On algebraicness of D0L power series

Juha Honkala
Department of Mathematics
University of Turku
FIN-20014 Turku, Finland
juha.honkala@utu.fi
and
Turku Centre for Computer Science (TUCS)
FIN-20520 Turku, Finland

Abstract: We show that it is decidable whether or not a given D0L power series over a semiring A is A-algebraic in case $A = \mathbf{Q}_+$ or $A = \mathbf{N}$. The proof relies heavily on the use of elementary morphisms in a power series framework and gives also a new method to decide whether or not a given D0L language is context-free.

Category: F4.3

1 Introduction

D0L power series were defined in [Honkala 97] and studied in detail in [Honkala 98,00]. The study of these series gives an interesting counterpart to the customary theory of D0L systems.

In [Honkala 97] it is shown to be decidable whether or not a given D0L power series over \mathbf{Q} is \mathbf{Q} -rational. In this paper we study the question whether or not a given D0L power series over a semiring A is A-algebraic. A decision method is provided in case A equals \mathbf{Q}_+ or \mathbf{N} . We also discuss the same question in case $A = \mathbf{Q}$. Our decision method relies heavily on the use of elementary morphisms in a power series framework and applies various techniques dealing with D0L sequences and algebraic series. By taking $A = \mathbf{B}$ we also obtain a new decision method for the context-freeness of D0L languages (see [Salomaa 75]).

For further background and motivation we refer to [Honkala 95,97,98,00] and the references given therein. It is assumed that the reader is familiar with the basics of formal power series and L systems (see [Berstel and Reutenauer 88], [Kuich and Salomaa 86], [Rozenberg and Salomaa 80,97], [Salomaa and Soittola 78]). Notions and notations that are not defined are taken from these references.

2 Definitions

Suppose A is a commutative semiring and X is a finite alphabet. The set of formal power series with noncommuting variables in X and coefficients in A is denoted by $A \ll X^* \gg$. The subset of $A \ll X^* \gg$ consisting of all series with a finite support is denoted by $A < X^* >$. Series of $A < X^* >$ are referred to as polynomials.

Assume that X and Y are finite alphabets. A semialgebra morphism $h:A < X^* > \longrightarrow A < Y^* >$ is called a *monomial morphism* if for each $x \in X$ there exist

a nonzero $a \in A$ and $w \in Y^*$ such that h(x) = aw. If $h: A < X^* > \longrightarrow A < Y^* >$ is a monomial morphism, the underlying monoid morphism $\overline{h}: X^* \longrightarrow Y^*$ is defined by $\overline{h}(x) = \operatorname{supp}(h(x))$ for $x \in X$. A series $r \in A \ll X^* \gg$ is called a D0L power series over A if there exist a nonzero $a \in A$, a word $w \in X^*$ and a monomial morphism $h: A < X^* > \longrightarrow A < X^* > \operatorname{such}$ that

$$r = \sum_{n=0}^{\infty} ah^n(w) \tag{1}$$

and, furthermore,

 $\operatorname{supp}(ah^{i}(w)) \neq \operatorname{supp}(ah^{j}(w))$ whenever $0 \leq i < j$.

Consider the series r given in (1) and denote

$$ah^n(w) = c_n w_n$$

where $c_n \in A$ and $w_n \in X^*$ for $n \geq 0$. Then we have

$$r = \sum_{n=0}^{\infty} c_n w_n. \tag{2}$$

In what follows the righthand side of (2) is called the *normal form* of r. A sequence $(c_n)_{n\geq 0}$ of elements of A is called a D0L multiplicity sequence over A if there exists a D0L power series r over A such that (2) is the normal form of r. If $r = \sum_{n=0}^{\infty} ah^n(w)$ is a D0L power series and $p \geq 1$ and $m \geq 0$ are integers, then the series r(p, m) is defined by

$$r(p,m) = \sum_{n=0}^{\infty} ah^{pn}(h^m(w)).$$

Assume that X and Y are finite alphabets. By definition, a monomial morphism $h:A< X^*> \longrightarrow A< Y^*>$ is simplifiable if there exist a set X_1 and monomial morphisms $h_1:A< X^*> \longrightarrow A< X_1^*>$ and $h_2:A< X_1^*> \longrightarrow A< Y^*>$ such that $h=h_2h_1$ and $card(X_1)< card(X)$. If h is not simplifiable, it is called elementary. A D0L power series $r=\sum_{n=0}^{\infty}ah^n(w)$ is called elementary if the monomial morphism h is elementary.

