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Abstract: We show that it is decidable whether or not a given DOL power series over
a semiring A is A-algebraic in case A = Q4 or A = N. The proof relies heavily on the
use of elementary morphisms in a power series framework and gives also a new method
to decide whether or not a given DOL language is context-free.

Category: F4.3

1 Introduction

DOL power series were defined in [Honkala 97] and studied in detail in [Honkala
98,00]. The study of these series gives an interesting counterpart to the customary
theory of DOL systems.

In [Honkala 97] it is shown to be decidable whether or not a given DOL power
series over Q is Q-rational. In this paper we study the question whether or not
a given DOL power series over a semiring A is A-algebraic. A decision method is
provided in case A equals Q4 or N. We also discuss the same question in case
A = Q. Our decision method relies heavily on the use of elementary morphisms
in a power series framework and applies various techniques dealing with DOL
sequences and algebraic series. By taking A = B we also obtain a new decision
method for the context-freeness of DOL languages (see [Salomaa 75]).

For further background and motivation we refer to [Honkala 95,97,98,00] and
the references given therein. It is assumed that the reader is familiar with the
basics of formal power series and L systems (see [Berstel and Reutenauer 88],
[Kuich and Salomaa 86], [Rozenberg and Salomaa 80,97], [Salomaa and Soittola
78]). Notions and notations that are not defined are taken from these references.

2 Definitions

Suppose A is a commutative semiring and X is a finite alphabet. The set of
formal power series with noncommuting variables in X and coefficients in A is
denoted by A <« X* >. The subset of A <« X* > consisting of all series with a
finite support is denoted by A < X* >. Series of A < X* > are referred to as
polynomials.

Assume that X and Y are finite alphabets. A semialgebra morphism A : A <
X* >— A <Y* >is called a monomial morphism if for each z € X there exist
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anonzeroa € Aandw € Y* suchthat h(z) =aw. Ifh : A< X*>— A<Y* >
is a monomial morphism, the underlying monoid morphism h:X* —Y*is
defined by h(x) = supp(h(z)) for x € X. A series r € A <€ X* > is called a
DOL power series over A if there exist a nonzero a € A, a word w € X* and a
monomial morphism h: A < X* >— A < X* > such that

o0

r=>_ah"(w) (1)

n=0
and, furthermore,
supp(ah’(w)) # supp(ah’ (w)) whenever 0 < i < j.
Consider the series r given in (1) and denote
ah™(w) = cpwn

where ¢, € A and w, € X* for n > 0. Then we have

r= i CnWn- (2)
n=0

In what follows the righthand side of (2) is called the normal form of r. A
sequence (¢,)n>o0 of elements of A is called a DOL multiplicity sequence over A
if there exists a DOL power series r over A such that (2) is the normal form of r.

Ifr =3 > ah™(w) is a DOL power series and p > 1 and m > 0 are integers,

then the series r(p,m) is defined by

o0

r(p,m) =) ah?" (h™(w)).

n=0

Assume that X and Y are finite alphabets. By definition, a monomial mor-
phism h: A < X* >— A < Y™ > is simplifiable if there exist a set X; and
monomial morphisms by : A < X*>— A< X >and hp: A< X >— A<
Y* > such that h = hohy and card(X;) < card(X). If h is not simplifiable, it is
called elementary. A DOL power series r = Y ° jah™(w) is called elementary if
the monomial morphism A is elementary.

3 Decidability of algebraicness in case A = Q4+, A = N or
A=B

In this section we show through a sequence of lemmas that it is decidable whether
or not a given DOL power series over the semiring A is A-algebraic in case
A=Q;, A=Nor A= B. (Here Q;, N and B stand for the nonnegative
rationals, nonnegative integers and Boolean semiring, respectively.) A decision
method is first given for elementary DOL power series.

If X is a finite alphabet and g : X* — X* is a morphism, a letter z € X is
called growing if the set {g"(z) | n > 0} is infinite.
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Lemmal. Suppose A is a commutative semiring and r = > jah"(w) € A <
X* > is a DOL power series over A such that the underlying monoid morphism
g: X" — X* of h is injective. Furthermore, assume that there exist positive
integers C' and D such that

lg" (w)| < Cn+ D

for all n > 0. Then there effectively exist integers p > 1, ¢ > 0, k > 0, words
Uq, Vg, wg and growing letters yg, 0 < a < k, 1 < B3 <k, and nonzero ag, a1, a» €
A such that
(n—1)n
WP (w) = agata, *  uo(viyiwy)ur (v3yowy)us . .. ug—1 (vpykwi)ur  (3)
for all n > 0. Furthermore, none of the words uq,vg,wg, 0 <a <k, 1 <3<k,
contains a growing letter.

