
Using Cryptographic Hash Functions for Discretionary

Access Control in Object-Oriented Databases

Ahmad Baraani-Dastjerdi

(University of Wollongong, Australia
ahmadb@cs.uow.edu.au)

Josef Pieprzyk

(University of Wollongong, Australia
josef@cs.uow.edu.au)

Reihaneh Safavi-Naini

(University of Wollongong, Australia
rei@cs.uow.edu.au)

Janusz R. Getta

(University of Wollongong, Australia
jrg@cs.uow.edu.au)

Abstract: This is a discussion paper which presents a cryptographic solution for dis-
cretionary access control in object-oriented databases. Our approach is based on the
use of pseudo-random functions and sibling intractable function families (SIFF). Each
entity (object or class) in the object-oriented database model is associated with access
keys that ensure secure access to that entity and all related entities. The main advan-
tage of our approach is its ability to verify an access request during query processing.
Pseudo-random functions and SIFF are applied in such a way that cryptographic keys
can be generated from keys of related objects or users. The security of the system
depends on the di�culty of predicting the output of pseudo-random functions and on
�nding extra collision for the sibling intractable function family. The authorization
system supports ownership and granting/revoking of privileges.

Key Words: Data security, Database security, Object-oriented databases, Access con-
trol, Discretionary security policy, Application of cryptography.

Category: D.4.6 [Software]: Security and Protection; H.2.0 [Database Manage-
ment]: General; K.6.5 [Management of Computing and Information Systems]:
Security and Protection.

1 Introduction

In an object-oriented database system model, aspects such as classes, inheri-

tance, and composite data structures allow expression of rules for computing

implicit authorizations from explicit ones. Hence, an access request to database

objects may require applying authorization rules to explicit privileges to derive

implicit authorizations [2, 8, 18]. One important question is whether implicit

authorizations must be evaluated each time an access is requested, or whether

they should be stored as redundant authorizations. If implicit authorizations

are stored, the protection matrix gets very big. Consequently, the processing of

access requests becomes ine�cient. In this paper, we propose a solution to this

problem, based on cryptographic hash functions.

Journal of Universal Computer Science, vol. 3, no. 6 (1997), 730-753
submitted: 28/2/96, accepted: 6/5/97, appeared: 28/6/97 Springer Pub. Co.

Inheritance (inclusion relation) and composite data structures (is part of
relation) create hierarchical structures in object-oriented database systems

[23]. An interesting question is how conventional cryptographic solutions for hier-

archical access control in multi-level systems can be extended to object-oriented

database systems. Two such solutions are based on the RSA cryptosystem [1]

and one-way hash functions [25].

The main drawback of the �rst solution is that it is limited to a �xed hierar-

chy, with no provision for possible changes to the hierarchy. Moreover, the integer

values associated with the nodes of the hierarchical structure become extremely

large when the number of nodes is large. We use the second solution, proposed

by Zheng, Hardjono, and Pieprzyk [25], which is based on the sibling intractable

function families (SIFF). We show how to develop a cryptographic solution for

discretionary access control (DAC) in object-oriented database systems. The

solution applies pseudo-random functions, SIFF, and an authorization class (in-

stead of access control lists or a protection matrix). The desirable properties of

our approach are as follows.

1. We employ pseudo-random functions and SIFF to produce a pair of unique

and secure access keys and passwords for each database object (instances or

classes) and its owner. Access keys and passwords for implicit authorizations

may be derived from related database objects during query processing.

2. We use an authorization class (AC), instead of access control lists (or protec-

tion matrix), to modify authorizations and use SIFF to derive authorization-

instance identi�ers associated with users. This results in a system that is

more e�cient and practical. This is true because any alteration of the mem-

bership of user groups requires manipulation of the AC only rather than

checking all access control lists in the database. Moreover, because of data

structure consistency, the database system operation can be used to ma-

nipulate the AC. Hence, an access request may be veri�ed during query

processing.

3. The security of the system relies on (i) the indistinguishability of pseudo-

random functions from the truly random one; and (ii) the di�culty of �nding

collisions for SIFF, both of which are provably hard
1
.

4. Operations such as grant, revoke, propagation of rights, and the required

modi�cations due to the changes of both the user groups and the class struc-

ture are relatively easy to perform.

5. The existence of multiple owners of a database object (instances and classes)

is possible.

2 Sibling Intractable Function Families (SIFF)

Denote by N the set of positive integers, n the security parameter, � the alpha-

bet f0, 1g, and l(n), k(n), and m(n) polynomials in n from N to N .