3 Decidability of algebraicness in case $A = Q_+$, A = N or A = B

In this section we show through a sequence of lemmas that it is decidable whether or not a given D0L power series over the semiring A is A-algebraic in case $A = \mathbf{Q}_+$, $A = \mathbf{N}$ or $A = \mathbf{B}$. (Here \mathbf{Q}_+ , \mathbf{N} and \mathbf{B} stand for the nonnegative rationals, nonnegative integers and Boolean semiring, respectively.) A decision method is first given for elementary D0L power series.

If X is a finite alphabet and $g: X^* \longrightarrow X^*$ is a morphism, a letter $x \in X$ is called *growing* if the set $\{g^n(x) \mid n \geq 0\}$ is infinite.

Lemma 1. Suppose A is a commutative semiring and $r = \sum_{n=0}^{\infty} ah^n(w) \in A \ll X^* \gg is$ a D0L power series over A such that the underlying monoid morphism $g: X^* \longrightarrow X^*$ of h is injective. Furthermore, assume that there exist positive integers C and D such that

$$|g^n(w)| \le Cn + D$$

for all $n \geq 0$. Then there effectively exist integers $p \geq 1$, $q \geq 0$, $k \geq 0$, words $u_{\alpha}, v_{\beta}, w_{\beta}$ and growing letters $y_{\beta}, 0 \leq \alpha \leq k, 1 \leq \beta \leq k$, and nonzero $a_0, a_1, a_2 \in A$ such that

$$h^{np+q}(w) = a_0 a_1^n a_2^{\frac{(n-1)n}{2}} u_0(v_1^n y_1 w_1^n) u_1(v_2^n y_2 w_2^n) u_2 \dots u_{k-1}(v_k^n y_k w_k^n) u_k$$
 (3)

for all $n \geq 0$. Furthermore, none of the words $u_{\alpha}, v_{\beta}, w_{\beta}, 0 \leq \alpha \leq k, 1 \leq \beta \leq k$, contains a growing letter.

Proof. Denote

$$X_1 = \{ x \in X \mid |g^n(x)| = 1 \text{ for all } n \ge 1 \}$$

and

$$X_2 = \{x \in X \mid x \text{ is a growing letter}\}.$$

If $x \in X_1$, clearly $g(x) \in X_1$. Hence g permutes the letters of X_1 . If $x \in X$ is not growing, there exists a positive integer k such that $g^k(x) \in X_1^*$. Because g permutes the letters of X_1 there exists $u \in X_1^*$ such that $g^k(x) = g^k(u)$. Because g^k is injective, we have x = u implying that $x \in X_1$. Consequently, $X = X_1 \cup X_2$.

Because $|g^n(w)|$ has a linear upper bound there exists a constant K such that no $g^n(w)$ contains more than K growing letters. Therefore there exist integers $p \ge 1$ and $q \ge 0$ such that

$$pr_{X_2}(g^q(w)) = pr_{X_2}(g^{p+q}(w)).$$

(Here pr_{X_2} is the projection from X^* onto X_2^* .) By changing p, if necessary, we may assume that $g^p(x) = x$ for all $x \in X_1$. Now, denote

$$h^{q}(w) = a_{0}u_{0}y_{1}u_{1}y_{2}u_{2}\dots u_{k-1}y_{k}u_{k}$$

$$\tag{4}$$

where $k \geq 0$, $a_0 \in A$, $u_\alpha \in X_1^*$ and $y_\beta \in X_2$ for $0 \leq \alpha \leq k$, $1 \leq \beta \leq k$. Because each $g^p(y_\beta)$ contains only one growing letter, there exist $v_\beta, w_\beta \in X_1^*$ such that

$$g^p(y_\beta) = v_\beta y_\beta w_\beta$$

for $1 \leq \beta \leq k$. Finally, there exist nonzero $a_1, a_2 \in A$ such that

