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1 Introduction

In a secret-sharing scheme, a dealer has a secret. The dealer gives each partic-
ipant in the scheme a share of the secret. Let P denote the set of participants.
There is a set � � 2P such that any subset of participants that is in � can
determine the secret. Since P is �nite, let P = fp1; :::; png. Let Ti be the set of
all possible shares that participant pi can get, and T = T1 �T2 � � � � �Tn. A
scheme is said to be perfect if the following properties are satis�ed:

1. if a subset B of participants pool their shares, where B 2 � , then they can
determine the value of s;

2. if a subset B of participants pool their shares, where B =2 � , then they get
no information about s.

Since the �rst construction of secret-sharing schemes by Blakley [1] and Shamir
[11], many other schemes have been proposed. Quite a number of them are linear.
So far the most studied secret-sharing system is the (m;n) threshold schemes.
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A (m;n) threshold scheme is a secret-sharing scheme such that the secret
can be constructed from any m shares, but no subset of m � 1 shares reveals
any information about the secret. By de�nition an (m;n) threshold scheme is
perfect.

In [5] Karnin, Greene and Hellman considered the situation where there are
k secrets s1; s2; � � � ; sk to be shared, and it is required that for any 1 � j � k

C1: any set of m shares determines the secret sj , i.e., for any set of m indices
1 � i1 < � � � < im � n, H(sj j(ti1 ; � � � ; tim)) = 0; here and hereafter ti denotes
the share of participant pi;

C2: any set of m�1 shares gives no information about the secret sj , i.e., for any
set of m�1 indices 1 � i1 < � � � < im�1 � n, H(sj j(ti1 ; � � � ; tim�1)) = H(sj);
or in terms of mutual information I(sj ; (ti1 ; � � � ; tim�1)) = 0; where H(sj)
denotes the uncertainty of sj , H(ajb) the uncertainty of a when event b
happened, and I(a; b) denotes the amount of mutual information between a
and b.

Such schemes are necessary in applications where a number of secrets should
be shared at the same time by a number of participants. We will refer to such
systems as [k;m; n] (multisecret-sharing) threshold schemes. Another important
fact is that each [k;m; n] threshold scheme for multisecret sharing gives naturally
k (m;n) threshold schemes for single-secret sharing. Thus, the importance of
multisecret sharing follows also from that of single-secret sharing.

A threshold scheme for multisecret sharing was proposed by Karnin, Green
and Hellman in [5]. Multisecret sharing schemes were also studied by Jackson,
Martin, and O'Keefe [4], where they considered the case in which each subset of
k participants is associated with a secret which is protected by a (t; k)-threshold
access structure and lower bounds on the size of a participant's share. Some
information aspects of multisecret sharing schemes were also studied by Blundo,
De Santis, Di Crescenzo Gaggia, and Vaccaro [2], where they tried to work out a
general theory of multisecret sharing schemes and to establish some lower bounds
on the size of information held by each participant for various access structures.

In this paper we �rst consider the general relation between linear multisecret-
sharing schemes and error-correcting codes in Section 2. In Section 3 we establish
the relation between linear [k; k; n] threshold schemes for multisecret sharing and
maximum distance separable (MDS) linear codes. Then in Section 4 we construct
some [k; k; n] threshold schemes for multisecret sharing based on some redundant
residue MDS codes. Finally, we show how to use a multisecret-sharing scheme as
a threshold scheme for single secret-sharing, and some relations between single-
secret sharing and multisecret sharing.

The contributions of this paper are the following:

1. a characterization of the general relation between linear multisecret sharing
schemes and error-correcting codes;

2. a bridge between linear multisecret-sharing threshold schemes and maximum
distance separable codes;

3. the establishment of the information hierarchy of linear multisecret sharing
schemes;

4. several linear multisecret sharing threshold schemes that are based on Reed-
Solomon codes, generalized Reed-Solomon codes, and Bossen-Yau redundant
residue codes, which can detect and correct cheatings;
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5. the relations between linear multisecret sharing threshold schemes and some
threshold schemes for single-secret sharing.