2.1 SIFF De�nition

Zheng, Hardjono, and Pieprzyk [25] introduced the notion of sibling intractable

function family (SIFF), which is a generalization of the concept of universal

1 By the result of [13], the existence of one-way functions is su�cient for the construc-
tion of pseudo-random function families

731Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

one-way hash function de�ned by [17]. A universal one-way hash function family

is a class of hash functions with the property that the number of functions

that map any collection of r distinct input strings to the same hash value is

�xed. SIFF is the universal one-way hash function family with the additional

property that given a set of colliding sequences, it is computationally infeasible

to �nd another sequence that collides with the initial set. This means that if

a SIFF function h maps the bit strings x1; x2; : : : ; xi to the same hash value,

then there is no polynomial time algorithm that can be used to compute some

x0 (x0 6= xj ; j = 1; : : : ; i) such that

h(x0) = h(x1) = � � � = h(xi):

Let H = fHn j n 2 Ng be an in�nite family of functions, where Hn =

fh j h : �l(n) ! �m(n)g. Note that a function h 2 H maps l(n)-bit inputs
to m(n)-bit outputs. H is polynomial time computable if there is a polynomial

time algorithm (in n) which computes outputs for given inputs for all h 2 H . H
is samplable if there is a probabilistic polynomial time algorithm that on input

n 2 N outputs randomly with uniform probability distribution a description of

h 2 Hn. Moreover, H has the k-collision accessibility property, or simply the

collision accessibility property, if for all n and for all 1 � i � k, given a set

X = fx1; x2; : : : ; xig of i initial strings in �l(n)
, it is possible in probabilistic

polynomial time to select randomly and uniformly functions from HX
n , where

HX
n � Hn is the set all functions in Hn that maps x1; x2; : : :, and xi to the same

strings in �m(n)
. Let x 2R X denote an element x which is randomly chosen

from the set X with uniform probability. A sibling �nder F is a probabilistic

polynomial time algorithm that for a given input X = fx1; x2; : : : ; xig and the

description of h tries to compute a new collision. The �nder F outputs either \?"

(\I cannot �nd") or a string x0 2 �l(n)
such that x0 62 X and h(x0) = h(x1) =

� � � = h(xi). The following de�nition of SIFF is taken from [25]. For more details,

the reader is referred to [11] and [25].

De�nition 1. [25]. Let k(n) be a polynomial with k(n) � 1 and H = fHn j
n 2 Ng be a family of functions that are computable in polynomial time and

samplable. Moreover they have the collision accessibility property and map l(n)-

bit input into m(n)-bit output strings Hn = fhjh : �l(n) ! �m(n)g. Assume
that X = fx1; x2; : : : ; xig is a set of i initial strings, where 1 � i � k(n). H is

a k-sibling intractable function family (or k-SIFF) if for all 1 � i � k(n), any
sibling �nder F, any polynomial Q(n) > 0, and for all su�ciently large n,

PrfF (X;h) 6=?g <
1

Q(n)
;

where h is chosen randomly and uniformly from HX
n � Hn. H

X
n is the set of all

functions that map x1; x2; : : : ; xi to the same strings in �m(n)
. The probability

PrfF (X;h) 6=?g is computed over HX
n and the sample space of all �nite strings

of coin ips that F could have tossed. 2

732 Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

K

K

K k

K

d

d

d

1

2
2

k

1

OWHF

-UHF

OWHF

OWHF

k

k-UHF: k-Universal Hash Function

OWHF: One Way Hash Function

Figure 1: A sketch of a construction of k-SIFF hash function.

2.2 Sketch of Construction of SIFF

As mentioned in [25], SIFF can be constructed from any universal one-way hash

function family (OWHF). Figure 1 illustrates an example construction of a k-
SIFF hash function (see De�nition 1).

First each string Ki (i = 1; : : : ; k) is hashed by a one-way function. Then the

output (digest) is mapped to the value K by a k-universal hash function,

k-UHF(OWHF(K1)) = k-UHF(OWHF(K2)) = � � �

= k-UHF(OWHF(Kk)) = K:

The OWHF can be any one-way hash function such as MD4, MD5 [20] [21],

or HAVAL [26] for which a fast hardware implementation is available. Note

that MD4 is already considered to be insecure [5]. Also the recent work by

Dobbertin [6] casts some doubts about the security of MD5. HAVAL seems

a preferred choice for a fast and secure hashing algorithm. As stated in [24,

25], a possible candidate for a k-universal hash function family (k-UHF) with
the collision accessibility property can be obtained from polynomials over �nite

�elds. Let Pn be the collection of all polynomials over GF (2l(n)) with degree less
than k, that is,

Pn = fa0 + a1x+ � � �+ ak�1x
k�1 j a0; a1; : : : ; ak�1 2 GF (2l(n))g:

For each p 2 Pn, let up be the function obtained from p by chopping the �rst

(l(n)�m(n)) bits of the output of p whenever l(n) � m(n), or by appending a

�xed (m(n)� l(n)) bits to the output of p whenever l(n) < m(n). Let UHFn =

fup j p 2 Png, and UHF=
S
nUHFn. Then UHF is a k-universal hash function

family, which maps l(n)-bit input into m(n)-bit output strings with the collision

accessibility property.

733Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

3 Object-Oriented Model Concepts

Here, we only describe those concepts that are relevant to our discussion.

In a general-purpose object-oriented database system, all real world entities

are modelled as objects. Every object encapsulates a state and a behavior. The
state of an object is implemented by properties (or instance variables), and the

behavior of an object is encapsulated in methods that operate on the state of the
object. The state and behavior are collectively called facets of object [16]. Fur-
thermore, an object is associated with a unique identi�er called object identi�er
(OID) and may also be given a name.

A collection of the objects that share the same set of facets forms a class.