$$h^{p}(u_{0}y_{1}u_{1}y_{2}u_{2}\dots u_{k-1}y_{k}u_{k}) = a_{1}u_{0}(v_{1}y_{1}w_{1})u_{1}(v_{2}y_{2}w_{2})u_{2}\dots u_{k-1}(v_{k}y_{k}w_{k})u_{k}$$

and

$$h^p(v_1w_1v_2w_2...v_kw_k) = a_2v_1w_1v_2w_2...v_kw_k.$$

Now (3) follows inductively. First, if n=0, (3) follows by (4). Then, if (3) holds, we have

$$h^{(n+1)p+q}(w) =$$

$$a_0a_1^na_2^{\frac{(n-1)n}{2}}h^p(u_0(v_1^ny_1w_1^n)u_1(v_2^ny_2w_2^n)u_2\dots u_{k-1}(v_k^ny_kw_k^n)u_k)=\\a_0a_1^{n+1}a_2^{\frac{n(n+1)}{2}}u_0(v_1^{n+1}y_1w_1^{n+1})u_1(v_2^{n+1}y_2w_2^{n+1})u_2\dots u_{k-1}(v_k^{n+1}y_kw_k^{n+1})u_k.$$
 Hence (3) holds for all $n>0$. \square

Lemma 2. Let $h: A < X^* > \longrightarrow A < X^* >$ be a monomial morphism such that there exist integers $p \ge 1$, $q \ge 0$, $k \ge 0$, words $u_{\alpha}, v_{\beta}, w_{\beta}$ and growing letters y_{β} , $0 \le \alpha \le k$, $1 \le \beta \le k$, and nonzero $a_0, a_1, a_2 \in A$ such that (3) holds for all $n \ge 0$ and none of the words $u_{\alpha}, v_{\beta}, w_{\beta}, 0 \le \alpha \le k$, $1 \le \beta \le k$, contains a growing letter. Then there exist words $\overline{u}_{\alpha}, \overline{v}_{\beta}, \overline{w}_{\beta}, \overline{y}_{\beta}, 0 \le \alpha \le k$, $1 \le \beta \le k$, such that

$$h^{np+q}(w) = a_0 a_1^n a_2^{\frac{(n-1)n}{2}} \overline{u}_0(\overline{v}_1^n \overline{y}_1 \overline{w}_1^n) \overline{u}_1(\overline{v}_2^n \overline{y}_2 \overline{w}_2^n) \overline{u}_2 \dots \overline{u}_{k-1}(\overline{v}_k^n \overline{y}_k \overline{w}_k^n) \overline{u}_k$$

for all $n \geq 0$. Furthermore, the following conditions hold: None of the words $\overline{u}_{\alpha}, \overline{v}_{\beta}, \overline{w}_{\beta}$ contains a growing letter. Each \overline{y}_{β} contains exactly one growing letter. If $\overline{u}_{\alpha} = \lambda$ then either $\{\overline{w}_{\alpha}, \overline{v}_{\alpha+1}\}$ is a code or contains the empty word, $1 \leq \alpha \leq k-1$. If $\overline{u}_{\alpha} \neq \lambda$, then neither of the words \overline{u}_{α} and \overline{w}_{α} is a prefix of the other, $1 \leq \alpha \leq k-1$.

Proof. For each α , $1 \leq \alpha \leq k-1$, we modify the words $u_{\alpha}, v_{\beta}, w_{\beta}$ as follows. If $u_{\alpha} = \lambda$, $w_{\alpha} \neq \lambda$, $v_{\alpha+1} \neq \lambda$ and $\{w_{\alpha}, v_{\alpha+1}\}$ is not a code, replace w_{α} by $w_{\alpha}v_{\alpha+1}$, and $v_{\alpha+1}$ by λ , respectively. If $u_{\alpha} \neq \lambda$ and u_{α} is a prefix of w_{α} , replace y_{α} by $y_{\alpha}u_{\alpha}$, w_{α} by $u_{\alpha}^{-1}w_{\alpha}u_{\alpha}$, and u_{α} by λ , respectively. If $u_{\alpha} \neq \lambda$ and w_{α} is a prefix of u_{α} , replace y_{α} by $y_{\alpha}w_{\alpha}$, and u_{α} by $w_{\alpha}^{-1}u_{\alpha}$, respectively, and continue as before. When all these replacements are completed we have obtained the words $\overline{u}_{\alpha}, \overline{v}_{\beta}, \overline{w}_{\beta}, \overline{y}_{\beta}$, $0 \leq \alpha \leq k$, $1 \leq \beta \leq k$, satisfying the conditions of the claim. \square

