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Abstract: In this paper we propose a modification of a part of the global adaptive
integration algorithm that is usually taken for granted: the subdivision strategy. We
introduce a subdivision strategy where the routine decides whether it is best to divide
a hyper-rectangular region or a n-simplex in 2 or 2" parts or something in between.
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1 A globally adaptive cubature algorithm

The goal of quadrature (and cubature) software is to produce estimates for
(multiple) integrals. Most software that is available nowadays is adaptive, i.e.,
the software selects at run-time the points where the integrand is evaluated based
on the behaviour of the integrand. We repeat here the high level description of
the classical globally adaptive scheme given in [Cools, Haegemans 92].

The algorithm is presented in [Alg. 1]. The region collection, which contains
all information about the regions that is needed for future reference, is organised
using some data structure. The region collection management routines create and
maintain the region collection. The algorithm controller takes region(s) from the
collection and passes them to the region processor. In a globally adaptive algo-
rithm the region with the largest absolute error is selected from the collection
for further processing. The region processor tries to improve the estimates for
the integrals Qk and their error Ej, over the regions it receives from the algo-
rithm controller. Usually the region processor first divides the region in parts
with equal volume and same shape as the given region and then computes new

estimates ng) for the integrals over each subregion using a fixed local integral
estimator and error estimator. The results from the region processor are returned
to the algorithm controller, which passes all relevant information to the region
collection management routines. The algorithm controller decides when to ter-
minate the algorithm. This is usually done when the total estimated error E
becomes smaller than the requested error e.

In most previously developed algorithms the statement ‘Process these re-
gion(s)’ is implemented as described in [Alg. 1]. The region processor consists of
2 independent parts that are executed sequentially: first divide, then compute
new approximations for each region using an a priori chosen quadrature (cu-
bature) formula and error estimator. The quadrature (cubature) formulas that
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one uses, are weighted sums of function values. In [Cools, Haegemans 92] we de-
scribed alternative region processors, e.g., where the region processor is allowed
to decide whether a region should be subdivided or not. In the following section
we describe a region processor that decides which subdivision to choose.

Algorithm 1: A globally adaptive quadrature/cubature algorithm
with standard Region Processor.

Initialise the collection of regions with the M given regions;
Produce Qk and By for k = 1,2,...,M;
Put Q=" Qrand £ =31 Ey;
while £ > ¢ do
begin
Take some region(s) from the collection;
Process these region(s)

Divide the region into s subregions;
Compute Q,(:) and E,El),i =1,2,...,s using an ‘a priori’ chosen
integration rule and error estimator;

Update Q and E

T OO0 (S O _A).
Q=0+, @ — Q)
E=E+ (3, B - B

Put the new regions in the collection

and put M = M + s — 1;

end

2 The subdivision strategy

In the adaptive routines that are widely available for integration over an in-
terval, the region processor starts with bisecting the interval into two equal
parts. In the literature one can find only few articles that investigate irregu-
lar subdivisions or subdivisions into more than two parts, see [Hanke 82] and
[Berntsen, Espelid, Sgrevik 91].

For the n-cube the available adaptive routines start with bisecting the cube
into two equal parts. For the n-simplex most available adaptive routines start
with dividing a simplex into 2" simplices. In the following sections we will de-
scribe this and propose a modified subdivision strategy. The 2-dimensional case
will be discussed in detail and a possible extension to higher dimensions will be
described.

The subdivision strategy described in this paper is implemented in Cub-
pack++, a C++ package for approximating integrals over a large variety of 2-
dimensional regions [Cools, Laurie, Pluym 97a] [Cools, Laurie, Pluym 97b]. For
the triangle this was done recently and thus not mentioned in the paper describ-
ing Cubpack++. The package (source code, User Manual and example files) is
available at http://www.cs.kuleuven.ac.be/“ronald .
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2.1 Subdivision strategies for the cube

In all global adaptive routines available for integration over hyper-rectangular re-
gions (HALF [Van Dooren, De Ridder 76], ADAPT [Genz, Malik 80], DCUHRE
[Berntsen, Espelid, Genz 91a] [Berntsen, Espelid, Genz 91b]) the region proces-
sor starts with dividing the target region into 2 equal halves based on the di-
rection with the largest fourth divided difference. This is computed using the
integrand evaluations of 5 points on each coordinate axis used by the cubature
formula. This subdivision strategy was first used in 1974 by Luc De Ridder
and Paul Van Dooren in their master’s thesis [De Ridder, Van Dooren 74] from
which HALF [Van Dooren, De Ridder 76] was derived.