An object belongs to only one class and is an instance of that class. Each class

is given a unique name.

Classes can be organized into hierarchies of classes. There are two di�erent

types of hierarchies: the class-composition hierarchy and class-inheritance hier-
archy [14]. The class-composition hierarchy captures the is-part-of relationship,
whereas a class-inheritance hierarchy represents the is-a relationship.

A mechanism for providing authorization for object-oriented database sys-

tems needs to address both the class-composition and the class-inheritance hi-

erarchies.

4 Security Policy

The speci�cation of access control may involve a range of policy choices. The

choice of security policies is important because it inuences the exibility, us-

ability, and performance of the system [7]. In this paper, our considerations are

restricted to discretionary access control (DAC).

4.1 General Policies

In the authorization system for object-oriented database systems, the granularity

of the control, i.e., the smallest unit of authorization, may be a class, an object-

instance, and/or a property (or instance variable) [18]. We choose the units of

authorization to be classes and instances of classes. This means that one user may

be granted access to a complete class, while another user may be granted access

to its instance. Properties and methods are excluded from our consideration to

simplify the model. We will use the term entity to refer to either a class or an

instance of a class.

An authorization system works with a speci�c collection of access privileges.

We assume the following set of privileges in the authorization system: read-
de�nition, read, write, delete, execute, and create. Read and read-de�nition priv-

ileges are used to read the instances of a class and read the de�nition of a class,

respectively. An execute privilege is used to perform the methods associated with

a class. In other words, the execute privilege can be considered as an invoker that
can call methods associated with a class. Write and create privileges are used to

modify and to create an instance of a class, respectively. A delete privilege is used
to delete an instance of a class. Note that in order to exercise some privileges,

a user must have other privilege as well. For instance, if a user wants to delete

an object the user must �rst access it and later remove it. This implies that the

734 Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

user must have read and read-de�nition privileges as well. Hence to simplify the

authorization system, we assume that the privileges are partially ordered such

that authorization to access privileges of higher order implies authorization to

access privileges of lower order. The assumed order is:

write > execute > read > read-de�nition,
create > execute > read > read-de�nition, and
delete > read > read-de�nition.

This means that the holder of an access privilege of a higher order possesses

privileges of the lower order. For instance execute implies that its holder (a user)
has both read and read-de�nition privileges because the user must be able to

read the values and de�nitions associated with the parameters of a method in

order to execute the method. The user can access the result as well. The state of

the object will not change. In order to change the state of an object, the write
privilege is required.

Our authorization system is chosen to be a closed system, i.e., each privilege

must be explicitly authorized. Hence, the absence of appropriate authorizations

is interpreted as \access not allowed".

4.2 Administrative policies

Administrative policies determine who is allowed to grant and revoke autho-

rizations to entities (classes or objects). There are two approaches: centralized
administration and decentralized administration. In centralized administration,

the grant and revocation of authorizations are performed by a special user or

users called database administrators or security o�cers. The centralized adminis-
tration may be sometimes too restrictive. In a decentralized administration, users

are allowed to grant and revoke authorizations by applying ownership policies or
other mechanisms. We use a decentralized administration and allow each entity

to have its owner. Users can be grouped. A group has a sponsor who can grant

or revoke authorizations to members of the group. The database administrators'

(security o�cers') duties include admitting new users to the database system

and revoking/replacing ownerships.

Each entity (object or class) has its owner. The owner grants and revokes

privileges to the entity for other users. The owner's authority is limited to the en-

tity (s)he created. The owner has only implicit read-de�nition, read, and execute
privileges to the entities which have relationships with the owner's entity. The

owner must get permission explicitly for other privileges such as write, delete,
and create. The ownership can also be granted and revoked by the creator of the

object. A user who creates an entity is called a creator of the entity and has full

authority over it.

Three points are worth noting. First, each class has its owner and the owner of

the class can be di�erent from the owners of the class instances. Owners of classes

have full authority over their classes, and have implicit read-de�nition, read,
and execute authorization rights only on relevant instances of classes. Second, a

privilege for a class propagates to instances only when the grantor has the same

privileges or owns them. Third, a user must have the create privilege in order to

create an instance of a class.

A group is de�ned as a set of users or a collection of smaller groups. Groups

are not necessarily disjoint. This means that a user may be a member of more

735Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

than one group. Groups may be members of other groups provided they do

not belong (directly or indirectly) to any of its members. The resulting group

hierarchy has to be a directed acyclic graph. Figure 2 shows an example of a

group hierarchy.

U Uj
j1
2

’ ’
. . .

Uj
2

Uj
1

. . . Uj

Uj

Uj’

. . . U
j+1

USERS

. . . U
m

. . .

m

m

U
1

Figure 2: User groups hierarchy.

Each group has its sponsor who administers it. The sponsor can add new

members to the group or remove members from the group. Any user who is the

sponsor of a group may create a new group and grant the sponsorship to other

users.

4.3 Implicit policies

There are two di�erent types of object hierarchies in object-oriented database

systems: class-composition and class-inheritance hierarchy [14]. To access the

full information regarding an entity, a user is required to have the proper autho-

rizations along the hierarchies. There are two policies: visibility from above and
visibility from below that de�ne how an explicit authorization may propagate

along the hierarchies [15].