2 The General Relation

It is reasonable to assume that each element of the secret space Si is equally
likely to be the ith secret for each i. Let the secret spaces Si for each 1 � i � k
and the share spaces Ti for each 1 � i � n be vector spaces over a �eld F . Then
the product spaces S = S1 � � � � � Sk and T = T1 � � � � � Tn are also vector
spaces over F . In a multisecret-sharing scheme a dealer uses a share function
f : S! T to compute the shares for the n participants, i.e., let s = (s1; � � � ; sk)
be the vector consisting of k secrets si and t = (t1; � � � ; tn) = f(s), the share
given only to the ith participant is ti. Clearly, the share function must be one-
to-one. A multisecret-sharing scheme is said to be linear if for all a; a0 2 F and
all s; s0 2 S

f(as+ a0s0) = af(s) + a0f(s0): (1)

If there is a constant t 2 T such that f(x) � t is linear, then the secret-sharing
scheme is said to be a�ne.

In what follows we consider the case that Si = F and Ti = F , where F =
GF (q) is a �eld. Thus, T = Fn and S = F k both are vector spaces over F . We
restrict ourselves to the case F being �nite since in many applications only the
�nite case is interesting.

Theorem1. A multisecret-sharing scheme de�ned over the above secret and
share spaces is linear if and only if its share function is of the form

f(s) = sG; (2)

where s = (s1; � � � ; sk) 2 S, and G is a k � n matrix over F with rank k.

Proof: Let ei 2 F k be the vector with the ith entry being the identity element
1 and other entries being the zero element of F . Note that every vector s 2 F k

can be expressed as s =
Pk

i=1 siei, where si 2 F . Assume that the scheme is
linear, then

f(s) = f

 
kX

i=1

siei

!
=

kX
i=1

sif(ei) = sG;

where G is the matrix with f(ei) as its ith row. Since each t = (t1; � � � ; tn) 2 Fn

corresponds to at most one preimage under the mapping f , the rank of the
matrix G must be k.

If the share function of a secret-sharing scheme is of form (2) where G has
rank k, then it is easily seen that the scheme is linear. ut

An [n; k; d] linear code C over F is a linear subspace of Fn with dimension k
and minimum distance d, where the distance of two codewords u and v 2 Fn is
the number of di�erent entries. A k � n matrix G over F is called a generator
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matrix of C if its row vectors generate the linear subspace C, i.e., C = fc = iG :
i 2 F kg. For a linear code C its dual code, denoted as C?, is de�ned by

C? = fu 2 Fn : uvT = 0 for all v 2 Cg:

A generator matrix H of C? is called the parity check matrix of C. Thus, GHT =
0k�(n�k).

Theorem 1 clearly shows that a linear multisecret-sharing scheme gives an
[n; k; d] (linear) code C with generator matrix G, and each generator matrix G
of an [n; k; d] linear code C gives a linear multisecret-sharing scheme. The share
function is an encoding mapping of a linear code.

For a linear multisecret-sharing scheme with the share function f of (2),
recovering the original multisecret s is carried out as follows. Let G(i1; � � � ; iu)
denote the submatrix consisting of the i1th, i2th, ..., iuth columns of the matrix
G, where 1 � u � n, and 1 � i1 < � � � < iu � n. Suppose that the shares ti1 ,
..., tiu are known, then recovering the multisecret becomes solving the linear
equation

sG(i1; � � � ; iu) = (ti1 ; � � � ; tiu): (3)

The complexity of solving such a linear equation is O(u3) with a method like the
Gaussian elimination method. Thus, recovering the multisecret is much simpler
than decoding linear codes.

3 Linear [l;m; n] Threshold Schemes and MDS Codes

Since we have assumed that the secrets from each secret space Si are equally
likely, without the knowledge of any share the uncertainty (denoted as H(si))
or self-information (denoted as I(si)) of each si is H(si) = I(si) = log2 q bits,
and the uncertainty or self-information of each s = (s1; � � � ; sk) is I(s) = H(s) =
k log2 q bits, here we assume that all secrets are independent. To recover the
multisecret, a set of shares must provide I(s) bits of information about the
secret.