It is assumed that a division in 2 is more adaptive than a division in 2"
regions congruent with the given hyper-rectangle. Van Dooren and De Ridder
already wrote: “To improve adaptivity R is not divided into 2", but only into
2.” Besides, if n is large, a 2™-division might be too expensive.

Let us first think about the worst thinkable cases for these two types of
subdivision. We assume the user gave one region.

Figure 1: Ideal 4-division for a square Figure 2: Ideal 2-division for a square

The worst thinkable scenario for a 2-division is that the final subdivision
corresponds with that of a 2"-division as in [Fig. 1]. Indeed, after m steps of a
2"-division, the number of regions for which the integral was estimated using a
cubature formula = R =1+ 2"m and A = 1+ (2" — 1)m of them are in the
region collection (the Active regions). Obtaining this final subdivision with a
2-division requires mo steps:

A=1+me=14+2"—-1)m = my =m(2" - 1)
so the integral is estimated for Ry = 14 2mg = 1 + 2m(2™ — 1) regions. Hence

Ry 1+2m(2"—1) _2m(2" —1)

= ~ =14 (1-2""7).
R 14+ 2"m 27, +( )

E.g. for 2 dimensions it follows from the above equation that a 2-division requires
50% more work than a 4-division, if we assume that the amount of work is the
same for each subregion.
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The worst thinkable scenario for a 2™-division is that the ideal subdivision
corresponds with always dividing in the same direction, e.g., due to a serious
problem along one of the faces, as in [Fig. 2]. Then the ideal 2-division computes
the integral estimate for Ry = 1 4+ 2m regions of which A = 1 4+ m remain in
the region collection. The 2™-division cannot obtain this ideal subdivision. The
corresponding 2"-division will divide in each of the m steps all subregions that
touch the face causing the difficulty. The 2"-division would compute integral
estimates for R regions

R — 1 + Zn + 271/271/71 + 271/2271,72 + 271,2371/73 _+_ ...
m—1 .
=1+ Z 21’1.27,(71.—1)
1=0

m—1

=1+2" Y (2¢Y)
=0
. Zm(nfl) -1
142" ———
o ()
2n2m(n71) —_9on—-1_1
on—1_1 '

So,

R Zan(nfl) —_9on-1_1 Zm(nfl)
Ry (2 '-1)2m+1) =~ m

We see that the worst case for a 2”-division is more dramatic than the worst
case for the 2-division.

But why should one restrict to either a 2-division or a 2™-division? We suggest
that the region processor not just decides on the subdivision direction but also
on the number of subregions 2! with 1 < ¢ < n. In the sequel we will illustrate
this idea for 2-dimensional regions and suggest how this can be generalised to
higher dimensions.

Experiments with alternative subdivision strategies are reported in some
master thesises. We are however not aware of publication of such an investi-
gation in the international available literature and there is no sign of such a
strategy in the available software, except in Cubpack++.

If one wants to divide a cube into 2 parts, one has to find a criterion to
decide how to cut the cube. As mentioned in the beginning of this section, Van
Dooren and De Ridder introduced the fourth divided difference for this purpose
and since then, everybody uses this. The idea behind this is that a difference in a
particular direction is a measure for the difficulty in that direction. Because the
basic cubature formula used by Van Dooren and De Ridder has 5 points on each
coordinate axis [see Fig. 3], they could compute the fourth divided difference in
all n coordinate directions without any additional function evaluation.

The use of the fourth divided difference is one of the holy cows of adaptive
integration. Recent routines use the fourth divided difference although they use
cubature formulas with more than 5 points on each coordinate axis. DCUHRE
uses fourth divided differences although the number of points on each axis varies
between 7 and 11.
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Figure 3: Distribution of cubature points on the coordinate axes.