In the object-composition hierarchy, the root corresponds to a complex ob-

ject and other objects in the hierarchy de�ne its internal structure. If users are

authorized to access the root, they should also be authorized to access all infor-

mation about the descendants of the root. This is called visibility from above.
The classes can also be organized in the inheritance (class/subclass) hierar-

chy. In this case, access to a subclass implies access to all objects of the super-

classes in the inheritance hierarchy. This is called visibility from below.

736 Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

In order to indicate how privileges are propagated along the hierarchy, dif-

ferent types of authorization should be identi�ed. Two possible types of autho-

rization are: partial, and full authorization [18].

In the object-composition hierarchy, a user with the full authorization for

a set of privileges (such as read-de�nition, read and/or execute) over an entity

has the same rights to the entity and all its components. In the case of partial
authorization, access to an entity does not extend to its components.

In the inheritance hierarchy, when users have full authorization with a set of

privileges (such as read-de�nition, read and execute) over an object of a subclass,
they have implicitly the same rights for the relevant objects of the superclasses. In

the case of the partial authorization, a user can access the object only. However,

users that are given authorizations to an object of a class will not be authorized to

access the objects of subclasses of that class unless they are authorized explicitly

or are the owners of the objects of those subclasses.

Note that for other privileges such as create, write, and delete, the user must
be explicitly authorized by the owner of the respective objects, unless the two

objects have the same owner.

5 Notation, Assumptions, and De�nitions

5.1 Notation

{ Oi and OIDi are the names of the i-th object and the i-th object identi�er,

respectively. Ci is the name of the i-th class. Ei is the name of the i-th entity
(object or class) which can be either Oi or Ci.

{ Every user has a login-name and a corresponding login password. Uj denotes
the login-name of the j-th user. PSj denotes the login password of user Uj .
The password is chosen by Uj , and is kept secret. Also PSj is assumed to

be long enough.

{ k and � denote concatenation and exclusive-or (XOR), respectively.

{ TM and DBMS denote a tamper-proof module and a database management

system, respectively.

{ AC denotes the authorization class which contains authorization information

of the system. For a detailed de�nition, see De�nition 7. An instance of AC

is denoted by ACIDj;i;k, where the subscripts indicate that the user Uj has
been granted authorization to the entity Ei by the user Uk.

{ Kdb is the database cryptographic key. The TM only can access the Kdb.

The TM uses the key to encrypt the authorization information in the class

AC. fxgKdb
denotes the ciphertext of x generated using the key Kdb.

Note that we use n-bit strings to representOIDi,Oi, Ci, Uj , PSj , andACIDj;i;k.

5.2 Assumptions

1. F = fFn j n 2 Ng is a pseudo-random function family, where

Fn = ffK j fK : �n ! �n; K 2 �ng:A pseudo-random function family can

be constructed from pseudo-random string generators, and can be a one-way

function. For a formal de�nition of a pseudo-random function family, the

reader is directed to [25]

737Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

2. H = fHn j n 2 Ng, where Hn = fh j h : �2n ! �ng is a k-SIFF mapping

2n-bit inputs to n-bit output strings. k is a parameter which is chosen in

such a way that no database entity has more than k relevant entities and no

group has more than k users.

3. Random n-bit stringsKrd;Kr;Kw;Ke;Kd
,Kc

correspond to read-de�nition,
read, write, execute, delete, and create, respectively. These are stored in a

protected memory, and are available to the TM only.

5.3 De�nitions

Each class and object in our system has the following speci�cation.

De�nition 2. A class C is represented by a tuple:

(CNAME, PNAME, \class-struct", \method-list", SECURITY-INFO).
Here CNAME is a unique name of C given by its creator. PNAME is the par-

ent name of C. The \class-struct" is its structure, and \method-list" is the list

of methods that can be executed by users if they have the execute privilege.

SECURITY-INFO speci�es class authorization information which is an aggrega-

tion of the CKEYS-LIST, and H-FUNCTION. CKEYS-LIST is a pair of access

keys (KP
i ;K

F
i) corresponding to partial and full authorization. H-FUNCTION

describes the hash function that must be used by the related classes to derive

the access key KF
i . 2

De�nition 3. The class-struct is [P1 : �1(T1); : : : ; Pi : �i(Ti); : : :], where Pi is
a name of property, Ti is a type name of the respective property, and �i is an
optional type constructor, e.g. set-of, collection-of, array-of, ordered list, etc.

The set of type names includes the names of atomic data types like integer, real,

string, etc. as well as the names of classes that have been pre-de�ned. 2

De�nition 4. An object O is a tuple:

(OID, ONAME, CNAME, \state", SECURITY-INFO). Here OID is the identi-

�er of the object and created by the DBMS. ONAME is the name of the object

given by its creator. CNAME indicates the name of the class to which O belongs.

\state" is the associated state of the object. SECURITY-INFO speci�es object

authorization information which is an aggregation of the OKEYS-LIST, and H-
FUNCTION. OKEYS-LIST is a pair of access keys (KP

i ;K
F
i) corresponding to

partial and full authorization. H-FUNCTION indicates the hash function that

must be used by the related classes or objects to derive the access key KF
i of

the object O. 2

The de�nitions of superclass and ancestor are as follows.

