
The SNAP Project : Building Validated Floating Point

Units

Hesham A. Al-twaijry
(Stuart F. Oberman

Steve T. Fu
Michael J. Flynn)

(Computer Systems Laboratory, Stanford University
Stanford, CA 94305

hesham@umunhum.stanford.edu, oberman@umunhum.stanford.edu,
fu@umunhum.stanford.edu,
ynn@umunhum.stanford.edu)

Abstract: SNAP - The Stanford Sub-nanosecond arithmetic processor is an inter-
disciplinary e�ort to develop validated theory, and tools for realizing an arithmetic
processor with execution rates under 1ns. The project has targeted the full spectrum
of tradeo�s from algorithms, circuit optimizations, system issues, and development of
metrics to characterize processors.

Key Words: Computer arithmetic, Validated Designs, Addition, Multiplication, Di-
vision

1 Introduction

The SNAP project has looked into many areas of the design of an arithmetic
processor with the aim of producing validated designs that span the spectrum of
operand lengths. In the area of algorithm improvement, SNAP work has intro-
duced a new variable latency algorithm (VLA) for
oating point addition, that
can produce a result in one cycle 32% of the time. In
oating point multiplica-
tion an algorithm for designing Wallace trees was developed. This algorithm is
shown to be superior to binary trees.

With the realization that performance of an arithmetic processor is not sim-
ply dependent on the most advanced circuit techniques and algorithms, SNAP
has addressed system issues by looking at the help that a compiler can provide. It
has shown that divide though infrequent can have a big performance e�ect. With
the best compiler technology a division latency of 10 cycles can be tolerated.

The increased advances in integrated circuit fabrication technology have re-
sulted in integrated circuit fabrication technology have resulted in both smaller
feature sizes and increased die areas. Together, these trends have provided a
larger transistor buget for the processor designer, Therefore, it has become pos-
sible for the designer to implement more sophisticated arithmetic processors in
hardware. Therefore, metrics that allow FPU designers to gauge their designs
are of upmost importance. The SNAP project has addressed this problem by de-
veloping FUPA (Floating Point Unit Cost Performance Analysis Metric) that
measures the e�ciency of FP unit in terms of latency � area normalized to
feature sizes.

Journal of Universal Computer Science, vol. 4, no. 2 (1998), 99-109
submitted: 25/9/97, accepted: 1/11/97, appeared: 28/2/98  Springer Pub. Co.

2 Floating Point Addition

The most frequent FP operations are addition and subtraction, and together they
account for over half of the total FP operations in typical scienti�c applications.

To reduce the latency, we observe that not all of the components are needed
for all input operands. Two VLA techniques are proposed to take advantage of
this to reduce the average addition latency. To e�ectively use average latency,
the processor must be able to exploit a variable latency functional unit.

2.1 Current Algorithms

FP addition comprises several individual operations. Higher performance is achie-
ved by reducing the maximum number of serial operations in the critical path
of the algorithm.

A block diagram of a state-of-the-art FP adder is shown in �gure 1a.

Rshift

Lshift

LOP

PENC

ComAdd

ComAdd

HalfAdd

MUX

Exp Diff
+

Swap
+

Swap

Predict

CLOSEFAR

Rshift Lshift

LOP

PENC

ComAdd

ComAdd

HalfAdd

Exp Diff
+

Swap

+
Swap

Predict

CLOSEFAR

Collision
Logic

+
Tri-state

Output

Collision Logic
+

Tri-State

Output

Collision
Logic

+
Tri-state

Output

(a) Three Cycle Pipelined Adder (b) Variable Latency Adder

Figure 1: Adders

This architecture exploits many aspects of the FP addition data
ow. It imple-
ments the signi�cand datapath in two parts: the CLOSE path and FAR path.For
subtraction, when the exponents di�er by more than 1 (FAR path), massive can-
cellation can not occur. Rather, there can be at most a 1 bit left-shift. Similarly,
when the exponents di�er by at most 1 (CLOSE path), massive cancellation
may occur requiring a large normalizing left-shift, but no initial large aligning
right shift is required. This allows the aligning right shift and the normalizing
left-shift to be mutually exclusive, with only one such shift ever appearing on
the critical path [5].

