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Abstract: Rigorous a priori error bounds for 
oating-point computations are derived.
We will show that using interval tools in combination with function and operator over-
loading such bounds can be computed on a computer automatically in a very convenient
way. The bounds are of worst case type. They hold uniformly for the speci�ed domain
of input values. That means, whenever the 
oating point computation is repeated later
on with any set of point input values from that domain the di�erence of the exact result
and the computed result is guaranteed to be smaller than the a priori error bound.
Our techniques can be used to get reliable a priori error bounds for already existing
program code. Here, loops, recursion, and iterations are allowed. To demonstrate the
power of the methods several examples are given.
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1 Introduction

Let a mathematical expression e(x; p) be given. x denotes the vector of inde-
pendent variables and p the set of parameters. The result of the computation of
e(x; p) at the vectors of machine numbers ~x; ~p already a�icted with some errors
using 
oating point arithmetic is denoted by ~e(~x; ~p). Then we are interested in the
computation of an a priori error bound�(e) for the absolut error je(x; p)�~e(~x; ~p)j
which holds for all x 2 [x]; jx � ~xj � �(x) and all p 2 [p]; jp � ~pj � �(p), si-
multaneously. [x] and [p] are interval vectors which de�ne the ranges of x and p,
respectively. j : j is to be applied componentwise, and �(x); �(p) are nonnegative
vectors.

Several di�erent approaches (error bound arithmetics for absolute errors, for
relative errors, error factor arithmetics for absolute/relative error factors) are
discussed. In any case the main idea is to use the recursive de�nition of an ex-
pression (such an expression may be given by a program part) only using basic
operations like addition, subtraction, multiplication, division, sine, cosine, loga-
rithm, and other elementary functions. For the basic operations we will discuss
the computation of error bounds for the results of the corresponding machine
operations applied to arguments that are already a�icted by errors. The compu-
tation of such bounds can be done using interval arithmetic and, in case of the
elementary functions, using automatic di�erentiation with interval arguments. In
general we only rely on the so called (1+") property of 
oating point operations.

A t-digit radix R 
oating-point arithmetic possesses the (1+") property
if, for all 
oating-point numbers a and b and � 2 f+;�; �; =g, there exists
" such that the machine result a c b = (a � b)(1 + ") and j"j < R1�t,
provided no under
ow or over
ow occurs and b 6= 0 if � = =.
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For example, the IEEE 754 
oating-point arithmetics [8] all possess this property.
This is true for any one of the four rounding modes.

We will also demonstrate, that intermediate results in the under
ow range
(here the (1 + ") property is not valid) can be treated by our tools in a reliable
way using some simple additional considerations. So our results are valid without
the warning \provided no under
ow occurs".

Let us demonstrate the main idea by a very simple example:

e(x) := ln1p
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Here ln1p(x) denotes the real valued function ln1p(x) := ln(1 + x), x > �1.
The given expression may be represented by the following computation tree:
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Figure 1: Ordinary Computational Tree

To evaluate this expression on a machine an ordered list of basic 
oating-
point operations is applied to intermediate results starting with the 
oating-
point equivalents ~x; ~p of the numerically known data x; p appearing in the leaves
of the tree. (Here p denotes the exactly representable constant 1. In general
constants of a computation must be approximated by numbers representable in
the 
oating-point screen. They are regarded as inputs.)