Lemma 3. Denote

$$r = \sum_{n=1}^{\infty} a_0 a_1^n a_2^{\frac{(n-1)n}{2}} \overline{u}_0(\overline{v}_1^n \overline{y}_1 \overline{w}_1^n) \overline{u}_1(\overline{v}_2^n \overline{y}_2 \overline{w}_2^n) \overline{u}_2 \dots \overline{u}_{k-1}(\overline{v}_k^n \overline{y}_k \overline{w}_k^n) \overline{u}_k,$$

where $a_0, a_1, a_2 \in A$ are nonzero and the words $\overline{u}_{\alpha}, \overline{v}_{\beta}, \overline{w}_{\beta}, \overline{y}_{\beta}, 0 \leq \alpha \leq k$, $1 \leq \beta \leq k$, satisfy the conditions of Lemma 2. Let t be the number of the words $\overline{v}_{\beta}, \overline{w}_{\beta}, 1 \leq \beta \leq k$, when empty words are deleted and each nonempty word is counted as many times as it occurs. Let z_1, \ldots, z_t be new distinct letters and denote

$$r_1 = \sum_{n=1}^{\infty} a_0 a_1^n a_2^{\frac{(n-1)n}{2}} z_1^n z_2^n \dots z_t^n.$$

Then r is A-algebraic if and only if r_1 is A-algebraic.

Proof. First, suppose that r is A-algebraic. By the conditions stated in Lemma 2, each word in the language

$$\overline{u}_0(\overline{v}_1^*\overline{y}_1\overline{w}_1^*)\overline{u}_1(\overline{v}_2^*\overline{y}_2\overline{w}_2^*)\overline{u}_2\ldots\overline{u}_{k-1}(\overline{v}_k^*\overline{y}_k\overline{w}_k^*)\overline{u}_k$$

can be written uniquely in the form

$$\overline{u}_0(\overline{v}_1^{j_1}\overline{y}_1\overline{w}_1^{j_2})\overline{u}_1(\overline{v}_2^{j_3}\overline{y}_2\overline{w}_2^{j_4})\overline{u}_2\dots\overline{u}_{k-1}(\overline{v}_k^{j_{2k-1}}\overline{y}_k\overline{w}_k^{j_{2k}})\overline{u}_k$$

where $j_{\gamma} \in \mathbf{N}$ for $1 \leq \gamma \leq 2k$, provided that possibly different powers of empty words are not regarded as different. Because A-algebraic series are closed under inverse morphisms and Hadamard products with A-rational series, we may assume that the nonempty $\overline{u}_{\alpha}, \overline{v}_{\beta}, \overline{w}_{\beta}, \overline{y}_{\beta}$ are in fact distinct letters, $0 \leq \alpha \leq k$,

 $1 \leq \beta \leq k$. Finally, we erase the letters corresponding to nonempty words $\overline{u}_{\alpha}, \overline{y}_{\beta}, 0 \leq \alpha \leq k, 1 \leq \beta \leq k$. The resulting series is still A-algebraic because at most three consecutive letters are erased (see [Kuich and Salomaa 86]).

Suppose then that r_1 is A-algebraic. By applying the closure properties of A-algebraic series it follows easily that r is A-algebraic. \square

The following two lemmas recall some basic properties of algebraic series.

Lemma 4. Suppose $A = \mathbf{Q}$ or $A = \mathbf{B}$. Let z be a letter and

$$r = \sum_{i=0}^{\infty} a_i z^{n_i}$$

where $a_i \neq 0$ for $i \geq 0$, be a power series in $A \ll z^* \gg$. If

$$\lim_{i \to \infty} \frac{n_i}{i} = \infty$$

then r is not A-algebraic.