Theorem2. Let a multisecret-sharing scheme have the share function of (2).
Then

I(s; (ti1 ; � � � ; tiu)) = r log2 q =

�
< I(s); i� r < k;
= I(s); i� r = k;

H(sj(ti1 ; � � � ; tiu)) = (k � r) log2 q =

�
> 0; i� r < k;
= 0; i� r = k;

where r = rankG(i1; � � � ; iu).

Proof: Since the rank of the matrix G(i1; � � � ; iu) is r, by elementary algebra
Equation (3) has qk�r solutions and each of them is equally likely to be the
multisecret. It follows that H(sj(ti1 ; � � � ; tiu)) = (k � r) log2 q bits, and that

I(s; (ti1 ; � � � ; tiu)) = I(s)�H(sj(ti1 ; � � � ; tiu)) = r log2 q:

The remaining conclusions then follow easily. ut
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By Theorem 2 the amount of information about the multisecret s given by a
set of shares fti1 ; � � � ; tiug is completely determined by the rank of the submatrix
G(i1; � � � ; iu) of G. Thus, each share gives information about the multisecret s,
however we shall prove this could not be true for each individual secret sj .

Theorem3. Let a multisecret-sharing scheme have the share function of Equa-
tion (2). If r = rankG(i1; � � � ; iu) = k then

I(sj ; (ti1 ; � � � ; tiu)) = log2 q = I(sj);

H(sj j(ti1 ; � � � ; tiu)) = 0:

If r < k then I(sj ; (ti1 ; � � � ; tiu)) = log2 q = I(sj) if and only if the vector ej
is a linear combination of the column vectors of the submatrix G(i1; � � � ; iu);
otherwise I(sj ; (ti1 ; � � � ; tiu)) = 0.

Proof: By elementary algebra Equation (3) has qk�r solutions and each of them
is equally likely to be the multisecret. If r = k, the multisecret is determined by
the set of shares, and so is each individual secret sj .

If r < k, then Equation (3) has qk�r � q solutions. Let �1; �2; � � � ; �n denote
the column vectors of G. Assume �rst that ej is a linear combination of the
column vectors of G(i1; � � � ; iu), i.e., there are constants ai1 ; � � � ; aiu such that

ej =

uX
v=1

aiv�iv :

It follows that

sj = sej =

uX
v=1

aivs�iv

=

uX
v=1

aiv tiv :

Thus, sj can be recovered by the shares ti1 ; � � � ; tiu .
Assume that ej cannot be expressed as a linear combination of �i1 , �i2 , � � �,

�iu . Note that the rank of G is k, there must be j1; � � � ; jv 62 fi1; � � � ; iug such
that ej is a linear combination of

�i1 ; �i2 ; � � � ; �iu ; �j1 ; � � � ; �jv ;

where u+ v � n. Let

ej =

uX
w=1

aw�iw +

vX
w=1

bw�jw :

By assumption at least one of the coe�cients bw is nonzero, say, b1 6= 0. It follows
that

sj = sej =

uX
w=1

aws�iw +

vX
w=1

bws�jw

=

uX
w=1

awtiw +

vX
w=1

bwtjw :
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Since tj1 is unknown and equally likely to be any element of GF (q), the set of
shares fti1 ; � � � ; tiug gives no information about sj . ut

In the sequel we study only [k; k; n] linear multisecret-sharing schemes. Linear
[n; k; d] codes with d = n�k+1 are called MDS (maximum distance separable).

Theorem4. A multisecret-sharing scheme with the share function of (2) is a
[k; k; n] threshold scheme if and only if

D1: the linear code C with generator matrix G is MDS; and
D2: any set of k � 1 column vectors of G generates a [k; k � 1; 2] MDS code.