To be able to construct a reliable worst-case error bound for ~e(~x; ~p) we intro-
duce a new data type. Each variable of this type has two components, the �rst
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one being an interval and the second one a real value greater than or equal to
zero. The �rst component encloses the exact value of the variable and the second
one represents an error bound for the corresponding 
oating point quantity.
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I1 := [a; b]

41 :=4(x)

I2 := [1; 1]

42 := 0

I3 := [a; b]

43 :=4(x)

I4 := [1;1]

44 := 0

I5 := I2=I3
45

I6 := I25
46

I7 := I6 + I4
47

I8 :=
p
I7

48

I9 := I5 + I8
49

I10 := I1=I9
410

I11 := I1 + I10
411

I12 := ln1p(I11) 3 e(x)

412

Figure 2: Computational Tree With Function and Operator Overloading

Using the results for the error bounds of the basic operations makes it pos-
sible to overload the ordinary operators und functions for variables of the new
data type. Such a new operation computes an enclosure of the actual interme-
diate result as well as an error bound valid for this intermediate result. In the
preceding diagram (see Figure 2) variables of the new data type are represented
by rectangles with two entries. The �rst entry indicates the interval enclosure
and the second the corresponding error bound.

All quantities in the bottom line are known (domain [x] := [a; b] of x, absolute
error bound �(x) with jx � ~xj � �(x), error bounds for the parameters, which
for this example are all 0). Computing the expression step by step from the
bottom line to the root results �nally in the interval enclosure I12 of the exact
range fe(x) : x 2 [x]g and the error bound �12 with je(x) � ~e(~x)j � �12. It
should be emphasized, that the enclosures of the intermediate results are only
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computed to �nd at the end of the process the �nal error bound �12. Indeed,
we are not interested in Ik, k = 0; 1; 2 : : : itself. For the computation of the
individual bounds �j the enclosures Ik are used as auxiliary quantities.

At the end of the process we know the worst case error bound �12. It tells us
that for any subsequent 
oating point computation of ~e(~x) with 
oating point
argument ~x with jx � ~xj � �(x) for some x 2 [x] the di�erence je(x) � ~e(~x)j
will be less than or equal to this bound. In practical applications narrow bounds
can be achieved even for quite large domains [x] (see the numerical examples in
Section 5, and [6]).

Note: the computation time for the error bounds is (nearly) irrelevant, be-
cause the computation is performed only once.

2 Error Bounds for Basic Operations Only Using the (1 + ")

Property

In this section we give no proofs. They can be found in [6, 7, 11, 12].
We denote by S = S(R; l) the screen of 
oating point numbers with l radix

R mantissa digits. � 2 f+; �; �; = g denotes a basic operation and c the cor-
responding 
oating point operation. MinReal means the smallest normalized
positive 
oating point number, MaxReal the largest one and " = R1�l (Wilkin-
son's epsilon). By A and B (intervals) we denote the ranges of the operands a
and b, respectively.

To be able to �nd rigorous error bounds for the basic operations applied to
already disturbed arguments we assume the so called (1 + ") property (see also
the introduction). I. e., for the arithmetic operations applied to 
oating point
numbers a and b we assume
Assumption I)

ja � bj 2 [MinReal; MaxReal ]

=)
����� a � b � a c b

a � b

����� � "; i. e. a c b = (1 + eps)(a � b) ; jepsj � "

For results lying in the range of denormalized numbers or in the under
ow range
we additionally assume
Assumption II) (Under
ow)

ja � bj �MinReal =) ja � b � a c bj �MinReal

Again, IEEE 754 
oating point arithmetics all possess this property

Let the 
oating point numbers ~a;~b be approximations to the exact values a,
b, respectively. We now give error bounds for the basic arithmetical operations:

Addition: If we de�ne the quantity �(add) by

�(add) :=MinReal+ " � jA+Bj+ (1 + ")
�
�(a) +�(b)

�
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we can show that

(�) a 2 A; ja� ~aj � �(a); b 2 B; jb� ~bj � �(b)

=) ja+ b � ~a ~bj � �(add) :

We want to emphasize that the bound �(add) holds uniformly for all pairs (a; ~a)

and (b;~b) which ful�ll (�).
Multiplication: The error bound for the multiplication is given by

�(mul) :=MinReal+ jAjjBj"+

(1 + ") (jAj�(b) + jBj�(a) +�(a)�(b))

Division: Here we denote by hBi the real number hBi := minf jbj : b 2 B g
(mignitude). We additionally assume that