Proof. Denote
Xi={zxeX||¢g"(x)]=1forall n > 1}
and
X, ={x € X | z is a growing letter}.

If z € Xy, clearly g(z) € X;. Hence g permutes the letters of X;. If z € X is
not growing, there exists a positive integer k such that ¢g¥(z) € X;. Because g
permutes the letters of X; there exists u € X such that g*(z) = ¢g*(u). Because
g" is injective, we have x = u implying that = € X;. Consequently, X = X; UX5.

Because |¢g"(w)| has a linear upper bound there exists a constant K such that

no g"(w) contains more than K growing letters. Therefore there exist integers
p>1and g > 0 such that

prx, (97 (w)) = prx, (g7 (w)).
(Here pry, is the projection from X* onto X;.) By changing p, if necessary, we
may assume that gP(xz) = z for all z € X;. Now, denote

hi(w) = aguoy1U1 Y2tz - . - Uk—1 Yk Uk (4)
where k >0, ap € A, uy € X{ and yg € Xy for 0 < a <k, 1 < 8 < k. Because
each g”(y3) contains only one growing letter, there exist vg, wg € X7 such that
9" (yp) = vaypws

for 1 < B < k. Finally, there exist nonzero a;,as € A such that

hP (uoy1u1yaus - . - Up—1YpUg) =

a1 uo(v1y1wr )ur (Vay2we)uz . - . ug—1 (VpYrWwe ) Uk
and
hP (Vw1 Vows . . . VW) = GV W1 VW2 . . . VW
Now (3) follows inductively. First, if n = 0, (3) follows by (4). Then, if (3)
holds, we have

h("“)p”(w) —
(n—1)n
aoayay *  h(uo(vfyrwy )us (V5 y2wy)us - . . ug—1 (Vi yRwy Jur) =
n(nt1)
aoal M ay 7 uo(op T yrw T ug (v i T s L ug—y (0w g

Hence (3) holds for all n > 0. O
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Lemma2. Leth: A< X* >— A < X* > be a monomial morphism such that
there exist integers p > 1, ¢ > 0, k > 0, words u,,vg,wg and growing letters
ys, 0 <a <k, 1< <k, and nonzero ag,a1,as € A such that (3) holds for
all n > 0 and none of the words uqy,vg,w, 0 < a < k, 1 < 3 <k, contains
a growing letter. Then there exist words U, Vs, Ws,Ys, 0 < a <k, 1 < B <k,
such that

(n=1)n
hnp+q(’w) = aga?az 2 o (ﬁ?§1W?)ﬂ1 (Wyzmg)m o U1 (Wykw;‘)m

for all n > 0. Furthermore, the following conditions hold: None of the words
Ua, V3, Wp contains a growing letter. EachYg contains exvactly one growing letter.
If u, = X then either {Wy,Ua41} is a code or contains the empty word, 1 < a <
k — 1. If uy # A, then neither of the words U, and W, is a prefiz of the other,
1<a<k-1.

Proof. For each o, 1 < a < k — 1, we modify the words uq,vg, ws as follows.
If upy = A, wo # A, Va41 # X and {wa,va41} is not a code, replace w, by
WaVa+1, and Vo1 by A, respectively. If uy, # A and wu,, is a prefix of w,, replace
Ya DY Yala, Wa by Uy 'wata, and u, by A, respectively. If u, # A and w, is a
prefix of u,, replace y, by yawe, and u, by w, 1u,, respectively, and continue as
before. When all these replacements are completed we have obtained the words
Ua, Vg, W, Yg, 0 < a <k, 1 < B <k, satisfying the conditions of the claim. O

Lemma 3. Denote

> (n—1)n
=S a0y T (O BT (BT - T (V)7
n=1

where ag,a1,a2 € A are nonzero and the words Uy, Vs, Wg,Yg, 0 < a < K,
1 < B <k, satisfy the conditions of Lemma 2. Let t be the number of the words
vg, W, 1 < B < k, when empty words are deleted and each nonempty word is
counted as many times as it occurs. Let z1,...,z: be new distinct letters and

denote
(n—1)n

oo
ry = E apata, > 21'zy ...z
n=1

Then r is A-algebraic if and only if r1 is A-algebraic.

