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Abstract: This paper presents a genetic trajectory planning method of a robot ma-

nipulator producing the optimal trajectory between two end points. Genetic algorithm

based methods seldom require a priori knowledge of a problem. Furthermore, they do

not tend to fall into local optima and proceed toward the global optimum. However,

they have di�culty in handling equality constraints of trajectory boundary conditions

because they use probabilistic transition rules to �nd a solution. In this paper, we inves-

tigate the proper genetic trajectory parameterization and develop an e�cient scheme

for the implementation of genetic trajectory planner. We demonstrate the e�ectiveness

and validity of the proposed approach through some simulation studies.
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1 Introduction

For industrial application of robot manipulators, automatic generation of opti-
mal trajectories is essential to increase the productivity. This theme has been
therefore one of the important issues in robotics. The trajectory planning can
be classi�ed into two categories. The one is the trajectory planning along a
speci�ed path and the other is without a given path.

The search space is greatly reduced in the problems related to the �rst cate-
gory, thereby the following methods are available such as dynamic programming
(DP) [Shin and Mckay 86, Singh and Leu 87] , graph search [Jacak 92], and phase
plane algorithms [Dubowsky et al. 86, Bobrow et al. 85, Shin and Mckay 85].
DP and graph search method discretize the search space and can implement the
general cost. Phase plane algorithm is especially e�cient for the time optimal
trajectory planning. It is di�cult, however, to apply these methods to the high
dimensional search problem.

The problem in the second category is more di�cult than the �rst one be-
cause the path and trajectory planning must be considered together. It belongs
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to the two-point-boundary-value-problems in optimal control theory and Pon-
tryagin's Maximum Principle (PMP) o�ers the basic analysis tool. Shooting

algorithm, which is a kind of Newton Raphson search, is known as a typical
numerical tool for solving this problem [Geering et al. 86]. Other methods for
solving this problem are based on the trajectory parameterization and nonlin-
ear programming (NLP) [Dissanayake et al. 90, Lee and et al. 95]. NLP and
shooting method commonly need the auxiliary information such as Jacobian or
Hessian to speed up the search and need considerable trials of initial feasible
seeds for the global optimal solution. However, in spite of this point-to-point
optimal trajectory planning, it is not so easy to solve the problem because of
the highly coupled nonlinearity in manipulator dynamics. Thus, the problem in
the second category remains a problem yet to be completely solved.

Recently, genetic algorithms (GAs) have been highlighted in a variety of
�elds and successfully applied in many engineering problems. The applications
of GAs to robotics are gradually increasing now. Davidor used GA for the path
planning of a redundant robot (see [Davidor 91]). Kim and Khosla suggested a
new methodology of robot manipulator design using GA (see [Kim and Khosla
93]). Handley developed an intelligent genetic path planner for a mobile robot
focusing on the automatic generation of genetic programs (see [Handley 93]).
The use of GAs in the optimal trajectory planning has several advantages over
the other conventional methods. They have the features that do not tend to fall
into local minima, but proceed toward the global optimum using the combined
information at many search points, which make GAs robust for highly nonlinear
problems. Furthermore, they seldom require the auxiliary information and the
speci�c knowledge of the problems a priori.

In this paper, we propose a GA based trajectory planner to solve the problem
in the second category, especially for the optimal time trajectory planning. We
present the formulation of GA based trajectory planning and its implementation
focusing on genetic trajectory parameterization with acceleration. A typical
characteristic of time optimal motion and improved performance results were
observed in simulations in comparison with other method in [Dissanayake et al.
90], which shows the validity of the proposed approach .

The organization of this paper is as follows. In Section 2, a simple genetic
algorithm is briey reviewed. In Section 3, we formulate an optimal trajectory
planning of a robot manipulator in the view of proper implementation of genetic
algorithm. Section 4 contains the detailed implementation procedure of the
proposed genetic trajectory planning scheme. In Section 5, the validity and
e�ectiveness of the proposed method is veri�ed through some simulation studies
in comparison with the other method. In Section 6, we conclude our statements
and present some future research plans.
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2 Simple Genetic Algorithm

2.1 Brief Review of a Simple GA

Genetic Algorithms (GAs) are a sort of population-oriented search techniques
which use probabilistic transition rules to evolve multiple potential solutions.
GAs do not require the auxiliary information of objective function and con-
straints. They have robust characteristic for the problems with multiple local
minima. These properties of GAs can give advantages over the other conven-
tional optimal trajectory planners of a robot manipulator that have been men-
tioned previously.