Proof: Recall that for an [n; k; d] linear code C over GF (q) the following state-
ments are equivalent [6]:

S1: C is MDS;
S2: every k columns of a generator matrix G are linearly independent;
S3: every n� k columns of a parity check matrix H are linearly independent.

Assume that Conditions D1 and D2 are satis�ed. By Statement S2 every k
columns of G are linearly independent. Thus, every set of k shares is su�cient
to determine the multisecret s by Theorem 3. Obviously, the rank of every k� 1
columns of G is less than k. In addition, Condition D2 ensures that each vector ei
is not a linear combination of any k� 1 column vectors of G. Thus, by Theorem
3 it is a [k; k; n] linear multisecret-sharing scheme.

Assume that the multisecret sharing system is a [k; k; n] threshold scheme.
Note that the rank of any set of k� 1 vectors is less than k, by Theorem 3 each
ei cannot be generated by any set of k� 1 column vectors of G. Thus, any k� 1
column vectors of G generate a linear code with minimum distance � 2. We now
prove that any k column vectors of G have rank k. Without loss of generality
we consider the �rst k columns of G, denoted by g1, � � �, gk. Suppose now that

rank(g1;g2; � � � ;gk) < k:

Since the �rst k shares determine the secret, by Theorem 3 each ei is a linear
combination of g1; � � � ;gk. Thus, each ei is a linear combination of k � 1 vec-
tors of those g1; � � � ;gk. It follows again by Theorem 3 that some k � 1 shares
can determine the multisecret. This is contrary to the de�nition of a [k; k; n]
threshold scheme. Hence, any k column vectors of G are linearly independent.
By Statement S2 the linear code generated by G is MDS.

Note that any k column vectors of G are linearly independent, any set of
k� 1 column vectors of G has rank k� 1, and thus generates a [k; k� 1; d] code.
By the Singleton bound in coding theory d � k � (k � 1) + 1 = 2. Combining
this with the above proved fact d � 2 gives d = 2. ut

By Theorem 4 one [k; k; n] threshold scheme for multisecret sharing gives one
[n; k; n� k + 1] MDS code and k MDS codes with parameters [k; k � 1; 2].

Theorem5. For any linear [k; k; n] threshold scheme with the share function of
(2)

I(s; (ti1 ; � � � ; tiu)) = minfk; ug log2 q:
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Proof: Consider the matrix G(i1; � � � ; iu). If u � k, then I(s; (ti1 ; � � � ; tiu)) =
k log2 q, as desired. If u < k, without loss of generality, let ij = j for j = 1; :::; u.
It follows that u � rankG(1; :::; u) � rankG(1; :::; k) � (k � u) = u and that
rankG(i1; � � � ; iu) = u. The conclusion then follows from Theorem 2. ut

This theorem clearly shows the information hierarchy about the multisecret
of [k; k; n] threshold schemes, i.e., I(s;B) = jBj log2 q, where B is a set of shares.
Thus, linear [k; k; n] threshold schemes are the most democratic schemes in that
each share contains the same amount of information about the multisecret, and
two sets of shares give the same amount of information about the multisecret if
and only if the numbers of shares in the two sets are equal. However, the informa-
tion hierarchy about each individual secret sj is quite di�erent, i.e., I(sj ;B) = 0
if jBj < k and I(sj ;B) = I(sj) otherwise.

The relation between linear [k; k;m] threshold schemes and linear [n; k; n�
k+1] MDS codes is now clear. To construct such multisecret-sharing schemes, we
need to �nd linear MDS codes. It is obvious that not every generator matrix of
an MDS code satis�es condition D2. So our task is �rst to �nd MDS codes, and
then to �nd generator matrices of those codes satisfying condition D2. In some
of the following sections we shall consider linear [k; k; n] threshold schemes based
on the following MDS codes: Reed-Solomon (or RS) codes, extended RS codes,
generalized RS codes, and Bossen-Yau codes, which are MDS codes. Finding
more linear [k; k; n] threshold schemes means �nding more MDS codes. This is
related to othorgonal arrays and also othorgonal Latin squares. For some of the
relations we refer to [6, pp. 328-329].

