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Abstract: This paper describes the use of interval arithmetic to bound errors in an
experiment for determining Newton's constant of gravitation. Using veri�ed Gaussian
quadrature we were able to assess the numerical errors as well as the e�ect of several
tolerances in the physical experiment.
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1 Introduction

Of all the basic physical constants, Newton's constant of gravitation G is known
to the least precision. In fact, even the relative precision of 10�4 that is claimed
for some measurements seems dubious (note that the intervals 6:673517, 6:66

63
49,

and 6:716048 corresponding to the data from [Tab. 1] are pairwise disjoint).
The large uncertainty in the individual values is due to the fact that even if

some quantities involving G can be measured to rather high precision, (e.g., the
period of revolution of celestial bodies around their central mass), there is always
some other quantity involved that is known to much lower precision (e.g., the
mass of the central body). As the values di�er by more than the error bounds,
some of the measurements must contain systematic errors that are not yet fully
assessed.

G
h
10�11

�

m3

kg�s2

i
Uncertainty [ppm] Source

6:6726 128 value recommended 1986 by CODATA (Com-
mittee on Data for Science and Technology of
the International Council of Scienti�c Unions)
[Cohen and Taylor (1987)]

6:6656 95 Measurements Stan-
dards Laboratory, Lower Hutt, New Zealand,
1994 [Fitzgerald et al. (1994)]

6:7154 83 Physikalisch-Technische Bundesanstalt, Braun-
schweig, Germany, 1994 [Michaelis et al. (1997)]

Table 1: Values and bounds for the relative error (in parts per million) for the Newto-
nian constant of gravitation.

One of the experiments for measuring G takes place at Wuppertal University.
Its current goal is to achieve a relative precision of 10�4, with hope for an
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additional factor of ten in the future. As explained above, attaining this accuracy
requires a thorough assessment of all the systematic errors in the experiment.

In [Section 2] we brie
y describe the principle of the experiment. The grav-
itational constant G is obtained by measuring a certain displacement �b and
equating it with a value that can be computed by numerical integration, as ex-
plained in [Section 3]. At the time being the attainable precision in G is limited
mainly by tolerances in the geometry of the experiment and by their in
uence on
the estimated value �b, see [Section 4]. In [Section 5] we discuss interval versions
of Gaussian quadrature that was used to bound the e�ects of some of these tol-
erances as well as the numerical errors inherent in the evaluation of the integrals.
Finally, some numerical results are given in [Section 6].

2 The Experiment

The main components of the experiment used in Wuppertal are two heavy cylin-
ders M1 and M2 (�eld masses) and a pair of pendulums whose bodies m1 and
m2 are positioned midway between the �eld masses, see [Fig. 1]. All four bodies
are aligned on a common axis of symmetry (horizontal line in [Fig. 1]), and the
�eld masses can be moved along this axis.
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Figure 1: Principle of the experiment.

As the distance from m1 to �eld mass M1 is smaller than its distance to M2,
the �rst pendulum is slightly de
ected from its resting position towards M1.
Analogously,m2 is de
ected towardsM2. When the �eld masses are moved from
the \far" position to the \near" position, this e�ect becomes more pronounced,
and the distance b between the pendulums again increases by a small amount
�b � 12nm.

To be able to measure �b, the inner surfaces of the pendulums are spherical
mirrors, which together work as a microwave resonator. By carefully monitoring
its spectrum of resonance it is possible to determine �b to a rather high relative
precision "�b . 10�5. The sought constant of gravitation is then obtained by
equating the measured value �b with an estimate that can be computed as
described in the following Section.
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3 Estimating �b

Let Fij denote the (directed) attractive force on pendulum mi due to �eld mass
Mj . Thus a total force

Fi = Fi1 + Fi2

acts on pendulum mi, displacing it by

�zi =
F z
i

mi!
2
i

along the z axis, which is the common axis of symmetry. Here, F z
i denotes the z

component of the force, and !i is the pendulum's natural frequency. Therefore,
placing the �eld masses near to the pendulums increases their distance by the
amount

�b(\near") = �z2 ��z1

as compared to having no �eld masses at all. In practice the �eld masses are
moved from the \far" position to the \near" position, thus reducing the move-
ment of the pendulums to

�b = �b(\near")��b(\far") :

From the above it follows that eight forces Fij must be determined to compute
�b. Each of these eight values may be obtained as follows. Newton's law states
that a point mass M at position pM exerts the force

FmM = G �
mM

kdk2
�
d

kdk

on a second point mass m at position pm, where d = pM � pm is the distance
between the masses and G is the constant of gravitation. Integrating over the
mass distributions of the pendulum and the �eld mass yields

Fij =

Z
pendulum

i

Z
�eld massj

G �
dmi dMj � d

kdk3
:

To facilitate the integration we subdivide the pendulum into six segments Sik as
shown in [Fig. 2] and, making use of the common axis of symmetry, introduce
cylindrical coordinates for the segments and the �eld mass, see [Fig. 3]:

Sik = f(ri cos'i; ri sin'i; zi) : ri 2 [rik ; rik ]; 'i 2 [0; 2�]; zi 2 [zik ; zik ]g

�eld massj = f(rj cos'j ; rj sin'j ; zj) : rj 2 [0; rj ]; 'j 2 [0; 2�]; zj 2 [zj ; zj ]g

Thus we have

Fij =

6X
k=1

Fikj ;
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Figure 2: Decomposition of the pendulum's body into six segments.
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Figure 3: Coordinate system used in the integration.

where

Fikj =

Z
Sik

Z
�eld massj

G �
�idVi � �jdVj � d

kdk3

= G�i

rikZ
r
ik

ri

2�Z
0

zikZ
z
ik

rjZ
0

�jrj

2�Z
0

zjZ
z
j

d

kdk3
dzj d'j drj dzi d'i dri :

Here we have assumed that the density �i is constant within each pendulum and
that the �eld masses have radial density pro�les �j = �j(rj). These assumptions
are justi�ed by the respective production processes. (The �eld masses are made
of cast and rolled brass, whereas the copper pendulums are diamond-cut after
casting.)

If all the pendulums and �eld masses are perfectly aligned along the common
axis of symmetry then three of the six integrals can be evaluated analytically, see
[Holzmann et al. (1996)]. In this paper, however, we will only consider geometri-
cal tolerances that destroy this symmetry and thus require numerical evaluation

19Lang B.: Verified Quadrature in Determining Newton’s Constant of Gravitation



of the sextuple integrals.

4 Factors Limiting the Attainable Precision

As pointed out in the Introduction, the displacement �b can be measured with
a rather small relative error . 10�5. Therefore the precision obtainable for G is
presently limited by the error that is made in estimating �b. This error consists
of two components:

{ approximation and rounding errors in evaluating the integrals, and
{ tolerances in the geometry of the experiment (e.g., deviations from the per-
fect alignment on a common axis of symmetry). For example, the pendulums
may be rotated or twisted or o�set from the z axis, the �eld masses may be
tilted, etc.

The tolerances are easily accounted for by suitable transformations of the local
variables and/or the limits of the integrations. Combining these modi�cations
with using a veri�ed version of Gaussian quadrature gives guaranteed bounds
for the overall e�ects of both types of errors.

5 Veri�ed Gaussian Quadrature

In this Section we brie
y describe some variants of Gaussian quadrature with
result veri�cation. These methods were used to enclose the multiple integrals
from [Section 3]. We will only consider product formulas for Gauss-Legendre
quadrature, i.e., for the evaluation of an integral

I :=

Z
Q

f(x) dx

over the box Q = [�1; 1]� � � � � [�1; 1].

5.1 Enclosures for Multiple Integrals

For n-point Gaussian quadrature in one dimension we have [Stroud (1971)]

I =

1Z
�1

f(x) dx = A(n) +R(n) (1)

with the approximation

A(n) =

nX
i=1

!
(n)
i f(x

(n)
i )

and the remainder term

R(n) = e(n) �
f (2n)(�)

(2n)!
for some � 2 (�1; 1) ;
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provided that f 2 C2n[a; b]. (There are other representations of the remainder

term; these will not be considered in the following.) The nodes x
(n)
i 2 (�1; 1)

and the positive weights !
(n)
i can be determined by solving a suitable symmetric

tridiagonal eigenvalue problem. For increasing n, the factor

e(n) =
22n+1

2n+ 1
�

�
2n

n

�
�2

in the remainder term is rapidly decreasing.
From (1) we readily obtain an enclosure for the integral:

I 2 [I ] = [A(n)] + [R(n)] ;

where

[A(n)] =

nX
i=1

[!
(n)

i ] f([x
(n)

i ])

and

[R(n)] = e(n) �
f (2n)([�1; 1])

(2n)!

are enclosures of the approximation and the remainder term, resp. Very narrow

intervals [x
(n)
i ] and [!

(n)
i ] enclosing the nodes and weights can be precomputed

as described in [Storck (1993)]. An enclosure f (2n)([�1; 1])=(2n)! for the range
of the 2n-th Taylor coe�cient over the interval [�1; 1] is easily obtained using
automatic di�erentiation techniques [Storck (1995)].

To evaluate multiple integrals of moderate dimension one usually employs
an appropriate product of one-dimensional Gaussian quadrature formulas. In k
dimensions, the (n1 � � � � � nk)-point product formula is given by

A(n1;:::;nk) =

n1X
i1=1

: : :

nkX
ik=1

!
(n1)

i1
� � �!

(nk)

ik
f(x

(n1)

i1
; : : : ; x

(nk)

ik
) ;

where the j-th components x
(nj)

i of the nodes and the factors !
(nj)

i are the nodes
and weights, resp., of the nj-point one-dimensional formula. Here we have

I =

1Z
�1

: : :

1Z
�1

f(x1; : : : ; xk) dx1 � � � dxk = A(n1;:::;nk) +R(n1;:::;nk)

with the remainder term ful�lling

jR(n1;:::;nk)j � 2k�1 �

kX
j=1

e(nj) �max
Q

�����
1

(2nj)!
�
@2njf

@x
2nj
j

����� :
As in the one-dimensional case, an enclosure [I ] for the integral is obtained by
substituting enclosing intervals for the nodes, weights and partial derivatives.