Proof. First, suppose that r is A-algebraic. By the conditions stated in Lemma
2, each word in the language

— ke ——k\—  (—k— ——k\— — —k— %\ —
Uo (V19,0701 (V375W035)Us - - Ug—1 (VY W, ) Uk
can be written uniquely in the form
7 (739157 7592 \a7, (739375 704 \77 = =J2k—17 ——jak \—
Uo (V7' Y1017 ) (057 Yo W5 JUs - . Upe—1 (03,7 Y 03" U,

where j, € N for 1 < v < 2k, provided that possibly different powers of empty
words are not regarded as different. Because A-algebraic series are closed under
inverse morphisms and Hadamard products with A-rational series, we may as-
sume that the nonempty us,vg,wg,ys are in fact distinct letters, 0 < a < k,
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1 < 8 < k. Finally, we erase the letters corresponding to nonempty words Ua, ¥,
0 <a<k 1< <Ek. The resulting series is still A-algebraic because at most
three consecutive letters are erased (see [Kuich and Salomaa 86]).

Suppose then that r; is A-algebraic. By applying the closure properties of
A-algebraic series it follows easily that r is A-algebraic. O

The following two lemmas recall some basic properties of algebraic series.

Lemmad4. Suppose A =Q or A= B. Let z be a letter and

oo
r= E a;z™
i=0

where a; # 0 for i > 0, be a power series in A K z* >. If

. n;
lim — = o0
i—o00 1

then r is not A-algebraic.

Proof. For both cases see [Kuich and Salomaa 86]. O

If p > 2 is a prime, denote by v, the p-adic valuation over Q.

Lemma5. Suppose r € Q € X* > is Q-algebraic and p > 2 is a prime. Then
there exists a positive integer C' such that

vp((r, w))| < Clul
for any nonempty word w € supp(r).

Proof. By Theorem IV6.6 in [Salomaa and Soittola 78] there exists a nonzero
integer d such that

Z(r,w)dlwlw ez <« X" >
Furthermore, there exists a positive integer M such that
|(r,w)d ! < M1
for any nonempty w € X*. Hence there exists a positive integer D such that
0 < vy((r,w)d"!) < Dlu]
for any nonempty w € supp(r). Consequently
—vp(d)|w] < vp((r,w)) < Dlw|

for any nonempty w € supp(r). This implies the claim. O

The following lemma gives our main result in the case of elementary DOL
power series.
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Lemma 6. Suppose the basic semiring A equals Q4+, N or B. Then it is decid-
able whether or not a given elementary DOL power seriesr =y ah™(w) over
A is A-algebraic.

Proof. Let p; be the smallest period of the ultimately periodic sequence
(Alph(h™(w)))n>0 and let ¢; be a nonnegative integer such that

Alph(h" () = Alph(h™ 7 ()

for all n > ¢;. Because A-algebraic series are closed with respect to Hadamard
products with A-rational series, if r is A-algebraic, so is 7(p1,¢1). On the other
hand, if 7(p1,¢q1) is A-algebraic, so is r, because

q1—1 n+p1—1 q1—1 q1+p1—1 )
r= Z ah™(w) + Z r(p1,1) = Z ah”(w) + Z = (r(p1,q1))
n=0 i=q1 n=0 i=q1

and h is nonerasing. So, it remains to decide whether or not r(p;,q) is A-
algebraic.

Because h is nonerasing, the underlying DOL length sequence of r(p1,q1)
is strictly increasing. Next, decide whether or not the underlying DOL length
sequence of r(p1, q1) is linear. If not, Lemma 4 implies that r is not A-algebraic.
We continue with the assumption that this sequence is linear. Then, by Lemma
1, there effectively exist integers p > 1, ¢ > 0, ¥ > 0, words uq,vg, ws and
growing letters yg, 0 < a < k, 1 < 8 < k, and nonzero ag,ai,as € A such that

a(hm)anrq(hth (w)) —

(n—1)n
apayay > ug(viyrwy)uy (vyyawy us . . ug 1 (Vi Yrwy ug

for all n > 0. Then we have

0 (n—1)n
r(p1,q1) (P q) = Z aoaya, *  uo(vi'yiwy)ui(vyyawy)us .. up—1 (Vi Ykwy k.
n=0

Now, let L be the language of all words over the alphabet Alph(r(p1,¢:)) having
length |uoyiu1yaus - . . yrug| + nlvywivews . . . vywy| for some n > 0. Because the
underlying DOL length sequence of r(p1, g1) is strictly increasing,

r(p1,q1) © char(L) = r(p1, q1)(p, q)-

(Here s1 ® s2 stands for the Hadamard product of the series s; and s2.) Hence,
if r(p1,q1) is A-algebraic, so is r(p1, q1)(p,q)- The converse is seen to be true as
above.