�(b) < 0:5 � hBi :

For division we de�ne the quantity �(div) by

�(div) :=MinReal+
1

hBi ��(b)
�
�
�(a) +

(jAj+�(a)) � ("+ �(b)

hBi + 2(
�(b)

hBi )
2)
�
:

Again, this bound holds simultaneously for all pairs (a; ~a) and (b;~b) with a 2
A; ja � ~aj � �(a); b 2 B; jb � ~bj � �(b), that is we have for arbitrary such
pairs

ja=b � ~a / ~bj � �(div) :

So far we are able to �nd error bounds for arithmetical expressions composed
of basic arithmetical operations. But we also want to allow elementary function
computations with uncertain data. Let f denote an elementary function (e. g.

sin, cos, arctan, log, : : :) and ~f its machine equivalent. We assume that f : IR �
Df ! IR is continuously di�erentiable in A+[��(a); �(a)]: We further assume

that for a valid 
oating point argument x the machine version ~f produces a
result with a relative error which is bounded in the following way:

jf(x)� ~f(x)j � jf(x)j "(f) ; x 2 S :

That means, we assume that we already know a relative error bound for ~f which
holds uniformly for all exactly representable arguments. Because the concrete

implementation ~f can be interpreted as an arithmetical expression built from
the four basic operations, such a bound "(f) can be derived applying our results
from above concerning the error propagation of the basic arithmetical operations.
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Error bound for function evaluation: If the quantity �(f) is computed by

�(f) := " � jf(A)j+

(1 + "(f)) ��(a) � jf 0([A��(a); A+�(a)])j

then it holds for any pair (a; ~a) with a 2 A; ~a 2 S; and ja� ~aj � �(a)

jf(a)� ~f(~a)j � �(f) :

Again this bound holds uniformly for all valid pairs (a; ~a). The derivative f 0 can
be computed using the process of automatic di�erentiation. If this process is
done in interval arithmetic an enclosure for the range of values of the derivative
over an interval can be computed easily.

We want to emphasize that all error bounds given above are uniform error
bounds. They are valid whenever the exact (point) arguments lie in their pre-
scribed ranges and the corresponding 
oating point approximations are within
their prescribed bounds. The formulae for the error bounds can be computed
using directed rounded operations and/or interval operations. All quantities ap-
pearing in the formulae are easily accessible on a computer.

3 Further Improvements in Case of a Faithful Arithmetic

In some important situations the error bounds from the previous section can
be improved. For example, if we try to �nd an error bound for the process of
argument reduction in an elementary function subroutine. A sharp error bound
is essential to �nally get a good over all error bound for the complete algorithm.

We �rst want to identify when computed di�erences are exact. Such di�er-
ences are important because they do not, by themselves, introduce additional
errors.

To be able to get stronger results on error bounds we assume from now on
that the 
oating point arithmetic is faithful. This means:

If the exact result is representable, the result of the corresponding 
p
operation is equal to that number. If not, the 
oating point result is one
of the two 
p numbers nearest the exact result.

Let us notice that almost any commercially signi�cant arithmetic is faithful. Of
course, any IEEE-754 compliant arithmetic is faithful.

In the following we want to give two theorems concerning exact di�erences.

Sterbenz (see [17]): If a and b are two 
oating point numbers such that

1

2
� a

b
� 2 ;

then in a faithful arithmetic a b = a� b exactly.

Ferguson (see [4]): Let x and y be machine numbers for which the signi�cand
s(x) has z(x) � 0 trailing zeroes, s(y) has z(y) trailing zeros, and the exponent

e(x� y) � minfe(x) + z(x); e(y) + z(y)g :
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Then the computed value x y is exact if 
oating point subtraction is faithful.
More such theorems can be found in [4, 17, 15].

Exact multiplication (exponent manipulation): A faithful 
oating point
multiplication is error free if one of the factors is a power of the radix (and no
under
ow or over
ow occurs).