Using CUBPACK’s Fortran framework [Cools, Haegemans 92], we wrote a
routine for integration over a collection of parallelograms. For this purpose we
implemented a new subroutine for the approximation of an integral with an
error estimator, using the 37-point cubature formula of degree 13 constructed
by Rabinowitz and Richter [Rabinowitz, Richter 69]. This cubature formula has
5 points on each coordinate axis. This cubature formula and error estimator are
incorporated in Cubpack++. We compared our results with DCUHRE using the
same tests as Berntsen, Espelid and Genz used [Berntsen, Espelid, Genz 91a]
[Berntsen, Espelid, Genz 91b] [Berntsen, Espelid, Genz 88]. This test is based
on the test-families listed in [Tab. 1]. Each test-family has a particular kind of
difficulty (attribute). The parameters 31, 82 are picked randomly from [0, 1]. For
families 2 and 3, these are scaled according to

1 1 1
Bi+—=+(z——)B for i=1,2 and j=2,3.

22 d

For family 7, 4,1 and 7,2 are picked randomly from [0, 1] and are used to shift
the place of the difficulty of the integrand. The parameters a;,as are picked
randomly from [0, 1] and then scaled according to

29 (o + az) = d;.
In our experiments we used
d =(2.7,2.5,2.5,300, 200, 300, 300, 200, 200, 15)
e=(0,0,0,2,1,1.5,1.5,2,2,0)

which are the same numbers as used for DCUHRE. These numbers determine
how difficult a problem is. For each family 100 random choices are made. Our
error estimator was tuned such that its reliability is as good as for DCUHRE.
In this context a routine is called reliable if

real absolute error < estimated absolute error < requested absolute error.

The subdivision strategy we use is presented in [Alg. 2] and [Fig. 4]. Note
that for &« = 0 a 4-division is obtained, while for « = 1 a traditional 2-division
is obtained.
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Table 1: Families of integrands for integration over [0, 1]2.

Test-families Attributes

fi(z,y) = Bz + Bzy);_l2 Corner singularity
0ifm<ﬁ1—d2_1 or:L'>,31—|—d2_1

f2(z,y) = ory < fo—dytory > B +d;* Discontinuous rectangle
1 otherwise

Fo(m,y) = {Oif \/(w_ﬁl)z"‘(y—ﬁz)z > L

1 otherwise

Discontinuous sphere

fa(@,y) = exp(—ai|z — fi| — 2|y — B2]) Co function

fole,y) = exp(—ad (@ — 1)? — ad(y — Ba)?) Gaussian

fola,y) = (7% + (2 = B1)*) (03 + (y = 52)%)) Inner product peak
Frlay) = T2, (072 + (2 — 7)) (037 + (y — 7i2)*)) ™" 2 imner product peaks
fa(z,y) = (1 + oz + asy) ™ Corner peak

fola,y) = ((dg? +2) (1 + (y — £2)%)) Peak at x=0

fio(z,y) = cos(27P1 + a1z + a2y) Oscillatory

Algorithm 2.

Compute the fourth divided differences D, and D,

case
max(Dg, Dy) < e: divide in 4
Dy < aD,: divide in 2 by halving in the z-direction
D, < aDy: divide in 2 by halving in the y-direction
1> 1[3)1 > a: divide in 4
o Y

end case

We have run the subdivision strategy for a number of values o € [0, 1] and
for accuracy requests 107%,... 107%. With the results we made graphs that
represent the number of function evaluations used as a function of the parameter
a. Some typical graphs are presented in section 2.2 for the simplex. In this way
we could easily see for the different function families and error requests for which
a we obtained a minimum of function evaluations. The best overall value for «
is not the same for every family and error request, and the same holds for e.
There is not one best solution, but there are several good ones.

We decided to choose a@ = 0.55 and ¢ = 1074,

In [Tab. 2] we list for each test-family and several requested relative accuracies
erei the average number of function evaluations. DCUHRE allows a user to
choose between 3 integration rules: a rule of degree d = 7, 9 or 13. For our
routine, we list the results for & = 0.55. These results show that our routine in
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Table 2: Comparison between Cubpack++ o = 0.55 and DCUHRE.