Proof. For both cases see [Kuich and Salomaa 86]. \square

If $p \geq 2$ is a prime, denote by ν_p the p-adic valuation over **Q**.

Lemma 5. Suppose $r \in \mathbb{Q} \ll X^* \gg is \mathbb{Q}$ -algebraic and $p \geq 2$ is a prime. Then there exists a positive integer C such that

$$|\nu_p((r,w))| \leq C|w|$$

for any nonempty word $w \in supp(r)$.

Proof. By Theorem IV6.6 in [Salomaa and Soittola 78] there exists a nonzero integer d such that

$$\sum (r, w) d^{|w|} w \in \mathbf{Z}^{\text{alg}} \ll X^* \gg .$$

Furthermore, there exists a positive integer M such that

$$|(r, w)d^{|w|}| < M^{|w|}$$

for any nonempty $w \in X^*$. Hence there exists a positive integer D such that

$$0 \le \nu_p((r,w)d^{|w|}) \le D|w|$$

for any nonempty $w \in \text{supp}(r)$. Consequently

$$-\nu_n(d)|w| \le \nu_n((r,w)) \le D|w|$$

for any nonempty $w \in \text{supp}(r)$. This implies the claim. \square

The following lemma gives our main result in the case of elementary D0L power series.

Lemma 6. Suppose the basic semiring A equals \mathbf{Q}_+ , \mathbf{N} or \mathbf{B} . Then it is decidable whether or not a given elementary D0L power series $r = \sum_{n=0}^{\infty} ah^n(w)$ over A is A-algebraic.

Proof. Let p_1 be the smallest period of the ultimately periodic sequence $(Alph(h^n(w)))_{n>0}$ and let q_1 be a nonnegative integer such that

$$Alph(h^n(w)) = Alph(h^{n+p_1}(w))$$

for all $n \geq q_1$. Because A-algebraic series are closed with respect to Hadamard products with A-rational series, if r is A-algebraic, so is $r(p_1, q_1)$. On the other hand, if $r(p_1, q_1)$ is A-algebraic, so is r, because

$$r = \sum_{n=0}^{q_1-1} ah^n(w) + \sum_{i=q_1}^{q_1+p_1-1} r(p_1, i) = \sum_{n=0}^{q_1-1} ah^n(w) + \sum_{i=q_1}^{q_1+p_1-1} h^{i-q_1}(r(p_1, q_1))$$

and h is nonerasing. So, it remains to decide whether or not $r(p_1, q_1)$ is A-algebraic.

Because h is nonerasing, the underlying D0L length sequence of $r(p_1,q_1)$ is strictly increasing. Next, decide whether or not the underlying D0L length sequence of $r(p_1,q_1)$ is linear. If not, Lemma 4 implies that r is not A-algebraic. We continue with the assumption that this sequence is linear. Then, by Lemma 1, there effectively exist integers $p \geq 1, \ q \geq 0, \ k \geq 0$, words $u_{\alpha}, v_{\beta}, w_{\beta}$ and growing letters $y_{\beta}, \ 0 \leq \alpha \leq k, \ 1 \leq \beta \leq k$, and nonzero $a_0, a_1, a_2 \in A$ such that

$$a(h^{p_1})^{np+q}(h^{q_1}(w)) =$$

$$a_0 a_1^n a_2^{\frac{(n-1)n}{2}} u_0(v_1^n y_1 w_1^n) u_1(v_2^n y_2 w_2^n) u_2 \dots u_{k-1}(v_k^n y_k w_k^n) u_k$$

for all $n \geq 0$. Then we have

$$r(p_1,q_1)(p,q) = \sum_{n=0}^{\infty} a_0 a_1^n a_2^{\frac{(n-1)n}{2}} u_0(v_1^n y_1 w_1^n) u_1(v_2^n y_2 w_2^n) u_2 \dots u_{k-1}(v_k^n y_k w_k^n) u_k.$$