Exact multiplication (short signi�cands): Let the sum of trailing zeros of
the signi�cands of two t-digit 
oating point numbers x and y be greater than or

equal to t. Then x q y = x � y , exactly (if no under
ow or over
ow occurs) and

if q is faithful.
In the following section we will discuss software implementations for an error

bound arithmetic which take advantage of the preceding theorems.

4 Software Tools

The following code segment shows a PASCAL-XSC [9] implementation to �nd
automatically an error bound for the 
oating point division operator applied to

oating point data a�icted by errors.

For an interval X we de�ne MinAbs(X):= minfjxj : x 2 Xg = hXi and
MaxAbs(X):= maxfjxj : x 2 Xg = jX j.

global function DeltaDiv(
alpha, beta : interval;
DeltaA, DeltaB: real ): real;

var x: real;
begin
... S P E C I A L C A S E S ...
else begin
x:= DeltaB /> MinAbs(beta);
if x >= 0.5 then ... E R R O R ...
x:= Eps +> x +> 2*>x*>x;
x:= DeltaA +> x *> ( MaxAbs(alpha) +> DeltaA );
DeltaDiv:=

MinReal +> x /> ( MinAbs(beta) -< DeltaB );
end;

end;

With
A � A; �(a) � DeltaA ; B � B; �(b) � DeltaB

the function call

bound:= DeltaDiv(A, B, DeltaA, DeltaB);

returns the machine number bound with

a 2 A; ja� ~aj � �(a); b 2 B; jb� ~bj � �(b)
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=)
���a=b� ~a / ~b

��� � �(div) � bound

The usage of such a function (or similar functions for other basic operations)
is cumbersome. The usual mathematical notation of expressions has to be trans-
formed to corresponding sequences of function calls. Existing code has to be
modi�ed drastically.

To avoid this we introduce a new data type called BoundType and overload
the basic operators for this new data type:
GLOBAL TYPE BoundType = GLOBAL RECORD

Value : Interval;
AbsErr: real;

END;
The �rst component of a variable of this type is an enclosure of the range of
values of the corresponding real variable. The second component is a reliable
absolute error bound for the corresponding 
oating point quantity.

In PASCAL-XSC the division operator can now be overloaded for operands
of the new data type
GLOBAL OPERATOR / (x, y: BoundType) res: BoundType;
BEGIN

res.Value := x.Value / y.Value;
res.AbsErr:=
DeltaDiv(x.Value, y.Value, x.AbsErr, y.AbsErr);

END;

Similarly, the subtraction operator can be overloaded by

global operator - (x, y: BoundType) res: BoundType;
var zx, zy: integer;
begin
res.Value := x.Value - y.Value; {ordinary interval subtraction}

if ((x.AbsErr=0) and (y.AbsErr=0)) then begin
{ trailing zeros of significand(x): }
if x.Value.inf = x.Value.sup then
zx:= tz_test(x.Value.inf)

else
zx:= 0;

...

if expo(MaxAbs(res.Value)) <=
min( expo(MinAbs(x.Value)) + zx,

expo(MinAbs(y.Value)) + zy )
then

res.AbsErr:= 0
else

res.AbsErr:= DeltaAdd(x.Value, -y.Value, 0.0, 0.0);
end else begin
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res.AbsErr:= DeltaAdd(x.Value, -y.Value, x.AbsErr, y.AbsErr);
end;

The previous code segment shows the realization of a tool for the automatic
computation of error bounds for faithful subtractions (see the theorem of Ster-
benz cited in Section 3).

The overloaded operations now can be used to compute error bounds for
expressions and program parts. The second diagram in the introduction shows
how the new operators manipulate variables of the new data type BoundType.
The two components of such variables are shown in this diagram as rectangles
subdivided in two parts. The upper subbox indicates the range of values of the
actual intermediate result, the lower one indicates its worst case absolute error
bound. Arriving at the top of the diagram we know that an over all error bound
for the complete expression is given by the numerical value of the quantity �12.