4 [k; k; n] Threshold Schemes via Redundant Residue Codes

RS codes are special redundant residue codes which include other MDS codes.
Let m0(x), � � �, ms+t�1(x) 2 GF (q)[x] be pairwise relatively prime, with degree
m, s and t be two positive integers, and k = sm. For each polynomial p(x) of
degree no more than k � 1, de�ne

ri(x) = p(x) mod mi(x); i = 0; 1; � � � ; s+ t� 1

= ri;0 + ri;1x+ � � �+ ri;m�1x
m�1

and ri = (ri;0; � � � ; ri;m�1). A special redundant residue code investigated by
Bossen and Yau [3] is described by

C = f(r0; r1; � � � ; rs+t�1)jp(x) 2 GF (q)[x]kg:

This is an [(s+ t)m; sm; d] linear code. Under one basis of GF (qm) over GF (q)
each ri is viewed as an element of GF (qm), and the code is transferred into an
[s+ t; s; t+ 1] MDS code C0 over GF (qm).

Redundant residue codes and their generalized codes encompass a number
of good codes including the Reed-Solomon codes. Some of them can be used
to construct linear [k; k; n] threshold schemes. In this section we shall describe
some linear [k; k; n] threshold schemes based on redundant residue MDS codes.

A class of MDS codes is the RS codes [6, pp.303-304]. Let � = (�1; � � � ; �n)
where the �i are distinct elements of GF (q). The [n; k; n � k + 1] RS code is
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generated by the following generator matrix

G =

2
664
1 1 � � � 1
�1 �2 � � � �n
...

...
...

...

�k�11 �k�12 � � � �k�1n

3
775 : (4)

To construct linear multisecret-sharing [k; k; n] threshold schemes based on
the RS code, we need the following lemma.

Lemma6. Any (k � 1) � (k � 1) submatrix of the G of (4) has rank k � 1 if
and only if for any set of indices 1 � i1 < � � � < ik�1 � nX

1�u1<���<uj�k�1

�iu1�iu2 � � ��iuj 6= 0 for all j = 1; 2; � � � ; k � 2: (5)

Proof: Let a1; � � � ; ak�1 be k � 1 distinct elements over GF (q). De�ne

M =

2
6664
1 1 � � � 1
a1 a2 � � � ak�1
...

...
...

...

ak�11 ak�12 � � � ak�1
k�1

3
7775
k�(k�1)

:

LetMi denote the matrix obtained by deleting the ith row ofM , where 1 � i � k.
Consider now the following determinant

V =

���������

1 1 1 � � � 1
x a1 a2 � � � ak�1
...

...
...

...
...

xk�1 ak�11 ak�12 � � � ak�1
k�1

���������
:

Expanding this determinant according to the �rst column, we obtain that

V = jM1j � jM2jx+ � � �+ (�1)k+1jMkjx
k�1; (6)

where jMij denotes the determinant of Mi for each i.
On the other hand, V is the determinant of a Vandermonde matrix and thus

V = (a1 � x)(a2 � x) � � � (ak�1 � x)a (7)

= a

k�1X
j=0

0
@ X

1�u1<���<uk�1�j�k�1

au1au2 � � � auk�1�j

1
A (�1)jxj ; (8)

where

a =

k�2Y
j=1

k�1Y
i=j+1

(ai � aj):
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Comparing the coe�cients of (6) and (7), we get the determinantMi for each
i. The conclusion of this lemma then follows. ut

The linear multisecret-sharing scheme based on RS codes is constructed as
follows. Choose the �i such that (5) holds. Then we use the matrix of Equation
(4) as the one of (2) to construct the share function for the multisecret-sharing
scheme.

Theorem7. The multisecret-sharing scheme based on the RS code with gener-
ator matrix G of (4) satisfying (5) is a linear [k; k; n] threshold scheme.

