Expres-
sion (5). Then its nonlinearity is Nfk � 2n�k for k = 2; : : : ; n.

Proof. Clearly, the weight of the term mk is wt(mk) = 2n�k, the nonlinearity
Nmk

= min (2n�k; 2n � 2n�k). Without the loss of the generality, the function
(5) can be rewritten as fk(x) = x1:::xk � x2:::xk+1 � : : :� xnx1:::xk�1. Take an
arbitrary aÆne function

'(x) =

nM
i=1

aixi � c

where x = (x1; : : : ; xn) and c 2 V1. Then

fk � ' =

nM
i=1

xi(ai � xi+1:::xi+k�1)� c

As Nfk = min' d(fk; ') = min'wt(fk � '), so according to the result given in
[7] we have

Nfk � wt(xi(ai � xi+1 : : : xi+k�1)) = 2n�k:

Consider an example. Let n = 6 and m3 = x2x3x5. Then the corresponding
rotation-symmetric function (of degree 3) is generated as follows

f3(x) = (x2x3x5)� �(x2x3x5)� �2(x2x3x5)� �3(x2x3x5)� �4(x2x3x5)�

�5(x2x3x5) = x2x3x5 � x3x4x6 � x4x5x1 � x5x6x2 � x6x1x3 � x1x2x4:

Equation (5) produces simple rotation-symmetric functions for two following
cases. When k = 1, the corresponding homogeneous rotation-symmetric function
of degree 1 is

f1(x) = e1 =

n�1M
i=0

�i[m1(x)] = x1 � x2 � ::: � xn

which is a linear function and is symmetric with respect to all permutations
from Sn. If k = n, the function (5) becomes fn(x) = en(x) = x1x2:::xn which is
symmetric with respect to all permutations from Sn and has the lowest Hamming
weight which equals 1.

Consider homogeneous rotation-symmetric Boolean functions of the degree
2. Assume that an initial term is m2(x) = xjxj+` for some ` (`+ j � n) and the
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rotation is � 2 Sn. Then the corresponding homogeneous rotation-symmetric
Boolean functions is

f2(x) =

n�1M
i=0

�i(xjxj+`) = x1x`+1 � ::: � xix`+i � ::: � xnx`+n; (6)

where each subscript w is taken as ((w � 1) mod n) + 1.

Theorem 1. Let f2(x) : Vn ! V1 be a homogeneous rotation-symmetric Boolean
function of degree 2 which is generated from a term of degree 2 using the rotation
� 2 Sn. The function has the following properties:

(i). the Hamming weight of f2(x) is 2
n�2 � wt(f2) � 2n + 2n�2,

(ii). the nonlinearity of the function is Nf � 2n�2,
(iii). if n is odd (n > 2), the function f2(x) is balanced,
(iv). the functions satisfy the propagation criterion with respect to all vectors

� 2 Vn such that 0 < wt(�) < n and satis�es the SAC criterion.

Proof. (i). Since f2(x)�f2(x��) is a constant or an aÆne function, we can ob-
serve that the auto-correlation of f2(x) de�ned as
�(�) =

L
�2Vn

(�1)f2(x)�f2(x��) is equal to ([20])

�(�) =

�
2n if � = �0 or � = �2n�1
0 otherwise

For any vector � 2 Vn, wt(f2(x)) = wt(f2(x � �)). The auto-correlation of two
sequences of the same weight cannot be 0 or 2n if either the weight wt(f2) < 2n�2

or wt(f2) > 2n�1 + 2n�2, hence 2n�2 � wt(f2) � 2n�1 + 2n�2.
(ii). Let '(x) be an aÆne function on Vn. The Hamming distance between f2(x)
and '(x) is wt(f2 � ') and

f2 � ' =

nM
i=1

xi(ai � xi+`)� c:

The term xi(ai � xi+`) constitutes a Boolean function whose Hamming weight
is 2n�2. Since wt(f2) � wt(m2), then wt(f2�') � wt(xi(ai�xi+l)). Therefore,
we can conclude that Nf � 2n�2.

(iii). By contradiction. Assume that wt(f2(x)) 6= 2n�1. Let yi = 1 � xi for
all i = 1; : : : ; n (n > 2 and odd). Note that the functions f2(y) and f2(x) have
to be of the same weight as the relation between x and y is one to one, or
wt(f2(x)) = wt(f2(y)). So that without the loss of generality, we can take ` = 1
in (6) and take a closer look at the function f2(y) which is

f2(y) = y1y2 � : : :� yn�1yn � yny1

= (1� x1)(1� x2)� : : :� (1� xn�1)(1� xn)� (1� xn)(1� x1)

= 1� f2(x)

As f2(y) = 1 � f2(x), it means that wt(f2(y)) = 2n � wt(f2(x)). From the
assumption (wt(f2(x)) 6= 2n�1), we conclude that wt(f2(y)) 6= wt(f2(x)) which
is the requested contradiction which proves the claim.
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(iv). Let � = (a1; a2; :::; an), Then

f2(x) � f2(x� �) = (an � a2)x1 � : : :� (an�2 � an)xn�1 � (an�1 � a1)xn � C

where the constant C = a1a2 � a2a3 � : : : � ana1. When � = �0 = 0 and
� = �2n�1 = 1, f2(x)�f2(x��) is constant. For � 6= f0;1g, f2(x)�f2(x��) is
a balanced aÆne function. This means that f2(x) satis�es propagation criterion
of the order k where k = 1; : : : ; n � 1. Clearly, the function satis�es the SAC
criterion.