A simple GA commonly uses binary coding for parameter representation.
When the real parameter set with the parameter number Np is given by x =

fx1; x2; � � �xi; � � � ; xNP
g (hereafter, we de�ne x

4
= f[

Np

i=1xig), it is encoded into

a binary string x̂ (
4
= f[

Np

i=1x̂ig) which is also called a chromosome. If each real
parameter xi, which has the maximum bound xUi and the minimum bound xLi , is

encoded into the binary string x̂i using the binary length L̂i, then the precision
of the encoded parameter is given by

�x̂i =
xUi � xLi

2L̂i � 1
(i = 1; 2; 3; � � � ; Np)

The above equation means that a simple GA, when it adopts a binary coding
representation, has limited precision.

A genetic algorithm is mainly composed of three basic operators : reproduc-
tion, crossover, and mutation [Goldberg 89]. Reproduction is a process in which
the individual strings (chromosomes) in a population are replicated according to
their �tness so that the individuals with a high suitability of solution contribute
more o�spring in the next generation.

After reproduction, crossover is proceeded with high probability (crossover
probability : pc) by exchanging the partial binary substrings of two mated parent
strings. Otherwise, the parents are cloned into their children. This operator
propagates the short, highly �t schemata through the population. The crossover
site is picked at random and placed at the same bit position of two mated parent
strings. For the following two parent strings x̂1 and x̂2 with a single parameter
of the binary length 7, after one point crossover which is picked at the crossite
(j), the o�spring strings x̂1c and x̂

2
c are born as follows.

x̂1 = 1111j000; x̂2 = 0000j111 �! x̂1c = 1111111; x̂2c = 0000000

Mutation operator changes some bits of individual strings occasionally with
some low probability (mutation probability : pm << pc). By mutating the third
bit of x̂1c , x̂

1
c becomes x̂

1
m = 1101111. Otherwise, x̂1c is retained. Mutation has the

e�ect of local search and increasing the diversity of a population. This operator
is a secondary guarantee that the genetic search can access the whole search
region. It helps to prevent loss of useful schemata and premature convergence
to local points.
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Elitism, which retains the best individual string over every generation, is im-
portant for an e�cient application of GA. Through the implementation of elitism
on the GA, the genetic solution can approach to the global optimum asymptot-
ically as the generation proceeds Here, the convergence to optimum means the
ideal matching case such that all parameters of the binary encoded optimal so-
lution matches their corresponding parameter values of the real optimal solution
within the desired precision (see [Yao and Sethares 94] and [Rudolph 94]).

Fig.1 shows a typical owchart of a simple genetic algorithm.

  Initialize Population
  Generation  = 1

 Evaluate Fitnesses  of  Individuals

Selection & Reproduction

 Recombination(Crossover)

Mutation

     Generation = Generation + 1

No
End

Yes
  Terminate ?

E
vo

lu
tio

na
ry

 C
yc

le

Keep Best
Individual

Figure 1: Flowchart of a simple genetic algorithm

2.2 Fitness Transformation with a Penalty Function

The optimal trajectory planning problem of a robot manipulator can be repre-
sented as a kind of constrained optimization problems such as many engineering
problems. GA for a constrained optimization problem is fundamentally based
upon a penalty function approach. The following constrained objective function
with equality constraints and inequality constraints

minimize f(x) (1)

subject to gk(x) � 0 (k = 1; 2; � � � ;M1)

hl(x) = 0 (l = 1; 2; � � � ;M2)

can be converted into the following unconstrained auxiliary one with penalty
functional description.

min P (x) = f(x) +

M1X
k=1

wk ��(gk(x)) +

M2X
l=1

wl �	(hl(x)) (2)
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where M1 and M2 are the numbers of inequality and equality constraints, re-
spectively. �(�) and 	(�) are the penalty functions for inequality and equality
constraints, respectively, which are typically denoted as �(y)=jmax(0; y)mj and
	(y)=jyjm. max(x; y) returns the maximum value between two arguments. j � j
denotes the absolute norm of the function andm is the positive number. In GAs,
the �tness is de�ned as the maximization of the objective function and must be
positive. The commonly used �tness transformations in GAs are the inverse of
the auxiliary function in (2) or subtracting it from some large positive number
Cmax [Goldberg 89]. Thus the �tness for the above problem can be written as :

fit = max(0; 1=P (x)) or max(0; Cmax � P (x)) (3)