Proof: Clearly, the RS code is MDS since every k columns of G are linearly
independent. What remains to be shown is that any k � 1 column vectors of G
generate a linear code with minimum distance � 2. Consider now the i1th, i2th,
� � �, ik�1th columns gi1 , gi2 , � � � ;gik�1 of G. We now prove that each vector ej
cannot be a linear combination of the vectors gis , where 1 � j � k.

Suppose that ej =
Pk�1

s=1 xsgis . Then we have the following equations2
6666666664

1 1 � � � 1
...

...
...

...

�
j�1
i1

�
j�1
i2

� � � �
j�1
ik�1

�
j+1
i1

�
j+1
i2

� � � �
j+1
ik�1

...
...

...
...

�k�1i1
�k�1i2

� � � �k�1ik�1

3
7777777775

2
66666664

x1
...
...
...
xk�1

3
77777775
=

2
66666664

0
...
...
...
0

3
77777775

(9)

and

k�1X
s=1

xs�
j

is
= 1: (10)

Since the elements �i satisfy (5), the coe�cient matrix of (9) is invertible by
Lemma 6. It follows that xi = 0 for each i. But this makes the lefthand of
Equation (10) equal zero, a contradiction. Thus, each vector ej cannot be a
linear combination of k�1 column vectors of G. Hence Condition D2 is satis�ed.
By Theorem 4 it is a [k; k; n] threshold scheme. ut

To illustrate the above linear multisecret-sharing [k; k; n] threshold scheme
based on RS codes, we take the following example.

Example 1 Consider the �eld GF (11) = Z=(11) and k = 3. Let �i = i for
i = 1; 2; 3; 4; 5. Then the matrix in (4) becomes

G0 =

"
1 1 1 1 1
1 2 3 4 5
1 4 9 5 3

#
;

which generates a [5; 3; 3] MDS code over GF (11). It is easily checked that each
2 � 2 submatrix of G0 is invertible, so G0 gives a [3; 3; 5] threshold scheme for
multisecret sharing. ut

By adding a parity check symbol, each [n; k; n�k+1] RS code can be extended
into an [n+1; k; n� k+2] MDS code if n < q. Such an MDS code could also be
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used to construct multisecret-sharing [k; k; n+1] threshold schemes by choosing
proper elements for the matrix G.

A more general class of MDS codes is the generalized RS codes. Let � =
(�1; � � � ; �n) where the �i are distinct elements of GF (q), and v = (v1; � � � ; vn)
where the vi are nonzero (but not necessarily distinct) elements of GF (q). The
generalized RS code, denoted by GRSk(�;v), is generated by the following ma-
trix

G =

2
6664
v1�

0
1 v2�

0
2 � � � vn�

0
n

v1�1 v2�2 � � � vn�n
...

...
...

...

v1�
k�1
1 v2�

k�1
2 � � � vn�

k�1
n

3
7775 : (11)

This is an [n; k; n � k + 1] MDS code. When v1 = v2 = � � � = vn = 1 it is the
Reed-Solomon code. Linear multisecret-sharing [k; k; n] threshold schemes based
on the generalized RS codes can be similarly constructed as described in the
following theorem.

Theorem8. Choose n elements �i 2 GF (q) such that (5) holds for each 1 �
j � k � 2. Then the linear multisecret-sharing scheme of (2) with the matrix G
of (11) is a [k; k; n] threshold scheme.

The proof of this theorem is similar to that of Theorem 7.

Example 2 As an example of the linear multisecret-sharing schemes based on
generalized RS codes, we consider again the �eld GF (11) and k = 3. Let �i = i
for i = 1; 2; 3; 4; 5 and v1 = 1, v2 = 2, v3 = 3, v4 = 5 and v5 = 6. The matrix of
(11) then becomes

G00 =

"
1 2 3 5 6
1 4 9 9 8
1 8 5 3 7

#
;

which generates a [5; 3; 3] generalized RS code. Since each 2�2 submatrix of G00

is invertible, G00 gives a multisecret-sharing [3; 3; 5] threshold scheme. ut
With the Bossen-Yau code C0 de�ned at the begining of this section, a linear

multisecret-sharing scheme could be similarly constructed by choosing the mod-
uli properly. This code can also be generalized in the same way for RS codes, and
linear multisecret-sharing threshold schemes based on them could be similarly
constructed. We shall not go into these multisecret-sharing schemes in detail.