Test-family 2

Test-family 3

DCUHRE Cubpack++ DCUHRE Cubpack++
eret [I=Td=9[d=13] =055 eret [ A=Td=9[d=13]] a=055
10~ ][ 3040[ 2500 3909 3319 10| 10737] 7045] 6696 4306
1072|| 7758| 8832| 48703 9019 1072||117249|78805| 95843 49202
Test-family 1 Test-family 4
DCUHRE Cubpack++ DCUHRE Cubpack++
eret [d=Td=9[d=13] a =055 eret [d=T[d=9[d=13] a =055
1072 517| 576| 2464 364 101 1733] 1843] 2076 1553
1073 986| 1276| 3854 844 1072|| 3677| 4070| 5119 3421
10~4| 1509| 2004| 5177 1232 1073|| 6872| 7832| 12444 6446
10753 2491| 2722| 6528 1620 107%{|11841[13504| 32752 11249
10®|[18396| 8664| 10791 4082 107°||20602|21620| 90348 19988
Test-family 5 Test-family 6
DCUHRE Cubpack++ DCUHRE Cubpack++
et [d=T[d=9[d=13] a=055 eret [ d=Td=9[d=13]] a=055
10~ [ 1010] 1291] 1777 996 1071 2135| 2215 2207 1688
1072|| 1588| 2033| 2528 1412 1072 3038| 4212 3887 2550
1073|| 2417| 3205| 3343 2000 1073 4184| 6777 6052 3502
1074 3924| 4906 4345 2908 1074 6771 9513| 8763 4675
107%|| 6631| 7491| 5541 4282 107%|| 12685|12587| 12001 6357
107®|[44179(23414| 11381 13144 107%||110344|39872| 24664 16227
Test-family 7 Test-family 8
DCUHRE Cubpack++ DCUHRE Cubpack++
eretl [ A=Td=9[d=13] a =055 |t |[d=Td=9[d=13] o =055
107! 3509| 3466 3246 2395 1071 493| 592 625 479
1072 5448| 7259 6332 4067 1072 627| 853 1097 598
1073 7821(12256| 10624 6041 1073 78T| 1044| 1475 671
1074 12829(17328| 16136 8465 107%|| 1445| 1213 1762 748
107%|| 23487(22927| 23081 11619 107%|| 2958| 1739 2025 1272
1078((197204(75194| 52133 30069 1078(|28664| 7205 3308 3031
Test-family 9 Test-family 10
DCUHRE Cubpack++ DCUHRE Cubpack++
eret [d=Td=9[d=13] « =055 vt [ d=T[d=9[d=13] a =055
1071 421| 564 715 481 1071 455| 309 195 372
1072|| 537| 669 1235 481 1072 992| 453 201 515
1073|| 732| 1048| 1495 481 1073 2150| 757 261 681
10~%|| 853| 1795 1632 617 1074 4701| 1239 456 941
107%|| 1310/ 2190 1799 882 107%|| 10078| 2034 621 1310
1078]| 9966| 4585| 2697 2763 1078(|101663|10164| 1691 3244




CoolsR., Maerten B.: A Hybrid Subdivision Strategy for Adaptive Integration 493

Dy

2-division

D, =aD

&

N Dy =aD,

2-division

g Da:

Figure 4: the new subdivision strategy

almost all cases is more efficient than DCUHRE.

Extending this subdivision strategy to n > 2 is straightforward. One com-
putes n divided differences, D;,2 = 1,...,n, re-using the function values on
each coordinate axis. If they are all very small (< ¢€) or “comparable” (é >
% > «,Vi,7), then the cube is divided in 2™ congruent parts. If one of them

7
is significantly larger than all others, then the cube is divided in 2 parts. If two
of them are comparable and both significantly larger than all others, then the
cube is divided in 4. Et cetera. Preliminary results show this is a very promising

subdivision strategy.

2.2 Subdivision strategies for the simplex

In all published global adaptive routines available for integration over the n-
simplex (TRIADA [Haegemans 77], CUBTRI [Laurie 82], DCUTRI [Berntsen,
Espelid 92] , DCUTET [Berntsen, Cools, Espelid 93]) the region processor starts
with dividing the target region in 2" parts of equal volume. Alan Genz [Genz 91]
suggested dividing a simplex in 2 equal parts, based on the direction of the largest
fourth divided difference. This is computed using 5 integrand evaluations on lines
through the centre parallel to the edges of the simplex. So, there is an extra cost
involved. In [Espelid, Genz 92] a subdivision strategy for a triangle is suggested
that chooses between 3 or 4 parts. Extending this 3-division to higher dimensions
does not look promising [Genz, Cools 97]. We will only consider divisions in 2
or 2" parts.