De�nition 5. An ancestor of class Ci is any class Ck such that either

(1) (Ck; PNAME; [P1 : �1(C1); : : : ; Pi : �i(Ci); : : :]; : : :), or
(2) (Ck ; PNAME; [P1 : �1(C1); : : : ; Pj : �j(Cj); : : :]; : : :) and Cj is ancestor of

Ci. 2

De�nition 6. A superclass of Ci is any class Ck such that either

(1) (Ci; Ck; : : :), or
(2) (Ck; Cj ; : : :) and Cj is a superclass of Ci. 2

738 Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

In order to enforce DAC security requirements and to protect an entity

against unauthorized access, the authorization system has to know the exact

user privileges. This can be accomplished by storing the explicit privileges and

necessary DAC information in the authorization class.

De�nition 7. An Authorization Class (AC) is a tuple:

(GRANTEE, ENAME, GRANTOR, MEMBER-LIST, DAC-INFO).
Here GRANTEE indicates the user who is authorized to access the entity.

ENAME speci�es the entity which can be a class name or an object identi-

�er. GRANTOR names the user who has authorized the GRANTEE to access

the entity. MEMBER-LIST is the list of users who are the members of the group

whose sponsor is the GRANTEE. DAC-INFO speci�es DAC information and

has the form:

(OP-RIGHTS, AUTH-TYPE, SPONSORSHIP, OWNERSHIP, H-FUNCTION,
PSWORD). Here OP-RIGHTS indicates the list of privileges which the

GRANTEE has on the entity (it could be read-de�nition, read, write, execute,

delete, create, and all; the word \all" is used to indicate all possible access privi-

leges). AUTH-TYPE (F or P) speci�es full or partial authorization. SPONSOR-
SHIP (YES or NO) indicates if the GRANTEE can be the sponsor of a group

(or groups) (indicated by the GRANTOR), and is able to propagate his/her

privileges to the group members. OWNERSHIP (YES or NO) speci�es whether

GRANTEE has ownership privilege. H-FUNCTION indicates the hash function

that must be used to derive the grantor's password. PSWORD stores the user

password. 2

Note that the values of the DAC-INFO and SECURITY-INFO are encrypted

under the key Kdb by the TM.

6 Proposed Solution

Our main goal is to design a cryptographic mechanism for discretionary access

control in object-oriented database systems. Thus we will not consider other

security issues such as authentication and secrecy of stored data. To enforce au-

thentication and secrecy, the scheme proposed by Hardjono, Zheng and Seberry

[9, 10] for database authentication based on SIFF can be applied. We assume

that the user authentication is done by the underlying operating system, and

is secure. Also, we use a tamper-proof module (TM) to perform all necessary

cryptographic operations, to generate the needed cryptographic elements, and

to verify the validity of access attempts. The security of the TM relies on the

security of the underlying operating system and the DBMS. The TM can be an

interface between the user and the database system, or between the database

and physical layer, or a separate function in the database system. Figure 3 shows

the position of the TM when it is a separate function in the DBMS.

The DBMS provides essential authorization information such as the entity

identi�er and access privileges in plain form and user password, access key, and

coe�cients of polynomial in SIFF in encrypted form to the TM. Then the TM

evaluates the request according to the algorithms described in this section and

Section 7, and passes the result to the DBMS.

To protect an entity against unauthorized access, the authorization system

needs to know the user's authorization rights. There are two possible approaches

739Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

Database

{K, h} {DAC}

DB Key

OP Keys

TM Generate K&h
Encryption
Decryption
Obtain key

Checks

User Interface User Interface

DB Key : Database Key

TM : Tamper-proof Module

Database Management System

DBMS

Authorization instance

Entity

OP Keys: Access Privileges Keys

Figure 3: A possible implementation of the TM.

to accomplish this. In the �rst one, all authorizations, both explicit and implicit

are stored. In the second one, only explicit authorizations are stored, and implicit

ones are derived each time the access request is processed. The �rst approach

is ine�cient and time consuming when the number of object instances is large.

The second approach is even worse if we use access control lists to store explicit

authorizations. Here, we propose a cryptographic mechanism using SIFF to de-

rive implicit authorizations from explicit authorizations which are stored in the

authorization class AC.

To allow access to an entity i (object or class), we must be able to produce

access keys KP
i and KF

i for the entity. Keys KP
i and KF

i correspond to the

partial and full authorizations, respectively. KF
i can be derived from the access

key of the related objects. The relationship can be either the inheritance (is-a)
or the aggregation (is-part-of). In the case of inheritance, the access key KF

i

can be derived from the access keys of the instances of subclasses of the entity i.
Whereas in the case of the aggregation, the key KF

i can be computed from the

access keys of the objects of ancestors of the entity i. In other words, the access

key KP
i guarantees secure explicit authorization access. The key KF

i ensures

implicit authorization rights along the inheritance, and composite hierarchies.
Every time a user requests access to a speci�c entity i either KF

i or KP
i is

computed and compared with the stored one by the TM. If they match, the

740 Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

access is permitted, otherwise denied.