The �tness transformation with a penalty function above, however, seems a
weak methodology for the heavily constrained optimization problems with many
equality constraints and target variables. GAs use probabilistic transition rules
to �nd a solution and does not utilize any auxiliary information of the func-
tion unlike conventional algorithms, such as NLPs. In addition, they have the
limited precision in representing a parameter due to the binary representation,
as described in [Section 2.1]. If we deal with the equality constraints using the
�tness of GA directly in the form of a penalty function like, such as (2)-(3), it
is highly possible that the genetic solution does not exactly match the equality
constraints and stay on a local point in spite of the long generations of search.
Even though a solution is found, the accuracy and repeatability of it may be
very poor. Therefore, it is necessary to develop a genetic trajectory planner
regarding the above mentioned properties of GA.

3 Formulation of Genetic trajectory Planning

3.1 Problem Statement

The optimal trajectory planning problem of a robot manipulator is described as
follows.
For the given initial and �nal trajectory boundary conditions (BC) :

q(0) = q0; q(tF ) = qF f PBC g : position (4)

_q(0) = 0; _q(tF ) = 0 f VBC g : velocity (5)

and the robot manipulator dynamics :

M(q)�q + C(q; _q) +G(q) = T f R g (6)

�nd the optimal trajectories of the manipulator such that minimize some cost
(In this paper, we consider the travel time as the cost) :Z tF

0

dt = tF f COST g (7)
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subject to the following joint limit constraints (LC) :

QL � q � QU f PLC g : position (8)

V L � _q � V U f VLC g : velocity (9)

AL � �q � AU f ALC g : acceleration (10)

TL � T � TU f TLCg : torque (11)

where
n : degree of freedom (d.o.f.) of a robot manipulator,
tF : travel time between initial position and terminal one,
q; _q; �q 2 Rn : generalized position, velocity and acceleration vectors ,
T 2 Rn: generalized control torque (force) vector,
M(q) 2 Rn�n : inertia matrix,
C(q; _q) 2 Rn : Corriolis and centrifugal force vector,
G(q) 2 Rn : gravitational force vector,
U,L : superscript of upper and lower limit constraints respectively.

3.2 Genetic Trajectory Parameterization

The trajectory variables can be divided into two groups : kinematic trajectory
variables and control torque. The kinematic trajectory variables are joint posi-
tion, velocity and acceleration. The trajectory constraints are consisted of two
parts : the equality constraints of trajectory boundary conditions (PBC; V BC)
and inequality ones of trajectory limit constraints (PLC; V LC;ALC and TLC).

It is an important issue in robotics how to select the trajectory parameters
among trajectory variables and how to select the optimization method for the
trajectory planning . For illustration, the following works have been done for
the trajectory planning with control torque and acceleration parameterization
respectively. Dissanayake et al. adopted control torque parameterization and
solved the optimal trajectory planning for two-link manipulator using sequen-
tial quadratic programming (SQP) (see [Dissanayake et al. 90]). Similarly, Lee
performed the trajectory planning for dual cooperating manipulators with ac-
celeration parameterization and SQP (see [Lee and et al. 95]).

In the view of SQP, which is a kind of typical NLP, it is not so di�cult
to match the trajectory boundary conditions because the search is done de-
terministically along the hyperplanes of equality constraints with the gradient
information and the step size control of parameter variables.

However, if we adopt control torque for the genetic trajectory coding parame-
ters, we have di�culty in the exact match of the trajectory boundary conditions.
Control torque parameterization always involves the equality constraints of the
trajectory boundary conditions explicitly and it is di�cult to be adopted as the
genetic trajectory coding parameters.

In this paper, we employed the joint acceleration parameters for the genetic
trajectory parameterization. It was also employed in [Lee and et al. 95], however,
our method and procedure to incorporate it with a genetic algorithm are much
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di�erent from those that are based on the conventional nonlinear programming
methods.