For simplices a 2"-division and a 2-division will never get the same subdivi-
sion. This makes it difficult to compare both. We need a reasonable definition
of corresponding division in order to make a comparison. Let us first look at the
worst cases. We assume the user gave one region.

The worst thinkable scenario for a 2-division is that the final subdivision
corresponds with that of a 2”-division. In this case we say that two subdivisions
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correspond if they have an equal number of subregions of the same volume. The
number of regions obtained after m steps with a 2"-division = R = 1 + 2"m
and A =14 (2™ — 1)m of them are in the active region collection. Obtaining a
corresponding subdivision with a 2-division requires mo steps:

A=1+me=14+2"-1)m=>my=m (2" —1).

Hence, the integral estimation is done for Ry = 1 + 2m (2™ — 1) regions. A
2-division requires some extra function evaluations for the divided differences.
These are done after a region is selected for further subdivision. Hence it is not
sufficient to compare R and R5. We define the fraction p as the number of extra
function evaluations for the differences over the number of function evaluations
used for the integration of the two new subregions. Now we can compare the
number of function evaluations used by both strategies.

Ny 1+4+2m (2" -1)(1+p)
N 142™m
_2m(2" 1)

2"m

(1+p)=14+p+(1—-2"")(1+p).

E.g. for 2 dimensions it follows from the above equation that a 2-division requires
more than 50% more work than a 4-division and the additional cost to choose
the direction of the subdivision cannot be ignored.

The worst thinkable scenario for a 2™ division is that the ideal subdivision
corresponds to always dividing the same edge, e.g., due to a serious problem along
one of the faces. The ideal 2-division computes for Ry = 1 + 2m regions integral
estimates of which A = 1 + m remain in the region collection. Analogously to
this situation for the n-cube, what we now call the corresponding 2"-division
will divide in each step all subregions that touch the face causing the difficulty.
It computes integral estimates for R regions

m—1
R=1+2"+2") (2™ —1)
=1
m—1 .
=142"> 2" —2"(m—1)
1=0
2mm 1
=14+2""—— —2"(m—1).
+20 (m—1)

Therefore,
R gQnem _ 9n, N - 2n-m—1 _ 2n—1m

kNN PO
R, 2m N, m-(1+ p)

We see that the worst case for a 2™-division is much worse than for a 2-division,
just as for the cube.

The criterion introduced in [Genz 91] for deciding which edge to cut is based
on fourth order divided differences, centered at the centroid of the selected
simplex (with the largest current error estimate). Denote the vertices of this
simplex with vo,vi,...,v,. The edge directions are given by d;; = v; — v,
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V0<i<j<n Now we define f;; (v) = f(c+v-ds;/(5(n+1))) with ¢ =
> vi/ (n+1). A fourth divided difference operator is given by:

Dij = ||dijll1 - 16fi; (0) — 4 (fi (=2) + fi; (2)) + (fij (—4) + fi; (4))].

We divide the edge with direction d;,, for which D;,, = max;<; D;;. The mul-
tiplication with the 1-norm of the direction vector is done in order to provide
a mechanism to prevent too elongated simplices. The differences are rescaled
(division by ||d;m||1) to obtain a less size dependent measure.

The subdivision strategy we use for 2 or 4-division of a triangle is presented
in [Alg. 3]. We have done the same type of experiments as for the square. Our
experiments showed it is better to use Do/Dg than D;/Dy. The edges with the
two biggest differences are the ones for which the direction vector is the ‘most
equal to each other’, so in a way they are not independent enough. The results
for the 1-norm were slightly better than those with the 2-norm.

Algorithm 3.
Compute the 4th divided differences Do, D1, D2 (rescaled)
Relabel them such that Do > Dy > Do
case

Dy < e divide in 4
D3/Dg < a: divide in 2 by halving the side belonging to Do
D3/Dg > a: divide in 4

end case

Suppose one tries to integrate a function with a singularity on one of the
sides of the triangle. In such a situation, the subdivision strategy will always
cut the same direction in 2 equal parts, because here the factor ||d;,,||; will not
be enough to prevent a degenerate triangle. Hence, special action is needed to
prevent the generation of degenerate triangles.