5 Applications, Numerical Examples

In this section the tools from the previous section are applied to get reliable error
bounds for di�erent simple problems. We will discuss two point problems as well
as a problem with a very large domain for its input data. In [6, 7, 11] more
examples are given. There you can �nd an application of the tools described
above to socalled table-driven algorithms for elementary functions ([19, 16, 14]).

5.1 Example 1, Summation in Di�erent Directions

Let us �rst consider a simple summation. We want to add the �rst terms of the

Taylor expansion for the exponential exp(x) =
P

xk

k!
. We compare a summation

from left to right (: : : (((1 + x) + x2=2) + x3=3!) + : : :) + xn=n! with the mathe-
matical equivalent summation from right to left 1+ (x+(x2=2+ (x3=3!+ (: : :+
(xn=n!) : : :)))). We are interested in worst case error bounds for the two di�erent
methods.

We show program parts for the di�erent summation schemes:

function SumLeftToRightErr(x: BoundType; n: integer): real;
var k: integer;

s, sk: BoundType;
begin
s := exact(1); { 1 + x + x/2 + x^2/6 + x^3/24 + ... }
sk:= exact(1);
for k:= 1 to n do begin

sk:= sk*x/exact(k);
s := s + sk;

end;
SumLeftToRightErr:= s.AbsErr/Eps52; {Error in multiples of eps}

end;

function SumRightToLeftErr(x: BoundType; n: integer): real;
var k: integer;

s, sk: BoundType;
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begin
s := exact(0);
for k:= n downto 1 do begin

s:= (s+exact(1))*(x/exact(k));
end;
s:= s+exact(1);
SumRightToLeftErr:= s.AbsErr/Eps52; {Error in multiples of eps}

end;

At the point x = 1=8 we get for di�erent numbers of summands the follow-
ing numerical results for the two methods (eps denotes the machine precision,
exact(.) means, that its argument is an integer or a 
oating point number
which is error free):

Number of summands= 6
LeftToRight: 4.541 Eps
RightToLeft: 1.292 Eps

Number of summands= 11
LeftToRight: 10.206 Eps
RightToLeft: 1.292 Eps

Number of summands= 16
LeftToRight: 15.872 Eps
RightToLeft: 1.292 Eps

Number of summands= 21
LeftToRight: 21.538 Eps
RightToLeft: 1.292 Eps

Number of summands= 26
LeftToRight: 27.204 Eps
RightToLeft: 1.292 Eps

The summation from left to right adds the summands in decreasing order,
whereas the second method adds the smaller summands �rst. Now it is well
known from numerical analysis that the second method should give better error
bounds for the over all rounding error. Indeed, using our error bound arithmetic
we �nd numerical values which show the expected behaviour.

5.2 Example 2, Multi-Precision Computations

Here we want to perform an error estimation for a simple iterative process. The
iteration is intended to give approximates to � to high accuracy. We start the
iteration with

a0 :=
p
2; b0 := 0; p0 := 2 +

p
2:
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The iterates are computed using the following formulae

an+1 :=
1

2

�
p
an +

1
p
an

�

bn+1 :=
p
an

1 + bn

an + bn

pn+1 := pn bn+1

1 + an+1

1 + bn+1

9>>>>>>>>>>>=>>>>>>>>>>>;
n = 0; 1; : : :

According to [2] a bound for the relative error for the n-th approximate pn to �
is given by ����� � pn

�

���� � 1

2
101� 2n :

This especially means that the number of correct digits is doubled in each it-
eration step (exact calculations in the �eld of real numbers are assumed). The
error propagation coming from (multi-precision) 
oating point calculations is
not covered so far. We have to answer questions like

How many guard digits have to be used to get a result which is accurate
to a speci�ed number of digits? If we want to compute � to say one
million decimal places is it su�cient to carry out the iterations with say
one million and �ve digits?