Next, we discuss algorithms for the generation of access keys (KP
i , K

F
i),

passwords, and SIFF associated with entities and users.

6.1 Creating

When a user Uj (with login password PSj) creates an entity Ei by running the

create command, access keys for this entity are generated. Note that the entity

can be either a class Ci or an object Oi.

6.1.1 Case 1. Partial authorization.

Step 1. The TM calculates the password nj;i = fPSj (Uj � Ei) of the user Uj
for the entity Ei.

Step 2. The TM selects, at random, the access key KP
i for the entity Ei

(KP
i 2 �n

) for partial authorization.

Step 3. The TM selects, at random, a SIFF hash function hPi 2 Hn for partial

authorization. The function has the following collisions:

hPi (nj;ikK
rd
) = hPi (nj;ikK

r
) = hPi (nj;ikK

e
) = hPi (nj;ikK

w
) = hPi (nj;ikK

d
) =

hPi (nj;ikK
c
) = KP

i : (1)

The TM also encrypts DAC-INFO, f(\all"; \F"; \yes"; \yes"; hPi ; nj;i)gKdb
. The

word all is used to indicated all possible access privileges.

Step 4. The DBMS creates the object (Uj ; Ei; Uj ; MEMBER-LIST, DAC-
INFO) which is an instance of the authorization class AC.

6.1.2 Case 2. Full authorization.

Suppose that objects Ol1 ; Ol2 ; : : :, Olp with access keys KF
l1
;KF

l2
; : : : ; KF

lp
are

related to the object Oi (via either inheritance or aggregation).

Step 1. The TM selects, at random, the access key KF
i for the object Oi for

full authorization.

Step 2. The TM selects, at random, a SIFF hash function hFi 2R Hn for the full

authorization. The function should map the access keys of the respective objects

for the read-de�nition, read, and execute privileges to the access key of the Oi,

that is,

hFi (K
F
l1
kKrd

) = hFi (K
F
l1
kKr

) = hFi (K
F
l1
kKe

) = hFi (K
F
l2
kKrd

) = hFi (K
F
l2
kKr

) =

hFi (K
F
l2
kKe

) = � � � = hFi (K
F
lp
kKrd

) = hFi (K
F
lp
kKr

) = hFi (K
F
lp
kKe

) = KF
i (2)

Clearly, users who have access to related objects Ols (1 � s � p), can also

access the object Oi. An access to the object Oi is granted only if the TM can

regenerate KF
i from a pair (a related object key Ols and a suitable privilege

(Krd;Kr
, and Ke

)). Note that in the case of inheritance, Ols (1 � s � p) are
instances of subclasses of the object Oi. Whereas in the case of aggregation, the

Ols (1 � s � p) are objects of ancestors of the object Oi.

741Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

Step 3. The DBMS appends the hash function fhFi g to the H-FUNCTION of

the object Oi.

Note the following two points. In the case of full authorization of a class,

the associated access key KP
i is computed �rst, then the full authorization keys

associated with objects related to the class objects are derived from its instances.

If the owner of an entity is replaced by a new one or if the login password of the

owner has been changed then, in both cases, the process described above must

be repeated.

6.2 Authorization Administration

To be complete, an authorization system must include grant, revoke, and own-
ership transfer operations.

6.2.1 Granting

Suppose that the grantor Uj has the password nj;i for the entity Ei. Assume Uj
wants to give access to Ei to m grantees Ul1 ; Ul2 ; : : :, Ulm (with login passwords

PSl1 ; PSl2 ; : : :, PSlm). If Uj runs the grant command, the following steps will

be completed. Uj is the owner of Ei or the sponsor of a group.

Step 1. The TM calculates the password nls;i;j = fPSls (Ei�Uj) of the grantee
Uls for the entity Ei, s = 1; : : : ;m:
Step 2. The TM selects at random a SIFF hash function hj;i 2R Hn such that

hj;i(nl1;i;j) = hj;i(nl2;i;j) = � � � = hj;i(nlm;i;j) = ACIDj;i;k:

A polynomial of degree m with random coe�cients should be selected. This step

ensures that all grantees Ul1 ; Ul2 ; : : :, Ulm (the grantees are members of the group

whose sponsor is the grantor Uj) can directly compute the ACIDj;i;k of the Uj
and access the authorization-instance related to the Uj for the entity Ei granted

by Uk.
Step 3.The TM encrypts theDAC-INFO, f(\access privileges", \P/F", \yes/no",
\yes/no", hj;i; nls;i;j)gKdb

.

Step 4. The DBMS creates the object (Uls ; Ei; Uj ; MEMBER-LIST, DAC-
INFO) as an instance of the class AC (ACIDls;i;j) for s = 1; : : : ;m.

Step 5. The DBMS updates the MEMBER-LIST of the authorization-instance

related to the grantor Uj .

6.2.2 Revoking

If a grantor Uk revokes the privilege of Uj over the entity Ei, the following steps

have to be completed.

Step 1. The DBMS deletes the associated authorization-instance ACIDj;i;k

from the AC.