There are two types of degenerate triangles [see Fig. 5]. In the first case two

k

Figure 5: 2 degenerate triangles

angles are almost equal to 7/2 and the edge opposite to the very small angle
is excluded for subdivision. The second case has one angle almost equal to 7
and the edge in opposite position has to be bisected. Obviously this involves a
heuristic tolerance that depends on the accuracy of the floating point numbers
used.
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We compared our results with DCUTRI using the same tests as in [Berntsen,
Espelid 92] . This test is based on TRITST [Berntsen 89] and uses the test fami-
lies described in [Tab. 3]. Note that for these tests we use the same local cubature
formula as is used in DCUTRI, so the subdivision strategy is basically the only
part of the implementation that differs. If &« = 0 the subdivision strategy is the
same as for DCUTRI. The only difference then is the error estimator because
Cubpack++ uses an extra heuristic. For this we do not expect to get exactly the
same results for DCUTRI and Cubpack++ with a = 0. Other reasons to expect
different results for @ = 0 is the difference in programming language (FORTRAN
vs. C++) and the way the region collection is used. For test families 1, 2, 3 and
7 the integral of these functions over the unit triangle {(0,0),(0,1),(1,0)} is
approximated. For test families 4, 5 and 6 a second triangle {(1,1),(0,1),(1,0)}
is used to get an approximation over the unit square. We treat these two tri-
angles as a region collection. Berntsen [Berntsen 89] approximated each triangle
separately and added the approximations afterwards. For family 4, we simulated
his approach, which is not really globally adaptive. The parameters 3,32 are
picked randomly:

for test families 1, 3, 4, 5, 6 and 7, 8; from [0,1]
for test family 2, 8 from [dy,1 — (1 + v/2)dy)]

for test family 2, 8o from [dy,1 — B — V/2ds]
for test family 3, B> from [0,1 — 5]
for test families 4 and 6, 3> from [0, 1]

The parameters oy and ao are first picked from [0, 1] and then scaled according

to
o +ay=d;, 7=3,4,5,6and 7.

We used the same difficulty parameters as Espelid and Genz:
d =(-0.9,0.25,75,100, 150, 100, 30).

Table 3: Families of integrands for integration over triangles.

Test-families Attributes

fi(z,y) = (lz — G| + y)d1 Singularity on x-axis

fo(z,y) = Lif \/(m_ ’61)2 +(y- ’62)2 <dx Discontinuous sphere
0 otherwise

f3 (z,y) ZGXP(—a1|m—ﬂ1| —a2|y—ﬁz|) C function

fa (w,y) = exp (—Oé% (SU - ,31)2 - Oé% (y - ﬁz)z) Gaussian

fs (z,y) = (04;2 +(z — 51)2)_1 (Oé;2 + yz)_1 Peak on x-axis

fo (z,y) = (ozl_2 + (z — ﬁ1)2)71 (ozz_2 +(y— ,32)2)71 Internal peak

J7 (z,y) = cos (2701 + aux + a2y) Oscillatory

After a lot of experiments, similar to those described in the previous section,
we decided to choose o = 0.45 and € = 1073, Some typical graphs are shown
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in [Fig. 6], [Fig. 7], [Fig. 8], and [Fig. 9]. In [Tab. 4] we list for each test-family
and several requested relative accuracies €,; the average number of function
evaluations used by DCUTRI and Cubpack++ with this new subdivision strategy
for the triangle. We took 500 random samples for each family and the maximum
allowed number of function evaluations was 10°.