The nonlinearity of the function f2(x) was considered in [12] and proved that
it attains a high nonlinearity. More precisely, the following lemma is true.

Lemma 2. [12] Given f2(x) : Vn ! V1 for n odd, then the nonlinearity of the
function is Nf2 = 2n�1 � 2(n�1)=2.

Consider two classes of functions

f
(n)
2 = x1x2 � x2x3 � : : :� xn�1xn � xnx1

g
(n)
2 = x1x2 � x2x3 � : : :� xn�1xn

for n = 0; 1; : : :. If we assume that wt(g
(0)
2 ) = wt(f

(0)
2 ) = 0, then the following

equations are satis�ed

wt(g
(n)
2 ) = 2n�2 + 2wt(g

(n�2)
2 );

wt(f
(n
2 ) = wt(g

(n�1)
2 ) + wt(x1 � g

(n�2)
2 )wt(1� x1 � xn�2 � g

(n�2)
2 );

where (x1 � g
(n�2)
2 ) and (1� x1 � xn�2 � g

(n�2)
2 ) are two functions on Vn�2.

Given two rotation-symmetric functions f(x), g(x) on Vn. The next corollary
is useful to create a combined function which preserves the rotation symmetry.

Corollary 2. Given two functions f(x), g(x) on Vn and the rotation � 2 Sn. If
�(f(x)) = f(x) and �(g(x)) = g(x), then �(f(x)� g(x)) = f(x)� g(x).

6 Balanced Rotation-Symmetric Boolean Functions

The function f2(x) of degree 2 is an ideal candidate for hashing round function.
It is balanced, highly nonlinear and satis�es the propagation criterion (including
the SAC). To get other cryptographically strong rotation-symmetric functions,
we may to apply Corollary (2) which states that sum of rotation-symmetric
functions is a rotation-symmetric function as well. A general construction for
rotation symmetric functions can be done using the following algorithm.

1. select requested collection of terms of degrees k1; : : : ; kj ,
2. generate homogeneous rotation-symmetric functions of degrees k1; : : : ; kj ,
3. compose the functions into the compound rotation-symmetric function

f(x) = fk1(x)� : : :� fkj (x).
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Clearly, the evaluation of the function f(x) will be faster when the number of
terms used to generate homogeneous functions is restricted. In practice, there
are two most interesting cases when the number is limited to two and three. We
are going to investigate the two cases.
Class 1 generated by two terms. Consider the case when m1(x) and m2(x) =
x1x` where m1 : Vn+s ! V1 and m2 : Vn ! V1. The the class of rotation-
symmetric function is expressible as

f(x) = f2 � f1 =

n�1M
i=0

�i(m2(x)) �
n+s�1M
i=0

�i(m1(x)) (7)

for � 2 Sn. Note that terms m1(x) do not need to be evaluated so the function
f(x) is especially attractive for a fast evaluation. The explicit form of the function
is

f(x) = x1(1� x`)� x2(1� x`+1)� : : :� xn(1� x`+n�1)� xn+1 � : : :� xn+s

The function f(x) is balanced, its nonlinearity is Nf � 2n+s�2, and the function
satis�es the propagation criterion with respect to � such that � = (�1; �2) and
�1 6= f0;1g, where �1 2 Vn and �2 2 Vs.

Consider an example. Let k = 3 n = 4 and s = 1, then the function f(x) can
be written as

f(x) = (x1x2x3 � x2x3x4 � x3x4x1 � x4x1x2)� (x1 � x2 � x3 � x4 � x5)

= x1(1� x2x3)� x2(1� x3x4)� x3(1� x4x1)� x4(1� x1x2)� x5:

The function is balanced and nonlinearity is at least 8.
Class 2 generated by three terms. Consider the case when m1(x) is a term of
the degree 1 over Vn+s, m2(x) is a term of the degree 2 over Vn+m and mk(x)
is a term of the degree k over Vn, where n > k > 2 and (s � m). The function

f(x) = fk(x)� f2(x) � f1(x)