To see how powerful and elegant our proposed method is you should compare
its application with a hand calculation of an error bound for the �rst say 30
iteration steps.

The automatic error estimation is done by the following PASCAL-XSC pro-
gram (notice, that the program code is only a slight modi�cation of the corre-
sponding code to perform the multi-precision computation of �). Here we use
the so called error factor arithmetic (see Section 6) with its new data type
AbsErrType.

program PiAbsErr;
{----------------------------------------------------------------------}
{ Error factors for a quadratically convergent iteration to compute pi }
{----------------------------------------------------------------------}
use i_ari; { Ordinary interval arithmetic }
use abs_ari; { Absolute error factor arithmetic }

var
An, Bn, Pn : AbsErrType; { Old iterates }
Anp1, Bnp1, Pnp1: AbsErrType; { New iterates }
zp5, two : AbsErrType; { Constants 0.5 and 2 }
n, nMax : integer; { Iteration counter }
Eps : string; { String '*Epsilon' }

begin
Eps:= '*Epsilon ';
two:= 2; { Exactly representable }
zp5:= 0.5; { Exactly representable }
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Anp1:= sqrt(two); { = a0 } { Initialization }
Bnp1:= 0; { = b0 }
Pnp1:= 2 + anp1; { = p0 }
writeln(' n Absolute Error Bounds for An, Bn and Pn');
writeln;
nMax:= 32;
for n:= 1 to nMax do begin { Iteration }

An:= Anp1;
Bn:= Bnp1;
Pn:= Pnp1;
Anp1:= zp5*(sqrt(An) + sqrt(1/An)); { Computation of new iterates }
Bnp1:= sqrt(An)*(1 +Bn)/(An + Bn);
Pnp1:= Pn*Bnp1*(1 + Anp1)/(1 + Bnp1);
writeln( n: 4, ' ', Anp1.AbsErr:9:1:1, Eps, Bnp1.AbsErr:9:1:1,

Eps, Pnp1.AbsErr:9:1:1, Eps);
end;

end.
{----------------------------------------------------------------------}

The output of the program is as follows:

n Absolute Error Bounds for An, Bn and Pn

1 3.8*Epsilon 3.8*Epsilon 46.7*Epsilon

2 5.2*Epsilon 13.0*Epsilon 131.5*Epsilon

3 5.9*Epsilon 23.1*Epsilon 265.1*Epsilon

... ... ... ...

31 6.6*Epsilon 343.7*Epsilon 25858.4*Epsilon

32 6.6*Epsilon 355.2*Epsilon 27558.1*Epsilon

Interpretation of the Result:
Assuming a multi-precision arithmetic with 232 + 3 decimal places, i. e.

" :=
1

2
101�(232+3)

we get ����� � ~p32

�

���� � ����� � p32

�

����+ ����p32 � ~p32

�

����
� 1

2
� 101�232 +

27559 � "
�

� 1

2
� 10 � 101�232 :

The error bound calculations show that

� 2 [~p32 �
1

2
102�232; ~p32 +

1

2
102�232] :

So three guard digits are enough to be sure that at most one additional
digit (with respect to the inherent approximation errors) is lost! Using a multi-
precision arithmetic with 232 + 3 decimal digits we will get after 32 itera-
tions an approximation to � which is guaranteed to be correct to 232 � 1 =
4 294 967 295 decimal places. Notice, that the error bounds are computed using
an ordinary 
oating point (interval) arithmetic. No multi-precision calculations
are performed to �nd the error factors.
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5.3 Example 3, Expression for the Inverse Hyperbolic Sine

The inverse hyperbolic sine function can be computed using the formula

arsinh(x) := ln1p

0BBBB@x+ xs
1 +

�
1

x

�2

+
1

x

1CCCCA (1)