Step 2. The TM selects a new SIFF with one less collision for the group whose

sponsor is Uk (the user Uj no longer belongs to the group).

Step 3. The TM replaces the old SIFF in the authorization-instance associated

with users in the MEMBER-LIST of the sponsor with the new one.

Step 4. The DBMS updates the MEMBER-LIST associated with Uk.
Section 9 discusses in detail the impact of the group updating on the autho-

rization system.

742 Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

6.2.3 Ownership Transfer

An entity (class or object) can have several owners who may act independently.

Suppose that the creator of Ei is Uj and Uj wants to grant the ownership of Ei

to users Ur and Us by executing the transfer-own command. The following steps

have to be completed.

Step 1. The TM computes passwords nr;i = fPSr(Ur �Ei) and

ns;i = fPSs(Us �Ei) for new owners.

Step 2. The TM selects a new SIFF hash function with the following collisions:

hPi (nj;ikK
rd
) = hPi (nj;ikK

r
) = hPi (nj;ikK

e
) = hPi (nj;ikK

w
) = hPi (nj;ikK

d
) =

hPi (nj;ikK
c
) = hPi (nr;ikK

rd
) = hPi (nr;ikK

r
) = hPi (nr;ikK

e
) = hPi (nr;ikK

w
) =

hPi (nr;ikK
d
) = hPi (nr;ikK

c
) = hPi (ns;ikK

rd
) = hPi (ns;ikK

r
) = hPi (ns;ikK

e
) =

hPi (ns;ikK
w
) = hPi (ns;ikK

d
) = hPi (ns;ikK

c
) = KP

i

Step 3. The DBMS updates the instance in the AC for Uj and creates new

instances for Ur and Us.
Note that if the creator of Ei revokes the ownership privilege from the user

Us (by executing the revoke-own command), a new SIFF hash function with the

following collisions have to be selected by the TM.

hPi (nj;ikK
rd
) = hPi (nj;ikK

r
) = hPi (nj;ikK

e
) = hPi (nj;ikK

w
) = hPi (nj;ikK

d
) =

hPi (nj;ikK
c
) = hPi (nr;ikK

rd
) = hPi (nr;ikK

r
) = hPi (nr;ikK

e
) = hPi (nr;ikK

w
) =

hPi (nr;ikK
d
) = hPi (nr;ikK

c
) = KP

i

As a result, all privileges granted by Us to other users will be deleted as well. If

Uj is indicated as an owner of the Ei and both GRANTEE and GRANTOR are

Uj , then Uj is considered the creator of the Ei.

Note that the polynomial (which is a part of SIFF) in Step 2 should be

selected at least of degree 18, and the polynomial in Step 3 should be at least of

degree 12.

7 Validation of Access Requests

Processing of a user query starts by checking if the user has appropriate privileges

regarding the entities speci�ed in the query. This is done by the authorization

system.

In object-oriented database systems, as in relational databases, there is an

SQL-like (structural query language) query language to retrieve data from the

database system. Unlike relational databases, in object-oriented database sys-

tems, the hierarchical structure of an entity may or may not be included in the

evaluation of the query. Hence, there are two forms of queries: simple queries
and hierarchical queries [3, Chapter 3]. A simple query has the following form:

{ select Target-clause [from Entry-clause] [where Quali�cation-clause];

Target-clause denotes target entity names to be retrieved. Entry-clause (from)

denotes sets of entities through which the target entity can be accessed. If

the target entity is an object of a complex object, the Entry-clause may

denote any of the ancestors of the target entity. In the case of the inheri-

tance hierarchy, the Entry-clause may denote any instances of subclasses of

the target entity. It is worth noting that if a user does not have an explicit

access right to the target entity then it is essential that the Entry-clause be

speci�ed. The quali�cation-clause (where) speci�es predicates that must be
satis�ed by the retrieved objects.

743Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

For a hierarchical query, the scope of the query also includes the hierarchical
structure of the target object. This is speci�ed by putting *" immediately after

the name of the object. A hierarchical query has the following form:

{ select Target-clause* [from Entry-clause] [where Quali�cation-clause];

The syntax of the query is similar to a simple query. *" indicates that the

hierarchy must be included in the evaluation of the query, that is, the value

of all properties (or objects) of the entity speci�ed in the Target-clause and

its relevant entities must be retrieved.

7.1 Access Validation

The access validation of a query is performed in two phases. First, the authority

of the user who issues the query is checked, that is, it must be veri�ed whether the

user has proper authorization rights. This is the user validation phase. Second,
the speci�ed privileges to the entity retrieved by the query are forced. This is

the access validation phase.
Without loss of generality, we assume that the user Ul issues the query:
select Ej* from Ei;

7.1.1 Phase 1. User validation.

Step 1. In order to verify read privilege of the user Ul to Ej or Ei, the instance

of the AC corresponding to either Ej or Ei for the user Ul should be retrieved.

To search for such an instance whose value of the property GRANTEE is Ul and
ENAME is Ej or Ei, the following query is issued by the DBMS.