5 From [k; k; n] to (k;n) Threshold Schemes

Multisecret-sharing [k;m; n] threshold schemes are designed for sharing a set
of k independent secrets among n participants. Naturally, it can be used as
an (m;n) threshold scheme for sharing one secret among n participants as
follows. For simplicity, we assume that Si are the same. Let si be the single
secret to be shared among n participants, choose randomly k � 1 values for
s1; � � � ; si�1; si+1; � � � ; sk. Then compute and distribute the shares to the n par-
ticipants as the same as for multisecret sharing. When m shares are available,
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compute the vector s = (s1; � � � ; sk) and thus obtain the required secret si. By the
de�nition of multisecret-sharing systems this gives an (m;n) threshold scheme
for single secret sharing.

It is important to note when a multisecret-sharing [k;m; n] threshold system
is used for single secret-sharing, the single secret can be put as any coordinate of
s. A multisecret-sharing [k; k; n] threshold scheme gives k distinct (k; n) thresh-
old schemes for single-secret sharing. It should be noted that (k; n) threshold
schemes for single secret-sharing may not be simply used as [k; k; n] threshold
schemes for multisecret-sharing. To demonstrate this, we take the Shamir scheme
as an example.

Example 3 Shamir's scheme starts with a polynomial

s(x) = s0 + s1x+ � � �+ sk�1x
k�1 2 GF (q)

and nonzero distinct elements �i for i = 1; 2; � � � ; n. The single secret to be
shared is s0. The shares are computed as ti = s(�i). This is a (k; n) threshold
scheme for single secret sharing. One may think this can be used directly as a
[k; k; n] threshold scheme by taking s1; � � � ; sk�1 as k�1 other secrets. This could
be wrong. For example, take q = 5, and �i = i for i = 1; 2; 3; 4. If the Shamir
(3; 4) threshold scheme is used for sharing three secrets s0; s1; s2 among four
participants, it is not a [3; 3; 4] threshold scheme for multisecret sharing, since
knowing two shares t1 and t4 determines the second secret s1 although they give
no information about each of the other two secrets s0 and s2. It should also be
noted that in the Shamir's scheme for single-secret sharing, the secret can also
be hidden in the last coe�cient sk�1, but may not be hidden in s1; s2; � � � ; sk�2,
depending on the choice of the �i's. ut

Clearly, the requirements for multisecret sharing are much stronger than
those for single secret sharing. That is why a [k;m; n] threshold scheme can
be easily used as an (m;n) threshold scheme for single secret sharing, but the
converse is not true for many (m;n) threshold schemes for single secret sharing.

It is not hard to see that not every MDS code can be used to construct linear
multisecret-sharing threshold schemes since it is possible that an MDS code has
no generator matrix satisfying condition D2. However, it is possible to use such
an MDS code for single-secret sharing.

Theorem9. An [n; k; n�k+1] MDS code C over GF (q) can be used to construct
a (k; n) threshold scheme for single-secret sharing if it has a generator matrix
G such that one of the vectors ei cannot be a linear combination of any k � 1
column vectors of G.