100 Al-twaijry H.A., Oberman S.F., Fu S.T., Flynn M.J.: The SNAP Project ...

Another optimization made in this algorithm reduces the number of serial op-
erations. In a straightforward implementation of the addition data
ow, rounding
would be implemented by a separate series incrementer after all other operations.
However, the realization can be made that the rounding step occurs very late in
the computation, and it only modi�es the result by a small amount. By precom-
puting all possible required results in advance, rounding and conversion can be
reduced to the selection of the correct result [S4]. For the IEEE round to nearest

(RN) rounding mode, the computation of A + B and A + B + 1 is su�cient
to account for all possible rounding and conversion possibilities. Incorporating
this optimization into the algorithm requires that the signi�cand adders in each
path compute both sum and sum+1, typically through the use of a compound
adder (ComAdd). Selection of the true result is accomplished by analyzing the
rounding bits, and then selecting either of the two results. This optimization
removes one signi�cand addition step.

Assuming that the mantissas are conditionally swapped based upon the true
exponent di�erence, the smaller mantissa is always subtracted from the larger
mantissa, except possibly in the CLOSE path for cases where the exponents are
equal. However, in these cases, since there is no initial aligning right shift, the
result is exact and no rounding is required. Further, by again precomputing both
sum and sum+1 in the signi�cand adder, recomplementation can also be reduced
to selection. The true subtraction of A�B is accomplished by selecting sum+1,
as the subtraction is implemented by A+B+1. If the carry-out of this addition
is 0, then the result is negative requiring recomplementation. The complemented
result is formed by bitwise inversion of sum, as

�(A�B) = A+B

Accordingly, recomplementation is reduced to a MUX and bitwise inversion.
Further performance improvement is achieved by computing the normalizing

left-shift distance in the CLOSE path in parallel with the compound adder,
rather than in series, using leading-one-prediction (LOP) and priority-encoding
(PENC). An adder employing all of these optimizations in a high clock-rate
microprocessor typically has a latency of three cycles. The critical path in this
implementation is in the third stage consisting of the delays of the half-adder,
compound adder, multiplexor, and drivers.

2.2 Variable Latency Algorithm

From �gure 1a, the long latency operation in the �rst cycle occurs in the FAR
path. It contains hardware to compute the absolute di�erence of two exponents
and to conditionally swap the mantissas. For IEEE double precision operands,
the minimum latency in this path comprises the delay of an 11 bit adder and two
multiplexors. The CLOSE path, in contrast, has relatively little computation.
A few gates are required to inspect the low-order 2 bits of the exponents to
determine whether or not to swap the mantissas, and a multiplexor is required
to perform the swap.

Rather than letting the CLOSE path hardware sit idle during the �rst cycle,
it is possible to take advantage of the duplicated hardware and initiate CLOSE
path computation one cycle earlier. This is accomplished by moving both the
second and third stage CLOSE path hardware up to their preceding stages. Since

101Al-twaijry H.A., Oberman S.F., Fu S.T., Flynn M.J.: The SNAP Project ...

the �rst stage in the CLOSE path completes very early relative to the FAR path,
the addition of the second stage hardware need not result in an increase in cycle
time.

The operation of the proposed algorithm is as follows. Both paths begin
speculative execution in the �rst cycle. At the end of the �rst cycle, the true
exponent di�erence is known from the FAR path. If the exponent di�erence
dictates that the FAR path is the correct path, then computation continues in
that path for two more cycles, for a total latency of three cycles. However, if the
CLOSE path is chosen, then computation continues for one more cycle, with the
result available after a total of two cycles.

Further reductions in the latency of the CLOSE path can be made after
certain observations. First, the normalizing left shift in the second cycle is not
required for all operations. Second, in the case of e�ective subtractions, small
normalizing shifts, such as those of two bits or less, can be separated from longer
shifts. Both of these cases have a latency of only one cycle, with little or no
impact on cycle time. A block diagram of the variable latency adder is shown in
�gure 1b.