=
n�1M
i=0

�i(mk(x))�
n+m�1M
i=0

�i(m2(x)) �
n+s�1M
i=0

�i(m1(x))

where � 2 Sn, �1 2 Sn+s and �2 2 Sn+m. The function f(x) is balanced, has the
nonlinearity Nf � 2n+s�k and satis�es the propagation criterion with respect to
n < wt(�) < n+ s. Observe that from an eÆcient evaluation point of view, the
homogeneous rotation-symmetric function fk(x) generated by mk(x) is the most
expensive so that is why it should be kept relatively short � 2 Sn (see [4]). For
instance n = 4, s = m = 1 and k = 3, the balanced rotation-symmetric function
is

f(x) = x1x2x3 � x2x3x4 � x3x4x1 � x4x1x2 � x1x2 � x2x3 �

�x3x4 � x4x5 � x5x1 � x1 � x2 � x3 � x4 � x5
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7 Evaluation of Functions

Consider functions from Class 1, i.e. rotation-symmetric functions of degree two.
We are going to analyse bounds for the number of necessary operations needed
to evaluate a round function when it is used for m consecutive rounds. Let our
rotation-symmetric function over Vn be

f(x) = x1x2 � x2x3 � : : :� xn�1xn � xnx1;

where n is odd. In the �rst round, the whole function needs to be evaluated
from scratch. This will consume no more than 2n operations. This number can
be reduced to 3n�1

2 if the evaluation is done in pairs f(x) = x1x2 � x3(x2 �
x4) � : : : � xn(xn�1 � x1). For the next round, if we keep the evaluation of
h(x1; : : : ; xn�1) = x1x2�x2x3�: : :�xn�2xn�1 then we need to evaluate the new
term x0(x1 � xn�1) which takes 2 operations. Evaluation of f(x0; x1; : : : ; xn�1)
takes at most three operations, where x0 is a \new variable" which was not used
in the previous round. To be able to use the same technique in next rounds, we
need to evaluate the function h(x0; : : : ; xn�2) = x0x1 � x1x2 � : : : � xn�3xn�2
from f(x0; : : : ; xn�1). The \correction" of h(x) will cost at most three operations
as h(x) = f(x) � xn�1(xn�2 � x0) and the term xn�1(xn�2 � x0) needs to be
generated. In conclusion, the evaluation of f(x) for m consecutive rounds will
take no more than 3n�1

2 + 6(m� 1) operations.
What we can gain if we use shorter function which is not rotation symmetric

but is obtained from a one by removing some of the terms. Let this function be

f(x1; : : : ; xn) = x1x2 � x3x4 � : : :� xn�2xn�1 � xn�1xn

In the �rst round the function needs (n � 1) operations for its evaluation. In
the second round, the same number of operations is necessary as all terms need
to be generated. This costs (n � 1) operations. In the third round, we can use
partial evaluation from the �rst round. This consumes at most 3 operations. The
evaluation of the expression for the 5-th round takes at most 3 operations. All
together, the evaluation takes at most 2(n� 1) + 6(m� 2) operations.

Paradoxically, shorter functions require more steps for their evaluation. This
phenomenon relates to the fact that rotation will generate all terms of the
rotation-symmetric function gradually round by round with no chances for opti-
misation. Starting from a rotation-symmetric function allows optimal evaluation
of terms which can be reused further in the consecutive rounds. The designers
of the HAVAL hashing algorithm [24] fell into the trap. The �rst round function
they used is f1(x6; x5; x4; x3; x2; x1; x0) = x1x4�x2x5�x3x6�x0x1�x0 which
is a shortened version of a rotation-symmetric function f2(x1; : : : ; x7).

8 Extensions and Further Research

The paper suggest a novel framework for designing cryptographically strong
Boolean functions which can be eÆciently evaluated when they are applied as
round functions in a MD hashing with rotation as the round mixing operation.
Clearly any symmetric Boolean function (in respect to any permutation) is also
rotation symmetric. The reverse is not true as a rotation-symmetric function is
not symmetric in general. Rotation-symmetric functions are much shorter than
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their symmetric equivalents. This is especially visible for bigger n. For instance,
a rotation-symmetric function f2(x) over Vn includes n terms of degree 2 while

its symmetric equivalent consists of n(n�1)
2 terms. Symmetric functions could be

useful if the round mixing operation is an arbitrary permutation controlled by
either cryptographic key (as for keyed hashing) or messages.

The round mixing operation can be viewed as a linear transformation of the
input variables. Rotation is an especially simple case. Note that linear transfor-
mation of input variables does not increase the degree of the function. Similarly,
it is possible to extend our considerations to the case of linear transformations.

The concept of eÆcient evaluation can be extended for permutations p : Vn !
Vn. This is not directly applicable in MD hashing but certainly is of interest
for other cryptographic algorithms where the S-boxes are evaluated on the y
instead of using their lookup tables. The idea is to design a cryptographically
strong permutation whose component output functions share as many common
terms as possible so partial evaluations can be shared among the functions. The
con�rmation that such permutations exist can be found in the papers [12, 10].

Finally, it can be argued that an eÆcient evaluation may actually contradict
the security of hashing. This argument may or may not be valid depending on
other components used in the single round (shifting, addition modulo 2n, etc.).
Also the number of di�erent functions together with the total number of rounds
plays a signi�cant role in getting a secure (collision free) hash algorithm.
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