Here, ln1p(x) := ln(1 + x). The formula has already been used in the introduc-
tion of this paper. Numerically, this formula is only appropriate in a restricted
domain. To cover the full domain (all IEEE-754 double numbers) the following
representation with z := jxj is used

arsinh(x) � sign(x) �

8>>>>>>>>>><>>>>>>>>>>:

z; z 2 [0; 2:5E � 8]

ln1p(z +
zq

1 + ( 1
z
)2 + 1

z

); z 2 [2:5E � 8; 1:25]

ln(z +
p
z2 + 1); z 2 [1:25; 10150]

ln 2 + ln(z); z 2 [10150;MaxReal]

The break points shown here are adequate for the IEEE double format. The
following program part is the core routine to compute a relative error bound for
the expression in the second line of the representation given above.

use i_ari, { Interval arithmetic }
abs_ari; { Error bound arithmetic }

function MaxError(y: interval; n: integer): real;
var res, h, x: BoundType;

eMax: real;
begin

eMax:= 0;
for i:=1 to n do begin
x:= subinterval(i,y); { Subdivision into n subregions }
x.AbsErr:= 0; { Exactly rep. positive flp arguments }
h:= 1/x;
res := ln1p( x + x / ( sqrt( 1+ h*h ) + h ));
eMax:= max( eMax, res.AbsErr /> MinAbs(res.Value) ); { (*) }

end;
MaxError:= eMax;

end;

We want to compute a simultaneous error bound which holds for all 
oating
point arguments (that means the complete real axis). For this purpose we have to
subdivide the domain into smaller subregions. This is done by a driver program.
Using the relation

arsinh(�x) = �arsinh(x)

159Kraemer W.: Constructive Error Analysis



reduces the domain of interest to the positive real axes (negation is error free).
In the driver program a suitable subdivision of the positive real axis is done. The
complete domain is covered by about 10000 individual subregions. The width
of the subregions is not uniform. Some individual bounds for the subregions are
shown in the output of the program given below.

Our error bound arithmetic intrinsically computes absolute error bounds. But
here we are interested in a relative bound. To avoid a division by 0 in the program
line indicated by (*), we restrict the argument range for the automatic error
bound calculation to the interval [2:5E � 008; 1:79E + 308] which, of course, is
still a very large interval. Our calculation gives the following relative bounds over
the di�erent subregions (Formula (1) is only used in the interval [2:5E�8; 1:25],
outside this interval other formulas are more appropriate; the over all error bound
given below is valid for the corresponding mixture of formulas):

Subregion Relative error bound
[ 2.49999E-008, 1.00000E-007] 4.7428330E-016

... ...
[ 1.00000E-003, 1.00001E-001] 5.2015858E-016
[ 1.00000E-001, 1.00000E+000] 5.6460092E-016
[ 1.00000E+000, 1.25000E+000] 5.6160721E-016

... ...
[ 9.99999E+304, 9.99999E+305] 5.1753451E-016
[ 9.99998E+305, 9.99999E+306] 5.1752958E-016
[ 9.99998E+306, 1.79769E+308] 5.1795241E-016

The over all relative error bound for the domain [2:5E � 8; 1:79E + 308] is as
follows:

Computed relative error bound 5.6460092E-016

An error bound for the domain [0; 2:5E � 8] is very easily derived by hand. For
values 0 < jxj � 2:5E � 8 the approximation arsinh(x) � x is used (i. e. no
rounding error occurs). We �nd���arsinh(x)� x

arsinh(x)

��� � 1
2�3

x2

1� 1
2�3

x2
� 1 � " :

In summary we now know

j arsinh(x) � garsinh(x) j � j arsinh(x) j � 2:6 � " ; x 2 S : (2)

Here " := 2�52 is the approriate machine precision covering any rounding mode
of an IEEE double arithmetic. If we assume round to nearest operations, the
given error bound can be improved signi�cantly.