2.3 Performance

This algorithm was simulated using operands from actual applications to deter-
mine its e�ectiveness. The data for the study was acquired using the ATOM
instrumentation system [6]. ATOM was used to instrument 10 applications from
the SPECfp92 [7] benchmark suite which were then executed on a DEC Al-
pha 3000/500 workstation. The benchmarks used the standard input data sets.
All double precision
oating point addition and subtraction operations were in-
strumented. The operands from each operation were used as input to a custom
FP adder simulator. The simulator recorded the e�ective operation, exponent
di�erence, and normalizing distance for each set of operands.

The results show that 57% of the operations are in the FAR path and require
three cycles, while 43% are in the CLOSE path and require at most two cycles.
A comparison with a di�erent study of
oating point addition operands [8] on
a much di�erent architecture using di�erent applications provides validation for
these results. In that study over 30 years ago, six problems were traced on an
IBM 704, tracking the aligning and normalizing shift distances. There 45% of
the operands required aligning right shifts of 0 or 1 bit, while 55% required more
than a 1 bit right shift. The similarity in the results suggests a fundamental
distribution of
oating point addition operands in scienti�c applications.

An analysis of the e�ective operations in the CLOSE path shows that the
total of 43% can be broken down into 20% e�ective addition and 23% e�ective
subtraction. A left shift less than or equal to 2 bits is required for 52.5% of the
CLOSE path subtractions. In total, 20%+(0:525)�23%= 32% of the operations
can complete in the �rst cycle. The performance of the proposed techniques is
summarized in table 1.

For each technique, the average latency is shown, along with the speedup
provided over the base Two Path FP adder with a �xed latency of three cycles.
By allowing e�ective additions in the CLOSE path to complete in the �rst cycle
(adds), a speedup of 1.27 is achieved. For even higher performance, the most
aggressive implementation (subs2) achieves a speedup of 1.33 by allowing all
e�ective addition and those e�ective subtractions requiring normalizing shifts

102 Al-twaijry H.A., Oberman S.F., Fu S.T., Flynn M.J.: The SNAP Project ...

Algorithm Average Latency Speed Up
Two Path 3.00 1.00
Two Cycle 2.57 1.17
Adds 2.37 1.27
Subs0 2.36 1.27
Subs1 2.31 1.30
Subs2 2.25 1.33

Table 1: FP addition Performance

of two bits or less to complete in the �rst cycle. These techniques do not add
signi�cant hardware, nor do they impact cycle time. They demonstrate how a
VLA architecture can provide a reduction in average latency while maintaining
single cycle throughput.

3 Multiplication

3.1 Background

Multiplication is the process of adding the partial products. Multiplication al-
gorithms di�er in how they generate the partial products and how the partial
products are added together to produce the �nal result.

Research on multiplier design has included techniques for partial product
generation [9] and partial product reduction [10], [11], [12], [13], [14]. Most pre-
vious analyses of the partial product reduction trees use as the basis for their
design a simple compressor delay model where the delay from each input of a
compressor to each output is equal. Also, the delay due to interconnection is
typically ignored. Unfortunately, such simple models do not accurately re
ect
the performance of actual implementations where not all inputs have the same
delay and where the added delay due to interconnect is signi�cant, especially for
minimum feature sizes below 0.5�m. However, a simple delay model is su�cient
for the design of a binary tree using 4-2 compressors, as the delay for all inputs
of a 4-2 compressor are approximately equal.

Designing an optimized partial product array using (3,2) counters requires
taking into account all delay components. Further, organizing the counters in
order to minimize worst-case delay is not trivial. Therefore, an algorithmic ap-
proach to the design, using a sophisticated delay model that takes into account
the interconnect delay due to counter placement and the di�erent path delays,
is extremely useful. We have implemented such an algorithm, based upon the
approach of Oklobdzija [15]. The algorithm takes into account interconnect de-
lay due to counter placement and the di�erent path delays. Our algorithm uses
a complex delay model for the (3,2) counter, and it is further constrained by the
availability of wiring tracks for the routing of each column of the partial product
array [S5]. The number of wiring tracks available in a column is a function of the
fabrication process and the
oorplan of the multiplier. It is a �xed parameter
for each column, and it limits the possible interconnections.