4 Procedure of Genetic Trajectory Planner

4.1 Acceleration Parametrizaton for GA

In this section, we describe the procedure of acceleration parameterization for
the e�cient implementation of genetic algorithm. For convenience, the notation
afterwards will be denoted as follows :

Notations for acceleration parameterization

n : index of the joints of manipulator
N : number of trajectory partition
�t(=tF =N) : equally partitioned travel time

qj ; vj(
4
= _qj); aj(

4
= �qj); Tj :

position, velocity, acceleration and torque of the j-th joint respectively

qj;i; vj;i(
4
= _qj;i); Aj;i(

4
= �qj;i)(i = 1; 2; � � � ; N) : position,

velocity, acceleration of the j-th joint in the i-th interval respectively
Qj;i; Vj;i (i=0; 1; � � � ; N) : position, velocity of the j-th joint at the i-th knot

position, here i=0,N means initial and terminal knot respectively

Q
4
= fQj;i j j = 1; 2; � � � ; n; i = 0; 1; � � � ; Ng : set of knot positions

V
4
= fVj;i j j = 1; 2; � � � ; n; i = 0; 1; � � � ; Ng : set of knot velocities

A
4
= fAj;i j j = 1; 2; � � � ; n; i = 1; 2; � � � ; Ng : set of accelerations

The trajectory discretization method used in this paper is as follows. At
�rst, divide the total travel time interval [0; tF ] into N equal subintervals. That
is :

[0; tF ] = [t0; t1] [ [t1; t2][; � � � ;[[tN�1; tN ] (12)

where

�t = ti � ti�1 =
tF

N
(i = 1; 2; � � � ; N) (13)

Next, the joint accelerations are kept constant in each travel time subinterval,
that is :

Aj;i = constant (i = 1; 2; � � � ; N) (14)

To specify the travel time explicitly and to adopt it as a system parameter,
rescale the travel time t 2 [ti�1; ti] by the normalized parameter � as follows :

� =
t� ti�1

�t
(i = 1; 2; � � � ; N); � 2 [0; 1] (15)

Then, the joint velocity in the i-th travel time subinterval is expressed by :

vj;i = Vj;i�1 +

Z t

ti�1

Aj;idt (16)
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And, the joint displacement can be obtained as :

qj;i = Qj;i�1 +

Z t

ti�1

vj;idt = Qj;i�1 +
1

2
��t(Vj;i�1 + vj;i) (17)

The total summation of the products of joint acceleration and the corresponding
travel time interval must be the discrepancy of �nal and initial velocity, which
is zero in this case (V BC).

Z tF

0

ajdt =

NX
i=1

Aj;i�t = 0 (18)

Then the joint velocity at the i-th knot position of travel time interval is recur-
sively obtained as follows :

Vj;i = Vj;i�1 +Aj;i�t =
iX

k=1

Aj;k�t (19)

The joint position at the i-th knot position of travel time interval can be written
as :

Qj;i = Qj;i�1 +
1

2
(Vj;i�1 + Vj;i)�t (20)

Now, substituting (19) for (20) recursively, the following equations are derived.

Qj;N �Qj;0 =

N�1X
i=1

Vj;i�t =

N�1X
i=1

(N � i)Aj;i�t
2 (21)

Substituting (18) for (21), the relationship between the joint position di�erence
between two task points and joint accelerations is obtained as follows :

Qj;N �Qj;0 = N(

NX
i=1

Aj;i �Aj;N )�t
2
�

N�1X
i=1

iAj;i�t
2 = �

NX
i=1

iAj;i�t
2 (22)

Hence, if we adopt the joint accelerations as the genetic coding parameters,
then, two dependent joint acceleration parameters Aj;k; Aj;l must satisfy the
two simultaneous equations of (18) and (22) in order to match two trajectory
boundary conditions (PBC, V BC). That is :

�
Aj;k

Aj;l

�
=

1

l� k

�
l �1
�k 1

�
�

"
�
PN

i=1;i6=k;l Aj;i
Qj;0�Qj;N

�t2
�
PN

i=1;i6=k;l iAj;i

#

for k; l = 1; 2; � � � ; N and k 6= l.
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4.2 Trajectory Parameter Coding

When we adopt joint acceleration for the genetic trajectory coding parameter,
without losing generality, we can select two dependent parameters asAj;N�1; Aj;N

to match the two trajectory boundary conditions (PBC, V BC). The coding pa-
rameter set of each individual string is given as follows :

x̂ = f

n[
j=1

N�2[
i=1

Aj;i and tF g (23)

where f
Sn

j=1

SN�2

i=1 Aj;ig are the acceleration coding parameters and tF is the
travel time coding parameter. The two dependent acceleration parameters se-
lected to match the PBC and V BC are determined by :�

Aj;N�1

Aj;N

�
=

�
N �1
1�N 1

�
�

"
�
PN�2

i=1 Aj;i
Qj;0�Qj;N

�t2
�
PN�2

i=1 iAj;i

#
(24)

The coding parameter size for each individual string x̂ is as follows :

Np = n � (N � 2) + 1 (25)

4.3 Handling the Limit Constraints

The trajectory limit constraints of a robot manipulator, which are expressed by
the continuous inequality equations, are not so easy to handle, so we transform it
into the canonical static constraints. For illustration, let us consider a dynamic
system as follows :

given : _x(t) = f(x(t); u(t))
subject to : xL � x(t) � xU ;8t 2 [0; tF ]

(26)

where x(t) is the state variable with the lower limit xL, the upper limit xU and
u is the control input. We can transform the continuous dynamic inequality
constraints in (26) into the static equality constraints as follows :

c(x) =

Z tF

0

wx(min(x
U
� x; 0))2 + (min(x� xL; 0))2dt (27)

If c(x) becomes zero, the inequality constraint in (26) is satis�ed. We handle
the trajectory limit constraints similarly. For convenience, let us denote xj as

a trajectory variable of the j-th joint such that xj
4
= qj(position), vj(velocity),

aj(acceleration), Tj(torque). And let us denote the trajectory variable of (8)-
(11) as xj(t) 2 [xLj ; x

U
j ];8t 2 [0; tF ] , where x

L
j and xUj are the lower and upper

bound of each trajectory variable of the j-th joint, respectively. Then, we can
rewrite (8)-(11) as :

G(xj) =W t
xg(xj) (28)
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where

g(xj)
4
=

" R tF
0
jmin(1� xj=x

L
j ; 0)j

mdtR tF
0
jmin(1� xj=x

U
j ; 0)j

mdt

#
2 R2�1

is the constraint violation vector, W t
x

4
= [wL

x wU
x ] 2 R

1�2 is a weighting vector
related to the lower and upper bound of x and m is a positive exponent number.
If G(xj) goes to zero, it means that trajectory variable xj satisfy its continuous
limit constraint in (8)-(11).

By reecting the trajectory limit constraint in (28) on the �tness function,
the trajectory �tness for the genetic trajectory planning is denoted as follows :

fit = max(0;
1

tF +
P

x

Pn

j=1G(xj)
) (29)

where
tF : travel time (COST to minimize),
max(x; y) : maximum value between two arguments x and y,

xj : type of trajectory variable of the j-th joint such that x
4
= q(position),

v(velocity) , a(acceleration) and T (torque),
G(x) : modi�ed limit constraints related to the type of x (PLC, V LC, ALC,
TLC),P

x : notation reecting each trajectory limit-constraint on the trajectory �tness.

4.4 Algorithm of Overall Procedure

The procedure of newly developed technique for the genetic trajectory planning
for a robot manipulator is described as follows.

Notations x̂=fx̂i j i = 1; 2; � � � ; Npg : trajectory chromosome in (23)
k = 1; 2; � � � ; Npop : index for the k-th individual of a population

X̂ = fx̂k j k = 1; 2; � � � ; Npop g : chromosomes of a population
Fit = ffitk j k = 1; 2; � � � ; Npopg : �tness vector of a population


s : X̂ �RNpop 7! X̂ ; selection operator


c : X̂ 7! X̂ ; crossover operator


m : X̂ 7! X̂ ; mutation operator
Initial robot link parameters
settings QL; � � � ; TU : lower and upper bounds of LC in (8)-(11)

GA pc; pm 2 [0; 1] : crossover, mutation probability
[x̂L; x̂U ] : encoding bounds for a chromosome x̂

L̂ = fL̂i j i = 1; 2; � � � ; Npg : encoding lengths for x̂
Npop : population size, Ngen : max. generation number

etc. d� : sampling time, N : travel time partition number
Input q0; qF : initial and terminal position of a robot (PBC)

Halt � : X̂ 7! fYes, Nog ; halt when generation number reaches Ngen

Output trajectory of elite string ful�lling halting criteria
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Pseudo code for the algorithm