Now, let L be the language of all words over the alphabet $Alph(r(p_1, q_1))$ having length $|u_0y_1u_1y_2u_2...y_ku_k| + n|v_1w_1v_2w_2...v_kw_k|$ for some $n \geq 0$. Because the underlying D0L length sequence of $r(p_1, q_1)$ is strictly increasing,

$$r(p_1, q_1) \odot \text{char}(L) = r(p_1, q_1)(p, q).$$

(Here $s_1 \odot s_2$ stands for the Hadamard product of the series s_1 and s_2 .) Hence, if $r(p_1, q_1)$ is A-algebraic, so is $r(p_1, q_1)(p, q)$. The converse is seen to be true as above

Now, to decide whether or not $r(p_1, q_1)(p, q)$ is A-algebraic it suffices, by Lemmas 2 and 3 to decide whether or not the series

$$r_1 = \sum_{n=1}^{\infty} a_0 a_1^n a_2^{\frac{(n-1)n}{2}} z_1^n z_2^n \dots z_t^n$$

is A-algebraic. Here t is an effectively obtainable integer and the letters z_{γ} are distinct. We claim that r_1 is A-algebraic if and only if $a_2 = 1$ and $t \leq 2$. First, if

 r_1 is A-algebraic, Lemma 5 implies that $a_2 = 1$. Furthermore, if r_1 is A-algebraic, supp(r) is context-free. Consequently, $t \leq 2$. The converse implication follows immediately. \square

In order to generalize Lemma 6 for arbitrary D0L power series a lemma is needed.

Lemma 7. Let $h: A < X^* > \longrightarrow A < Y^* >$ be a monomial morphism. Then h is elementary if and only if the underlying monoid morphism $g: X^* \longrightarrow Y^*$ of h is elementary. If h is elementary, g is injective. If h is simplifiable, there exist a set X_1 and monomial morphisms $h_1: A < X^* > \longrightarrow A < X_1^* >$ and $h_2: A < X_1^* > \longrightarrow A < Y^* >$ such that $h = h_2h_1$, $card(X_1) < card(X)$ and $h_2(x_1) \in Y^*$ for all $x_1 \in X_1$. Furthermore, the underlying monoid morphism $g_2: X_1^* \longrightarrow Y^*$ of h_2 is injective.

Proof. For the first claim see [Honkala 98]. The second claim follows by the first claim. Suppose then that h is simplifiable. If $h(x) \in A$ for all $x \in X$ the claim holds trivially. Otherwise, there exist a nonempty set X_1 and monoid morphisms $g_1: X^* \longrightarrow X_1^*, \ g_2: X_1^* \longrightarrow Y^*$ such that $g = g_2g_1$ and $\operatorname{card}(X_1) < \operatorname{card}(X)$. By choosing as small X_1 as possible we may assume that g_2 is elementary. Now, denote $h(x) = a_xg(x)$ where $x \in X$ and $a_x \in A$, and define the monomial morphisms $h_1: A < X^* > \longrightarrow A < X_1^* >$ and $h_2: A < X_1^* > \longrightarrow A < Y^* >$ by

$$h_1(x) = a_x g_1(x), \quad x \in X,$$

$$h_2(x) = g_2(x), \quad x \in X_1.$$

Then, if $x \in X$ we have

$$h_2h_1(x) = h_2(a_xg_1(x)) = a_xg_2g_1(x) = a_xg(x) = h(x).$$

Furthermore, the underlying monoid morphism g_2 of h_2 is injective. \square

Now we are ready for the main result.

Theorem 8. Suppose the basic semiring A equals \mathbf{Q}_+ , \mathbf{N} or \mathbf{B} . Then it is decidable whether or not a given D0L power series $r = \sum_{n=0}^{\infty} ah^n(w)$ over A is A-algebraic.

Proof. If h is elementary, apply the method of Lemma 6. If h is simplifiable, let h_1 and h_2 be as in Lemma 7 (where now Y = X.) Denote

$$r_1 = \sum_{n=0}^{\infty} a(h_1 h_2)^n (h_1(w)).$$

Hence, $r_1 \in A \ll X_1^* \gg$ is a D0L power series and

$$r = aw + h_2(r_1).$$

Because h_2 is nonerasing, the A-algebraicness of r_1 implies that of r. Conversely, if r is A-algebraic, so is r_1 because

$$g_2^{-1}(\sum_{u\neq w}(r,u)u)=r_1.$$

Consequently, it suffices to decide whether or not r_1 is A-algebraic. Continuing in the same way it is seen that after finitely many steps we are in a position to apply the method of Lemma 6. \square

If the basic semiring A equals the Boolean semiring, Theorem 8 implies a new method to decide whether or not a given D0L language is context-free (see [Salomaa 75]).