103Al-twaijry H.A., Oberman S.F., Fu S.T., Flynn M.J.: The SNAP Project ...

3.2 Methodology

In this study, we examined multiplier performance and area tradeo�s over com-
binations of several parameters: feature size (f=1:0�m to 0:2�m), counter con-
�guration (3,2 and \4-2"), encoding scheme (non-Booth, Booth 2, and Booth 3),
and signi�cand precision (24b through 113b). For each category, we implemented
a custom layout of a binary-tree multiplier using the MAGIC layout tool. Ad-
ditionally, a unique (3,2) array was designed for every combination of feature
size, encoding scheme, and signi�cand precision. Using extracted parasitics, we
performed SPICE timing simulations for each combination of parameters. Each
simulation included delays due to transistors as well as interconnect. The scal-
able SPICE model of McFarland [S6] was used to project results down to 0.2�m.

Signi�cand Encoding Scheme
Length (bits) Non-Booth Booth 2 Booth3
Single (24) 0.85 0.85 0.85
Double (53) 0.88 0.85 0.85
Extended (64) 0.96 0.82 0.88
Extended+4 (68) 0.79 0.77 0.88
Quad (113) 0.95 0.90 0.86

Table 2: Relative delay of Algorithmic Reduction to Binary tree for 0:3�m

Table 2 presents performance for several common signi�cand precisions and
possible encoding schemes for a 0:3�m process. In this table, the delays are for
the algorithmic array relative to those of the binary tree. The results show that
an algorithmically-designed array usually results in a lower latency than does
the binary tree.

Signi�cand PP Reduction Method
Length (bits) Algorithmic Binary Tree

Non-Booth Booth 3 Non-Booth Booth 3
Single (24) 1 1.15 0.98 1.12
Double (53) 1.18 1.14 1.14 1.15
Extended (64) 1.25 1.12 1.07 1.04
Extended+4 (68) 1.22 1.16 1.19 1.02
Quad (113) 1.23 1.13 1.18 1.19

Table 3: Relative latency of encoding scheme to Booth 2 for 0:3�m

Table 3 summarizes the performance of the di�erent encoding schemes rela-

104 Al-twaijry H.A., Oberman S.F., Fu S.T., Flynn M.J.: The SNAP Project ...

tive to the performance of Booth 2 for a 0:3�m process. From this table, as the
length of the signi�cand increases, Booth 2 becomes the choice which minimizes
latency. In most of the cases, the reduction in the number of summands achieved
when moving from Booth 2 to Booth 3 encoding is not large enough to o�set
the extra delay needed to generate the hard (3x) multiple required for Booth 3.

Signi�cand PP Reduction Method
Length (bits) Algorithmic Binary Tree

Non-Booth Booth 3 Non-Booth Booth 3
Single (24) 1.02 1.11 0.99 1.15
Double (53) 1.50 0.99 1.35 1.02
Extended (64) 1.63 0.96 1.31 0.92
Extended+4 (68) 1.60 0.97 1.45 0.90
Quad (113) 1.73 0.95 1.54 1.04

Table 4: Relative latency � area product of encoding scheme to Booth 2 for
0:3�m

Not all multiplier implementations require minimum latency. For these cases,
an optimized design balances both latency and area. Table 4 summarizes the
choice of encoding scheme which minimizes the latency � area product.