1. Initialization

1.1 Perform initial settings for the parameters of a robot, GA and etc
1.2 Input task points (PBC)

1.3 gen 1, X̂(gen) Init Chromosomes(x̂L; x̂U ; L̂; Npop)

while (�(X̂(gen) 6= Yes) do

2. Evaluate Fit(gen) with X̂(gen)
for k=1 to Npop do

2.1 x̂ x̂k

2.2 Compute �t using (13)
2.3 Compute acceleration set A using (24)
2.4 Compute knot velocity set V , position set Q

using (19)-(20) respectively
2.5 Compute acceleration �q from A, velocity �q and position q

using (16)-(17) and torque T using (6) respectively
2.6 Compute �tness fit using (28)-(29)
2.7 fitk  fit

end

3. GA operation

3.1 X̂s(gen) 
s(X̂(gen); F it(gen))

3.2 X̂c(gen+ 1) 
c(X̂s(gen))

3.3 X̂m(gen+ 1) 
m(X̂c(gen))

4. gen gen+ 1, X̂(gen) X̂m(gen)
end

5. return Output

5 Simulation

The robot used for the test has the same link parameters and TLC like as in
[Dissanayake et al. 90]. The main di�erences between this method and our
method are compared in [Tab.1]. The speci�cation of the robot is shown in
[Tab.2] and [Fig.2]. The dynamics of the robot are as follows :

T1 =M11�q1 +M12�q2 � 2h _q1 _q2 � h _q22 ; T2 =M22�q2 +M12�q1 + h _q21

where M11 = I1 + I2 +m1l
2
1 +m2(L

2
1 + l22 + 2L1l2cos(q2)), M12 = I2 +m2l

2
2 +

m2L1l2cos(q2), M22 = I2 +m2l
2
2, h = m2L1l2sin(q2).

We used a two point crossover, roulette wheel selection, bit-ipping mutation
and elitism for GA operators (see [Goldberg 89]). For details of the GA spec-
i�cation, see [Tab.3]. ALC is needed for the encoding bounds of acceleration
parameters of an individual chromosome in our method , however, since ALC
is not speci�ed in [Dissanayake et al. 90], we heuristically set it to [-100 100]
(rad=sec2) for all joints by dividing the torque bound of each joint with its link
inertia. The encoding bound of travel time parameter is set to [0.5 1.0](sec)
and the penalty weight, W t

T , for TLC is set to [10 10]. The trajectory partition
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number, N , is set to 10 as in [Dissanayake et al. 90] and sampling time, d� , is
set to 0.5. Each parameter in a chromosome x̂ is coded with 8 bits.

The optimal travel times obtained by three trajectory planners are compared
in [Tab.4], where the conventional trajectory planner is the one that manipulates
joint actuators according to a triangular velocity pro�le. The solutions obtained
by the proposed method were slightly improved more than those of the method
in [Dissnayake 90] for these cases (about 9% enhancement). The simulation was
carried out using PC 586 with a 100 Mhz CPU clock. All programs were written
in m �les of Matlab which is a widely used package in control engineering. The
�tness computation time took 3.6-4.0 sec for a population in one generation for
the test cases.

[Fig.3] (a) and (b) show the �tness change of the elite individual during
generation for case 1 and 3, respectively. [Fig.4] (a) and (b) show the objective
(travel time) and TLC violations of the elite individual for case 1 and case 3,
respectively, where it is seen that TLC violations are diminished to zero after
some generations, that is, they are satis�ed within 200 generations.

Thus, TLC is satis�ed for all test cases when N is 10, population size Npop

is 30 and generation number Ngen is 200 (the total number of �tness evaluation
is Npop �Ngen = 6000). However, as N is increased to 15 , TLC is not satis�ed
for all test cases within 200 generations.

To get a hint of this property, observe a constrained problem with the
limit constraint of jxij � xU (i = 1; 2; � � � ; N) and the equality constraint ofPN

i=1 xi = 0. Selecting a dependent parameter of a chromosome x̂ to match

the equality constraint as x̂N=�
PN�1

i=1 xi, we can estimate the extreme value
of jx̂N j as (N � 1)xU . If the parameters x̂i (i = 1; 2; � � � ; N � 1) of a chromo-
some x̂ are encoded with the bound of xU , the dependent parameter x̂N can
violate the limit constraint with O(N) in the worst case. This property can
degrade the performance of our GA planner since the search e�orts might be
more concentrated on �nding feasible trajectories rather than minimizing the
cost during the GA search. From the above illustration, it seems that a large
trajectory partition is not desirable for our GA planner, with a small population
and a small generation cycle. Therefore, a trade-o� is to be considered between
solution performance and computational e�ciency in selecting the parameters
of the proposed GA planner.