Now, to decide whether or not r(p1,q1)(p,q) is A-algebraic it suffices, by
Lemmas 2 and 3 to decide whether or not the series

oo
(n—1)n
T = E apala, > 20zy ... %0
n=1

is A-algebraic. Here t is an effectively obtainable integer and the letters z, are
distinct. We claim that ry is A-algebraic if and only if a; = 1 and ¢ < 2. First, if
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r1 is A-algebraic, Lemma 5 implies that a; = 1. Furthermore, if r; is A-algebraic,
supp(r) is context-free. Consequently, ¢ < 2. The converse implication follows
immediately. O

In order to generalize Lemma 6 for arbitrary DOL power series a lemma is
needed.

Lemma?7. Let h: A < X* >— A < Y* > be a monomial morphism. Then
h is elementary if and only if the underlying monoid morphism g : X* — Y*
of h is elementary. If h is elementary, g is injective. If h is simplifiable, there
exist a set X1 and monomial morphisms hy : A < X* >— A < X{ > and
hy : A< Xf >— A <Y* > such that h = hahy, card(X1) < card(X) and
ha(z1) € Y™ for all z; € X,. Furthermore, the underlying monoid morphism
g2 1 X7 — Y™ of hy is injective.

Proof. For the first claim see [Honkala 98]. The second claim follows by the first
claim. Suppose then that h is simplifiable. If h(z) € A for all € X the claim
holds trivially. Otherwise, there exist a nonempty set X; and monoid morphisms
g1 X* — X{, g2+ X{ — Y* such that g = gog1 and card(X;) < card(X).
By choosing as small X; as possible we may assume that g, is elementary. Now,
denote h(z) = a,g(x) where x € X and a, € A, and define the monomial
morphisms by : A< X* >— A< X >and hy : A < X{ >— A<Y* > by

hi(z) = azgi(z), z€X,
ha(z) = g2(x), =€ Xy
Then, if € X we have
hahi () = ha(a291(2)) = azg291(2) = azg9(z) = h(z).
Furthermore, the underlying monoid morphism g of hs is injective. O
Now we are ready for the main result.
Theorem 8. Suppose the basic semiring A equals Qy, N or B. Then it is de-

cidable whether or not a given DOL power series r = Y - ah™(w) over A is
A-algebraic.

Proof. If h is elementary, apply the method of Lemma 6. If h is simplifiable, let
h1 and hs be as in Lemma 7 (where now Y = X.) Denote

oo

ri =Y a(hihy)"(hi(w)).

n=0
Hence, r € A < X7 > is a DOL power series and
r = aw + ha(ry).

Because hy is nonerasing, the A-algebraicness of r; implies that of r. Conversely,
if r is A-algebraic, so is r; because

95 (Y (ryu)u) =11

uFw
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Consequently, it suffices to decide whether or not r; is A-algebraic. Continuing
in the same way it is seen that after finitely many steps we are in a position to
apply the method of Lemma 6. O

If the basic semiring A equals the Boolean semiring, Theorem 8 implies a
new method to decide whether or not a given DOL language is context-free (see
[Salomaa 75]).

4 The case A = Q

In this section we briefly discuss the case A = Q. We start with a problem
concerning algebraic series.

Fix a semiring A. Let X = {z; | i € N} be an infinite alphabet and denote
Xy = {z1,x2,...,z1} for k > 1. Define the series P, € A < X; > by

o0
P, = E xiTyTy ... T
n=1

We claim that if P4y is A-algebraic, so is Py, k > 1. For the proof, define the
morphisms g : Xp,, — X and h: X7 — X by

glz)) =7 for 1<i<k—1,

g(wr) = g(wpy1) = x4

and
h(z;) =x? for 1<i<k.

Then we have P, = h™!(g(Pg11)) which implies the claim by the closure prop-
erties of A-algebraic series.

Now, an integer k is called the ALG-bound for A if k is the largest integer
such that Py is A-algebraic. If no such k exists, the ALG-bound for A equals co.
By the claim established above, Py is A-algebraic if and only if k is at most the
ALG-bound for A.

If A is a positive semiring the ALG-bound for A equals two. We do not know
the ALG-bound for 4 = Q.

Next, suppose the basic semiring A equals Q. By the previous section it
is decidable whether or not a given DOL power series over QQ is Q-algebraic.
However, an explicit algorithm is obtained only if the ALG-bound for Q is known.

The decidability of algebraicness of DOL power series and the determination
of ALG-bounds are closely related. In fact, if A is any semiring such that A-
algebraicness is decidable for DOL power series over A then the ALG-bound for
A is effectively computable if it is finite. This follows because Py, is A-algebraic
if and only if the series

o0
Ty, = Z YTy Y2y - YRy
n=1

is A-algebraic. (Here y1, ...,y are new letters.) Furthermore, T}, is a DOL power
series over A.
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