For single precision, both the latency and area of non-Booth and Booth 2
encoding are approximately the same. As a result, the delay � area product
is the same for both. Non-Booth encoding is recommended in this case due to
its simplicity of implementation. For other precisions, Booth 3 encoded multi-
pliers are 10-15% smaller and 5-20% slower than Booth 2 encoded multipliers.
Accordingly, if area is of primary concern, Booth 3 encoding is recommended for
these

4 Floating Point Division

The emphasis in recent FPUs has been in designing ever-faster adders and mul-
tipliers, with division receiving less attention. Current applications and bench-
marks are often written assuming that division is an inherently slow operation
and should be used sparingly. While division is an infrequent operation even
in
oating point intensive applications, ignoring its implementation can result
in system performance degradation. Choosing an optimal FP divider design in
terms of performance and area is di�cult, as the design space of FP dividers
is large, comprising �ve di�erent classes of division algorithms: digit recurrence,
functional iteration, very high radix, table look-up, and variable latency [S7].
This section investigates the performance requirements of FP division and pro-
poses several techniques for achieving them through a combination of FL and
VLA techniques.

We have investigated in detail the relationship between FP division latency
and system performance [S2]. System performance was evaluated using 11 appli-

105Al-twaijry H.A., Oberman S.F., Fu S.T., Flynn M.J.: The SNAP Project ...

cations from the SPECfp92 benchmark suite. The applications were each com-
piled on a DECstation 5000 using the MIPS C and Fortran compilers at O3
optimization.

In order to analyze the impact that the compiler can have on improving
system performance, we measured the interlock distances of division results as
a function of compiler optimization level. Figure 2a shows the average inter-
lock distances for all of the applications at both O0 and O3 levels of optimiza-
tion. By intelligent scheduling and loop unrolling, the compiler is able to ex-
pose instruction-level parallelism in the applications, increasing the interlock
distances. Figure 2a shows that the average interlock distance can be increased
by a factor of three by compiler optimization to over 10 instructions. Accordingly,
for scalar processors, a division latency of 10 cycles or less can be tolerated.

 O0 Avg = 3.34
 O3 Avg = 10.22

||0

|5

|10

|15

|20

 In
te

rlo
ck

 D
is

ta
nc

e
(I

ns
tr

uc
tio

ns
)

sp
ic

e2
g6

do
du

c

m
dl

jd
p2

to
m

ca
tv

or
a

al
vi

nn ea
r

su
2c

or

hy
dr

o2
d

na
sa

7

fp
pp

p

 Issue 8
 Issue 4
 Issue 2
 Issue 1

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
20

|0.00

|0.02

|0.04

|0.06

|0.08

|0.10
|0.12

|0.14

|0.16

|0.18

 Divide Latency (cycles)

 E
xc

es
s

C
P

I

� � Area

| | | | | | | | | | |

| 1.00

|
|

|
|

|
|

|
|
| 10.00

|
|

|
|

|
|

|
|
| 100.00

|
|

 A
re

a
in

 m
m

2
(r

be
)

(148100)

(14810)

(1481)

�
�

� �

�

�

�

(a) Interlock Distances (b) CPI and area vs division latency

Figure 2: Divider

To determine the e�ects of division latency on overall system performance,
the performance degradation due to division was determined. This degradation
is expressed in terms of excess CPI, or the CPI due to the result interlock.
The performance degradation due to division latency between 1 and 20 cycles is
displayed in �gure 2b.

In this �gure, designs above 8 cycles are SRT implementations, the design
between 4 and 8 cycles is a self-timed SRT design, and those designs below 4
cycles are very-high radix designs requiring large initial approximation tables.

Figure 2b also shows the e�ect of increasing the number of instructions issued
per cycle on excess CPI due to division. To determine the e�ect of varying
instruction issue rate on excess CPI due to division, a model of an underlying
architecture must be assumed. In this study, an optimal superscalar processor
is assumed, such that the maximum issue rate is sustainable. The issue rate is
then used to appropriately reduce the interlock distances. Figure 2b also shows
how area increases as the functional unit latency decreases. The estimation of
area is based on several reported layouts, all of which have been normalized to

106 Al-twaijry H.A., Oberman S.F., Fu S.T., Flynn M.J.: The SNAP Project ...

1.0�m scalable CMOS layout rules.