[Fig.5] (a) and (b) show the time optimal motion for case 1 and 3, respectively,
where the inward motion of links is observed during the traveling, which is a
typical characteristic of the time optimal motion. This means that the robot
manipulator takes a minimum inertia con�guration to reduce the mechanical
kinetic energy of links during the optimal motion. The joint position, velocity,
acceleration and torque trajectories of genetic optimal solution are shown for
case 1 from [Fig.6] to [Fig.9]. It is seen that the robot manipulator utilizes its
torque range almost fully in order to achieve the minimum time motion under
TLC.
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Table 1: Comparison between the method

Description [Dissanayake et al. 90] Our Method

COST Travel time
Optimization tool SQP (NLP) GA
Parameterization Torque Acceleration
Handing BC Penalty function Matched
Handling TLC Penalty function

Trajectory partition number N 10

Table 2: The speci�cation of link parameters for a robot

Description Symbol & Unit Value

Length of the 1st link L1 (m) 0.4
Length of the 2nd link L2 (m) 0.4

Distance from the 1st joint to its C.G l1 (m) 0.2
Distance from the 2nd joint to its C.G l2 (m) 0.2

Mass of the 1st link m1 (kg) 0.5
Mass of the 2nd link m2 (kg) 0.5

Inertia of the 1st link about its C.G I1 (kg �m) 0.1
Inertia of the 2nd link about its C.G I2 (kg �m

2) 0.1

TLC at joint 1 [TL
1 TU

1 ] (N �m=rad) [-10 10]
TLC at joint 2 [TL

2 TU
2 ] (N �m=rad) [-10 10]

Table 3: Speci�cation of genetic trajectory planner

Description Symbol Speci�cation

Population size Npop 30
Selection scheme 
s Roulette wheel selection
Crossover type 
c Two point crossover

Crossover probability pc 0.677
Mutation probability pm 0.033

Max. generation number Ngen 200
Elitism � Used

Parameter set (chromosome) x̂ f[nj=1 [
N�2
i=1 Aj;i; tF g
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Table 4: Comparison of the travel time for three trajectory planners
(a) conventional planner, (b) the planner in [Dissannayake et al. 90], (c) the
proposed GA planner

PBC (rad) Travel time solution (sec)
Case q0 ) qF (a) (b) (c)

1 (0.00,-2.00)) (1.00,-1.00) 1.092 0.6711 0.6255
2 (1.00,-1.00)) (0.00,-2.00) 1.079 0.6732 0.6686
3 (1.32,-2.64)) (2.80,-2.37) 0.727 0.6404 0.5267

x

y

q2

q1

L1
L2

l1

l2m1 , I1

C.G.

m2 , I2

C.G.(center of gravity)

Figure 2: Two link robot for simulation
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Figure 6: Position trajectories (a) case 1 (b) case 3
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Figure 7: Velocity trajectories (a) case 1 (b) case 3
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Figure 8: Acceleration trajectories (a) case 1 (b) case 3
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1071Lee Y.D., Lee B. H.: Genetic Trajectory Planner for a Manipulator with ...



6 Conclusion

A new genetic trajectory planner is proposed for the trajectory optimization of
a robot manipulator. The trajectory parameterization is investigated for the
proper implementation of GA. The control torque is shown to be di�cult to be
adopted as genetic trajectory coding parameters unlike as in typical NLP tra-
jectory planner. We modi�ed the acceleration parameterization for the proper
implementation of GA. By incorporating our developed method in GA, we elim-
inated the mismatch of trajectory boundary conditions. The validity and e�ec-
tiveness of the proposed method is demonstrated by the comparisons with the
others. The presented genetic trajectory planner is not applicable in real time,
but can be available for o�-line application. Although, only the travel time con-
sidered as the cost in this paper, it can be easily extended to the other costs
such as energy and torque consumption. In the future, we will consider more
constraints and another tasks such as obstacle avoidance and multiple robot
cooperation. In addition, we have a plan to study more e�cient evolutionary
trajectory planner for robot manipulators.
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