4 The case A = Q

In this section we briefly discuss the case $A = \mathbf{Q}$. We start with a problem concerning algebraic series.

Fix a semiring A. Let $X = \{x_i \mid i \in \mathbb{N}\}$ be an infinite alphabet and denote $X_k = \{x_1, x_2, \dots, x_k\}$ for $k \geq 1$. Define the series $P_k \in A \ll X_k^* \gg$ by

$$P_k = \sum_{n=1}^{\infty} x_1^n x_2^n x_3^n \dots x_k^n.$$

We claim that if P_{k+1} is A-algebraic, so is P_k , $k \ge 1$. For the proof, define the morphisms $g: X_{k+1}^* \longrightarrow X_k^*$ and $h: X_k^* \longrightarrow X_k^*$ by

$$g(x_i) = x_i^2$$
 for $1 \le i \le k - 1$,
 $g(x_k) = g(x_{k+1}) = x_k$

and

$$h(x_i) = x_i^2$$
 for $1 \le i \le k$.

Then we have $P_k = h^{-1}(g(P_{k+1}))$ which implies the claim by the closure properties of A-algebraic series.

Now, an integer k is called the ALG-bound for A if k is the largest integer such that P_k is A-algebraic. If no such k exists, the ALG-bound for A equals ∞ . By the claim established above, P_k is A-algebraic if and only if k is at most the ALG-bound for A.

If A is a positive semiring the ALG-bound for A equals two. We do not know the ALG-bound for $A = \mathbf{Q}$.

Next, suppose the basic semiring A equals \mathbf{Q} . By the previous section it is decidable whether or not a given D0L power series over \mathbf{Q} is \mathbf{Q} -algebraic. However, an explicit algorithm is obtained only if the ALG-bound for \mathbf{Q} is known.

The decidability of algebraicness of D0L power series and the determination of ALG-bounds are closely related. In fact, if A is any semiring such that A-algebraicness is decidable for D0L power series over A then the ALG-bound for A is effectively computable if it is finite. This follows because P_k is A-algebraic if and only if the series

$$T_k = \sum_{n=1}^{\infty} y_1 x_1^n y_2 x_2^n \dots y_k x_k^n$$

is A-algebraic. (Here y_1, \ldots, y_k are new letters.) Furthermore, T_k is a D0L power series over A.

References

[Berstel and Reutenauer 88] Berstel, J. and Reutenauer, C.: "Rational Series and Their Languages"; Springer, Berlin (1988).

[Honkala 95] Honkala, J.: "On morphically generated formal power series"; RAIRO, Theoret. Inform. and Appl. 29 (1995) 105-127.

[Honkala 97] Honkala, J.: "On the decidability of some equivalence problems for L algebraic series"; Intern. J. Algebra and Comput. 7 (1997) 339-351.

[Honkala 98] Honkala, J.: "On D0L power series"; Theoret. Comput. Sci., to appear. [Honkala 00] Honkala, J.: "On sequences defined by D0L power series"; submitted.

[Kuich and Salomaa 86] Kuich, W. and Salomaa, A.: "Semirings, Automata, Languages"; Springer, Berlin (1986).

[Rozenberg and Salomaa 80] Rozenberg, G. and Salomaa, A.: "The Mathematical Theory of L Systems"; Academic Press, New York (1980).
[Rozenberg and Salomaa 97] Rozenberg, G. and Salomaa, A. (eds.): "Handbook of

Formal Languages", Vol. 1-3; Springer, Berlin (1997).

[Salomaa 75] Salomaa, A.: "Comparative decision problems between sequential and parallel rewriting"; Proc. Symp. Uniformly Structured Automata and Logic (1975) 62-66.

[Salomaa and Soittola 78] Salomaa, A. and Soittola, M.: "Automata-Theoretic Aspects of Formal Power Series"; Springer, Berlin (1978).