If the intervals [x
(nj)

i ] and [!
(nj)

i ] are very narrow and the total number of

nodes is not too large then [A(n1;:::;nk)] is a narrow interval, too, and the diameter

of [I ] is determined mainly by the diameter of the interval [R(n1;:::;nk)] enclosing
the remainder term.
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5.2 Static and Adaptive Subdivision

Unfortunately it is not always possible to reduce the diameter of the remainder
interval to a given threshold by simply increasing the number of nodes in the
formula, as might be hoped from the fact that the factors e(n) are rapidly de-
creasing. This approach may be impracticable either because the overall number
of nodes becomes prohibitively large or because growth of the Taylor coe�cients
prevents the diameter of the remainder term from decreasing. One way to over-
come these di�culties is to subdivide the domain of integration and then apply
suitable product formulas to the subdomains.

We �rst tried a very simple static subdivision strategy named Iso(m;n)
[Holzmann (1996)]. Here, the integration domain was subdivided into m subin-
tervals along each axis, resulting in mk subboxes of identical size. Then we
applied the same (n � n � � � � � n)-point product formula to all the subboxes,
see [Fig. 4]. This strategy proved successful for integrals of dimension up to four,
cf. the results reported in [Holzmann et al. (1996)]. The enclosures computed
with Iso(2; 7) were su�ciently narrow to guarantee a relative error . 10�6 in the
estimate of �b.

Figure 4: Subdomains and nodes for the two-dimensional static subdivision Iso(2; 4).

For higher dimensions, the Iso(2; 7) scheme became impracticable because it
required an excessive number of function evaluations. (The estimated time for
computing one �b value via 48 sextuple integrations was 51 days!)

Therefore an adaptive subdivision strategy was developed. Here we �rst check
if a single formula for the whole domain can give the desired accuracy. To this
end, we choose nj 2 f1; : : : ; nmaxg, j = 1; : : : ; k, such that

d
(nj )

j := e(nj) �max
Q

�����
1

(2nj)!
�
@2njf

@x
2nj
j

����� �
1

k � 2k�1
� � ; (2)

where nmax is a given upper bound for the number of points in each direction
and � is a prescribed bound for the radius of the remainder interval. In case
of ambiguity the minimal value nj ful�lling (2) is chosen. If at least one of
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the nj values cannot be chosen according to (2) then the integration domain is

bisected along the coordinate xj featuring the largest \best case error" d
(min)

j =

minfd
(1)

j ; : : : ; d
(nmax)

j g, and the same procedure is applied to the two resulting

subboxes, with the threshold replaced by �0 = �=2.
Our �rst experiences with this adaptive technique were rather disappointing

because it took even longer to achieve a prescribed precision than the static
schemes had done. A closer look revealed that the integration domain was re-
cursively subdivided until even a (1 � 1 � � � � � 1)-point formula was able to
produce su�ciently narrow remainder intervals. In contrast to the static subdi-
vision scheme, where virtually all the time was spent in function evaluations for
computing the integral approximations, now the vast majority of the time was
required for evaluating the Taylor coe�cients.

The extremely �ne subdivision of the integration domain was caused by a
severe overestimation of the range of the Taylor coe�cients. To overcome this
problem we determined narrower enclosures for the Taylor coe�cients by split-
ting their argument range. (Up to now this splitting is �xed a priori; we plan
to develop an algorithm that is able to determine the necessary subdivisions
adaptively.)

This modi�cation led to a much lower recursion level and allowed using
higher-order Gaussian formulas. As a result, our adaptive algorithm is well-
balanced in the sense that the approximation of the integrals and the computa-
tion of the remainder terms each consume roughly one half of the overall time.
With this technique the time for computing �b via sextuple integrals could be
reduced to below three days.

6 Numerical Results

The numerical experiments were performed on a Sun ULTRA workstation using
Pascal-XSC [Klatte et al. (1992)]. Here we focus on the e�ects of two particular
geometrical tolerances: o�set of the pendulums from the z axis and rotation of
the whole resonator around the y axis. Both deviations from the ideal coax-
ial geometry were handled by numerical evaluation of sextuple integrals (see
[Holzmann et al. (1996)] for a discussion of other types of geometric errors that
allow some of the six integrals to be solved analytically).

First we investigated how o�sets � of the pendulums from the z axis a�ect the
estimated value of �b (left picture in [Fig. 5]). The position of the pendulums is
known to within 1mm. This precision is su�cient to guarantee that the relative
errors due to the o�sets are well below 10�5 (dashed horizontal lines in the
picture).

The angular position of the resonator with respect to the y axis is known
to within 0:1 degrees, which is again su�cient to guarantee that this kind of
geometrical error cannot introduce a relative error > 10�5 in �b (right picture
in [Fig. 5]).
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