5 Floating Point Characterization

The emergence of metrics that allow
oating point unit (FPU) designers to gauge
their FPU designs is long overdue. The allocation of die area to FPUs remains an
art based on engineering intuition and past experience. We present the Floating
Point Unit Cost Performance Analysis Metric(FUPA) to allow quantitative
tradeo�s between performance and cost.

FPU design requires the underlying technology to meet the computation
and communication complexity of the algorithm. From a cost perspective, the
designer
oorplans the available die area and divides the power budget by consid-
ering the performance bene�t of allocating more die area to a speci�c operation.
FUPA integrates both cost and performance into simple formula for determining
the optimality of FPU design.

We summarize the computation of FUPA as:

1. Pro�le the applications to obtain dynamic
oating point operation (add-
sub, multiply, and divide) distribution the application.

2. Compute E�ective Latency (EL) from the clock rate, FPU latencies,
and the dynamic FP operation distribution obtain in step 1.

3. Measure the die area (Area) of the FPU not including the register �le.
4. Compute Normalized E�ective Latency (NEL) and Normalized

Area (NArea), removing the feature size dependency.

5. Compute FUPA where FUPA =
(NEL)(NArea)

100 .

Processor E�ective Normalized Normalized E�ective FUPA
Latency(ns) Area(mm2) Latency(ns) (cm2ns)

Intel P6 37.67 50.62 75.33 38.13
MIPS R10000 14.25 44.07 28.50 12.56
SUN UltraSparc 23.65 133.43 50.32 67.14
DEC21164 16.5 69.39 33 22.89
AMD K5 88 47.47 176 83.55
PA8000 22 81.16 44 35.71

Table 5: RelaFUPA components and results of recently announced processors

Lower FUPA represents a more e�cient FPU design with the lowest FUPA
setting a "PAR" for designer to achieve. Table 5 demonstrates the FUPA of some
recent microprocessors. From Table 5. we observe a wide range of FUPA results.
The R10000 exhibits the lowest FUPA with both the lowest NArea and NEL,
an unexpected result contrary to the general assumption that decreased latency
is achieved by adding parallelism and die area.

107Al-twaijry H.A., Oberman S.F., Fu S.T., Flynn M.J.: The SNAP Project ...

Acknowledgments

This work was supported by the NSF under grant MIP93-13701 and a fellowship
from the Saudi National Guard.

List of Recent SNAP Publications

The following is a list of recent publications related to the SNAP project. These
and other publications and information on the SNAP project and researchers
may be obtained through the World Wide Web using the URL
http://umunhum.stanford.edu.

[S1] S. F. Oberman, Design Issues in High Performance Floating Point Arith-

metic Units, Ph.D. thesis, Stanford University, Nov. 1996.
[S2] S. F. Oberman and M. J. Flynn, \Design issues in division and other
oating-

point operations," IEEE Trans. Computers, vol. 46, no. 2, pp. 154{161, Feb.
1997.

[S3] S. F. Oberman and M. J. Flynn, \A variable latency pipelined
oating-point
adder," in Proc. Euro-Par'96, Springer LNCS vol. 1124, pp. 183{192, Aug.
1996.

[S4] N. T. Quach andM. J. Flynn, \An improved algorithm for high-speed
oating-
point addition," Technical Report No. CSL-TR-90-442, Stanford University,
Aug. 1990.

[S5] H. Al-Twaijry and M. J. Flynn, \Optimum placement and routing of mul-
tiplier partial product trees," Technical Report: CSL-TR-96-706, Stanford
University, Sept. 1996.

[S6] G. McFarland and M. Flynn, \Limits of scaling MOSFETs," Technical Re-
port: CSL-TR-95-662 Revised, Stanford University, Nov. 1995.

[S7] S. F. Oberman and M. J. Flynn, \Division algorithms and implementations,"
to appear in IEEE Trans. Computers, 1997.

[S8] D. L. Harris, S. F. Oberman and M. A. Horowitz, \SRT division architec-
tures and implementations," in Proc. 13th IEEE Symp. Computer Arith-
metic, this volume, July 1997.