Proof: Without loss of generality, assume that e1 is not a linear combination
of any k � 1 column vectors of a generator matrix G. Then the (k; n) threshold
scheme based on the MDS code is described as follows. Let s1 be the single
secret to be shared among n participants. Choose randomly s2; � � � ; sk 2 GF (q).
Let s = (s1; � � � ; sk). The n shares ti are taken as t = (t1; � � � ; tn) = sG. By
the de�nition of [k; k; n] threshold schemes and the proof of Theorem 4 this is a
(k; n) threshold scheme for single-secret sharing. ut

Clearly, given a generator matrix G of an [n; k; n� k+1] MDS code, if each
of ei1 ; � � � ; eih is not a linear combination of any k�1 column vectors of G, then
the single secret can be put into any of the ijth coordinate.
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6 Against Cheating

In schemes for single-secret sharing some participants may present a falsi�ed
share for cheating. For multisecret-sharing this problem is the same as for single-
secret sharing. By the connection between linear multisecret-sharing schemes
and linear codes established by Theorems 1 and 4, linear multisecret-sharing
schemes have the ability to detect cheating and to correct cheating provided
that the corresponding linear codes have the ability to detect and correct errors.
This can be done directly by error-detecting and error-correcting techniques in
coding theory.

The [k; k; n] threshold schemes for multisecret-sharing schemes based on MDS
codes are attractive in against cheating since there are e�cient decoding algo-
rithms for those codes. Assume that k + j participants have presented their
shares for recovering the secret.

Theorem10. A [k; k; n] threshold scheme for multisecret sharing can correct
up to b(n� k)=2c+ k+ j �n cheaters when k+ j participants come together for
the secret.

Proof: Let G be its matrix in (2). Then G is the generator matrix of an [n; k; n�
k+1] MDS code. So it can correct b(n� k)=2c errors. Suppose among the k+ j
participants there are t cheaters. If t � b(n� k)=2c+ k+ j�n, choose randomly
n � k � j values for the other n � j � k shares held by the other n � j � k
participants. Then there are at most b(n � k)=2c errors in the n shares. Thus,
the t errors can be corrected. ut

It is easily seen that to have the ability to correct cheaters, the parameter j
should satisfy (n�k+2)=2 � j � n�k. When all n participants come together,
the system can correct b(n � k)=2c cheaters and detect n � k cheaters. This is
practically feasible since there are e�cient decoding algorithms for some MDS
codes.

7 Concluding Remarks

Some relations between linear threshold schemes for single-secret sharing and
some MDS codes were noticed by McEliece and Sarwate [9] and by Karnin,
Green and Hellman [5]. McEliece and Sarwate pointed out the relation between
Shamir's scheme and Reed-Solomon codes and gave some generalization where
each RS code is applicable for single-secret sharing, while we have used RS
codes and generalized RS codes for multisecret-sharing where only RS codes
with a generator matrix satisfying condition D2 are applicable. This shows the
di�erence. It is easy to give examples to show that not every MDS code has a
generator matrix satisfying condition D2.

Karnin, Green and Hellman [5] suggested a method for single-secret sharing
which is equivalent to using MDS codes for single-secret sharing. They also
suggested a method based on matrices for multi-secret sharing [5], but it is not
known whether their approach to multi-secret sharing can be formulated into
one based on codes. In this paper we have used special MDS codes for multi-
secret sharing, and only special MDS codes can be used within our approach, as
shown clearly by Theorems 4 and 9. The approach we considered in this paper
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can be viewed as an extension of McEliece and Sarwate's generalization of the
Shamir scheme. However, our main concern here is multisecret-sharing while
Shamir, McEliece and Sarwate considered only single-secret sharing. We refer to
the approach considered in the paper as the coding approach since

1. in single-secret sharing the secret is a component of the information vector
and the shares form all components of the codeword corresponding to the
information vector;

2. in multisecret sharing the multisecret is exactly the information vector and
shares form the exact codeword corresponding to the information vector.

The advantage of the coding approach is that cheating correction and detec-
tion are convenient since each share vector is a codeword of the codes generated
by the matrix G, but the disadvantage is that special MDS codes are needed.

Some applications of codes in secret-sharing were considered by Massey [7, 8],
where the concept of minimal codewords was introduced to characterize the
access structure of some single-secret sharing schemes based on codes.

Since this paper is only about linear multisecret sharing based on codes, we
could not mention the vast achievement in single-secret sharing here. However,
we have mentioned all relevant results to this topic which we are aware of. For
some information about single secret sharing, we refer to [10, 12, 13, 14, 15].
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