11000 10000 A
[ ]
10500 + 9900 1 o
10000 + 9800 1
9500 + 9700
9000 + 9600
8500 1 9500 +
8000 + 9400 +
T T T T T T I T T T T T
4-div 0.2 0.4 0.6 0.8 2-div 4-div 0.2 04 0.6 0.8 2-div
Figure 6: Family 5, ¢,.; = 1072, Figure 7: Family 6, €,; = 1073,
Peak on z-axis Internal peak function
6000 7450 A
5600 - 7400
7350
5200 + 7300 4
4800 1 o 7250
7200 +
4400 7150 4
4000 7100
3600 - 7050 + .
7000
T T T T T T T T T T T T
4-div 0.2 04 06 08 2-div 4-div 02 04 06 08 2-div
Eigure 8 Family L €rel = 1073: Figure 9: Family 4, ¢, = 10_5,
Singularity on x-axis Gaussian function

The average cost is a continuous function of . For &« = 0 we don’t need to
calculate the divided differences as they are not needed nor used. The average
number of function evaluations is represented with a point for the normal 4-
division. So, for o almost equal to 0, the gain in number of function evaluations
by also allowing some 2-divisions is not large enough to compensate the overhead
due to the calculation of the divided differences. A problem-dependent portion
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of 2-divisions is needed to do better than always using the 4-division (without
calculation of the divided differences). In [Fig. 6] this is invisible, in [Fig. 7] this
happens with @ ~ 0.1, in [Fig. 8] this happens with @ ~ 0.2, and in [Fig. 9] this
never happens. These results show that our routine is in almost all cases more

efficient than DCUTRI.

Table 4: Comparison between Cubpack++ and DCUTRI.
Test-family 1

DCUTRI Cubpack++ Test-family 2
Erfll a=0la=1[a =045 DOUTRI Cubpackes
0 442]] 377] 373] 349 .y = 0[a=a =045
10,2 12911} 1269) 1186 1259 10! 16243|| 6636 5523 6264
10 4680|| 4652| 3694 4026 i
102 1727111172701 10133 11223 10 99937||80823|45555 48668
1072 48816(|48840|25029 27714
Test-family 3 Test-family 4

DCUTRI Cubpack++ DCUTRI Cubpack++
Erel a=0|oz=1|oz=0.45 Erel oz=0|a=1|oz:0.45
107! 3248]|| 3081| 1960 1976 1071 2371|| 1362| 1392 1396
1072 11963(|11889| 5625 5779 1072 3324(| 2087 2195 2208
1073 37069(|37053|15708 16393 1073 4573| 3128| 3404 3394
1074 79212||79193|41165 43332 1074 6571 4803| 5017 5010
10~° 97546(|97350|86387 88539 107° 9223|| 7014| 7231 7206
Test-family 5 Test-family 6

DCUTRI Cubpack++ DCUTRI Cubpack++
Erel a=0la=1[a =045 Erel a=0la=1a=045
107! 3681|| 1486| 1845 1782 10! 4036 2537| 2660 2644
1072 6891|| 5325| 4609 4714 1072 6922|| 6048| 6281 6219
1073 12136(|10605| 8301 8379 1073 10820(| 9871| 9722 9547
10=* 19525|[17367(12326 12389 1074 16122(|14792(13615 13419
107° 29726(|26983|17624 17689 1075 23063((21437(18296 18126
Test-family 7 Test-family 4, two triangles apart

DCUTRI Cubpack++ DCUTRI Cubpack++
Erel a =0Jla =1Ja =0.45 Erel a=0la=1[a=045
107! 486|| 481 384 385 1071 2371 2080| 2179 2185
1072 757|| T56| 534 541 1072 3324|| 3086| 3314 3328
1073 1083 1082| 692 706 1073 4573|| 4355| 4750 4747
10=* 1419(| 1419| 864 882 1074 6571 6346| 6723 6715
10~° 1736|| 1736 1117 1145 107° 9223(| 9003| 9376 9346

Generalising this subdivision strategy to higher dimensions is much more
difficult for the simplex than for the n-cube. To begin, we have W possible
subdivision directions, instead of n. Consequently, if we do not want to restrict
the region processor to choose only a 2-division or a 2™-division, but allow a

2i-division for 1 <i<n, the heuristics involved in this choice will become com-
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plicated and expensive.

3 Conclusion

We described a new subdivision strategy for subregion-adaptive integration rou-
tines used to approximate integrals over squares and triangles, that is more
adaptive than what was implemented prior to Cubpack++. It is illustrated that
this new strategy is often more efficient.

We suggested how this strategy can be extended to higher dimensions and
for the n-cube we believe this will increase the efficiency of adaptive integration
routines.
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