We want to emphasize that the computed error bound holds for the concrete
arsinh 
oating point implementation. Manipulating the implementation in any
way (e. g. modifying the numerical values of the break points or modifying the
sequence of operations) in general results in a di�erent over all error bound (as
we have already seen in Example 1 above).

For the concrete implementation we now know a worst case error bound.

Whenever we compute for a 
oating point number x the value garsinh(x) (we
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assume that this value is not in the under
ow range) we can be sure that the
di�erence to the exact function value arsinh(x) is bounded as described by for-
mula (2). Using this information and the monotonicity of the inverse hyperbolic
sine makes it easy to implement an arsinh-version that accepts a 
oating point
interval X as argument and gives back an enclosure of the correct range of values
over X .

6 Di�erent Kinds of Error Bound Arithmetics

In this paper we only have discussed in some detail the so called error bound
arithmetic for absolute errors: Using the known quantities A;B;�(a); �(b) we
have found e. g. an error bound �(add) in such a way that

a 2 A; ja� ~aj � �(a); b 2 B; jb� ~bj � �(b)

=) ja+ b � ~a ~bj � �(add) :

A modi�ed approach is the so called error factor arithmetic. The absolute
error bounds are written as products. Only the so called error factor is treated
as a numerical value. To get the numerical value of the corresponding bound
this factor has to be multiplied by the numerical value " := 0:5 �R1�l (precision
of the computer arithmetic for which the 
oating point algorithm is applied).
The quantity R denotes the base (radix) of the 
oating point screen and l the
number of mantissa digits.

The error factor arithmetic is well suited to �nd error bounds for multi-
precision computations (such an arithmetic has been used to estimate the round-
ing errors in Example 2 above). The quantities A;B as well as the error factors
k(a) for the left and k(b) for the right operand are given. The factor k(add) is
to be computed in such a way that (see [11])

a 2 A; ja� ~aj � k(a) � "; b 2 B; jb� ~bj � k(b) � "

=) ja+ b � ~a ~bj � k(add) � " :
Another possibility is an error bound arithmetic for relative errors. A;B as

well as the relative error bounds "(a); "(b) of the operands are known and we
want to �nd a relative error bound "(add) with

a 2 A; ~a = a � (1 + "a); j"aj � "(a);

b 2 B; ~b = b � (1 + "b); j"bj � "(b)

=) ~a ~b = (a+ b) � (1 + "add); j"addj � "(add) :

For all kinds of such error arithmetics we can derive explicit formulas for
the quantities we are looking for. So it is possible to implement reliable software
tools using an ordinary interval arithmetic as well as directed rounded 
oating
point operations. Again, operator and function overloading can be used to get
very comfortable and user-friendly tools. Existing programs can be analysed in
a very simple way. In essence, only the type of the variables has to be adapted
and some initialization has to be performed.
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7 Conclusion

We have shown that our approach can be used to get worst case error bounds
for data error and/or rounding error propagation in 
oating point computations
almost automatically. Due to operator and function overloading our software
tools can be applied to existing program code in a very comfortable way. Loops,
recursion, and iterations are allowed. Conditional statements must be handled
with some care: for point data the sequence of operations is unique whereas the
speci�cation of input data by domains may destroy this property. In some special
cases an appropriate domain subdivision may resolve this problem.

We have used the technique of the automatic generation of error bounds for

oating point algorithms extensively to get reliable error estimates in the �eld of
mathematical function implementations. Meanwhile we have implemented a new
and fast elementary function library with known reliable worst case error bounds.
The functions accept real and interval arguments. The routines are based on the
double precision 
oatig-point format and the corresponding basic operations as
de�ned by the IEEE standard 754 [8]. The portable ANSI-C code of our function
routines is available via ftp.

The work described in this paper is still in progress. It should be possible
to incorporate ideas coming for example from [3, 13, 17, 4, 15]. See also Section
3. Up to now our software tools are written in PASCAL-XSC but we are also
preparing a C++ class library. The source code of our tools will be made available
electronically.
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