[S9] S. F. Oberman and M. J. Flynn, \Reducing division latency with reciprocal
caches," Reliable Computing, vol. 2, no. 2, pp. 147{153, Apr. 1996.

References

1. ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic,
1985.

2. D. Greenley et al., \UltraSPARC: the next generation superscalar 64-bit SPARC,"
in Digest of Papers. COMPCON 95, pp. 442{451, Mar. 1995.

3. L. Kohn and S. W. Fu, \A 1,000,000 transistor microprocessor," in Digest of
Technical Papers, IEEE Int. Solid-State Circuits Conf., pp. 54{55, 1989.

4. J. A. Kowaleski et al., \A dual-execution pipelined
oating-point CMOS proces-
sor," in Slide Supplement to Digest of Technical Papers, IEEE Int. Solid-State
Circuits Conf., pp. 287, 1996.

108 Al-twaijry H.A., Oberman S.F., Fu S.T., Flynn M.J.: The SNAP Project ...

5. M. P. Farmwald, On the Design of High Performance Digital Arithmetic Units,
Ph.D. thesis, Stanford University, Aug. 1981.

6. A. Srivastava and A. Eustace, \ATOM: A system for building customized program
analysis tools," in Proc. SIGPLAN '94 Conference on Programming Language
Design and Implementation, pp. 196{205, June 1994.

7. SPEC Benchmark Suite Release 2/92.
8. D. W. Sweeney, \An analysis of
oating-point addition," IBM Systems Journal,

vol. 4, pp. 31{42, 1965.
9. O. L. McSorley, \High speed arithmetic in binary computers," Proc. IRE, vol. 49,

no. 1, pp. 67{91, Jan. 1961.
10. C. Wallace, \A suggestion for a fast multiplier," IEEE Trans. Electronic Comput-

ers, pp. 14{17, Feb. 1964.
11. L. Dadda, \Some schemes for parallel multipliers," Alta Frequenza, vol. 34, pp.

349{356, Mar. 1965.
12. D. T. Shen and A. Weinberger, \4-2 carry-save adder implementation using send

circuits," IBM Technical Disclosure Bull., vol. 20, no. 9, Feb. 1978.
13. M. Santoro and M. Horowitz, \A pipelined 64X64b iterative array multiplier," in

Digest of Technical Papers, IEEE Int. Solid-State Circuits Conf., pp. 35{36, Feb.
1988.

14. N. Ohkubo et al., \A 4.4 ns CMOS 54*54-b multiplier using pass-transistor mul-
tiplexor," IEEE J. Solid-State Circuits, vol. SC-30, no. 3, pp. 251{257, Mar. 1995.

15. V. G. Oklobdzija, D. Villeger and S. S. Liu, \A method for speed optimized partial
product reduction and generation of fast parallel multipliers using an algorithmic
approach," IEEE Trans. Computers, vol. C-45, no.3, pp. 294{305, Mar. 1996.

16. D. DasSarma and D. Matula, \Faithful bipartite ROM reciprocal tables," in Proc.
12th IEEE Symp. Computer Arithmetic, pp. 12{25, July 1995.

17. M. Ito, N. Takagi, and S. Yajima, \E�cient initial approximation and fast con-
verging methods for division and square root," in Proc. 12th IEEE Symp. Com-
puter Arithmetic, pp. 2{9, July 1995.

18. S. E. Richardson, \Exploiting trivial and redundant computation," in Proc. 11th
IEEE Symp. Computer Arithmetic, pp. 220{227, July 1993.

19. D. Eisig et al., \The design of a 64-bit integer multiplier/divider unit," in Proc.
11th IEEE Symp. Computer Arithmetic, pp. 171{178, July 1993.

20. E. Schwarz, \Rounding for quadratically converging algorithms for division and
square root," in Proc. 29th Asilomar Conf. on Signals, Systems, and Computers,
pp. 600{603, Oct. 1995.

109Al-twaijry H.A., Oberman S.F., Fu S.T., Flynn M.J.: The SNAP Project ...