- select AC where
(GRANTEE = Ul and ENAME = Ej and PSWORD= fPSl(Ej�GRANTOR))
or
(GRANTEE = Ul and ENAME = Ei and PSWORD= fPSl(Ei�GRANTOR));
The veri�cation that

(PSWORD = fPSl(Ei�GRANTOR)), or (PSWORD = fPSl(Ej�GRANTOR))
is done by the TM. If there is no such instance of the class AC, then the DBMS

rejects the request, otherwise the corresponding instance is retrieved. Suppose

the retrieved instance is: (Ul; Ek; Ul0 ; MEMBER-LIST,
f(\access privileges", \F", \yes/no", \yes/no", hl0;k; nl;l0;k)gKdb

), where k is ei-

ther j or i.
Step 2. To access the entity Ek, the password associated with the owner of

the entity has to be derived. The access key associated with the entity can be

computed if the password of its owner exists (see Section 6.1 for details). So, the

DBMS issues the following query to retrieve the password of the owner of the

entity Ek:

- while(OWNERSHIP 6= \yes")do select hl0;k(PSWORD);
Suppose that the derived password and SIFF for the owner Uw of Ek are nw;k
and hPk , respectively (k is either j or i). Then we enter the access validation

phase.

744 Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

7.1.2 Phase 2. Access validation.

Assume that

hP
C

is SIFF hash function associated with a class,

hP
O

and hF
O

are SIFF hash functions used for an object (partial and full),

KPC

and KFC

are access keys used for a class (partial and full), and

KPO

and KFO

are access keys associated with an object (partial and full).

To retrieve the entity Ek, K
P
k or KF

k corresponding to the partial and the

full authorization must be computed. Then if the computed values are matched

to the stored values in the entity, the access is permitted, otherwise is denied.

To do so, the following steps are executed by the DBMS.

Step 1. One of the following queries depending on the type of the entity is

executed by the DBMS.

{ If Ej is an object Oj , then

select Oj where

(hP
O

j (nw;jkK
r
) = KPO

j) or

(hP
O

i (nw;ikK
r
) =KPO

i and AUTH-TYPE=\F" and hF
O

j (KFO

i kKr
)=KFO

j);

{ If Ej is a class Cj , then

do(for all object Os is in Cj)

select Os where

(hP
C

j (nw;jkK
r
) = KPC

j) or

(hP
C

i (nw;ikK
r
) =KPC

i and AUTH-TYPE=\F" and hF
O

s (KFO

i kKr
)=KFO

s);

Step 2. Retrieve objects which are in relation with the entity Ej (via either

inheritance or aggregation). Let Os denote such an object.

repeat
select Os where

(hP
O

j (nw;jkK
r
) = KPO

j and AUTH-TYPE =\F" and hF
O

s (KFO

j kKr
)=KFO

s)

or
(hP

C

j (nw;jkK
r
) = KPC

j and AUTH-TYPE =\F" and hF
O

s (KFO

j kKr
)=KFO

s);

until(there is no Os);

Note that the access key of instances of descendants (in the case of the

composite object) or the access key of instances of superclasses (in case of the

inheritance hierarchy) can only be derived from the access key of the entity. This

ensures that the access to the instances which are not related to the entity will

never occur. Furthermore, in the case of the partial authorization, the request

for indirect access will fail because the checks in Steps 1 and 2 are not satis�ed.

All checks are done by the TM.

8 Object Restructuring

In an object-oriented database system, objects or relationships might be deleted,

added, or modi�ed. In this section, we consider the impact of such operations

on our authorization system.

745Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

8.1 Deletion of Objects

Objects in object-oriented database systems can be deleted indirectly by altering

the database schema, or directly by using the delete privileges. For the indirect
deletion, all objects of the database system need to be reorganized according to

the new schema. For direct deletion, we consider three possibilities: deletion from

a leaf node, deletion from an intermediate node, and deletion of a relationship.

Deletion of an object from a leaf node requires the authorization-instances cor-

responding to the deleted object to be deleted from the AC. If an intermediate

object which is a part of the composite object is deleted, then the descendants

of the deleted object become the descendants of the parent of the deleted object.

This requires the generation of a new SIFF function that satis�es Equation (2)

of Section 6.1 and replaces the old SIFF function. If the deleted object is an

instance of a subclass in the inheritance hierarchy, all objects of the lower sub-

classes of the deleted object are deleted. New SIFF hash function which satisfy

Equation (2) of Section 6.1 must be produced for all objects of the superclasses

of the deleted object and replace the old ones. In both cases, it is also neces-

sary that the authorization-instances which correspond to the deleted object are

deleted from the AC.

In an object-oriented database system, there are three types of relationships:

(i) aggregation relationship; (ii) generalization (or is-a) relationship, and (iii) as-
sociation relationship such as teaches, is-taught-by, supplies, is-supplied-by, etc.
[22]. Note that the modi�cation of the data model may cause deletion of relation-

ships aggregation and generalization. The deletion of the association relationship

may occur if the object is not associated with any objects.

Deletion of an aggregation relation may a�ect the composite object in two

ways. First, a part of the component has been removed. In this case, the AC

must be updated if the deleted part no longer exists in the database schema.

Otherwise, due to the changes in the structure of the deleted part, new SIFF

functions for all objects of the deleted part must be regenerated. The AC is left

intact. Second, the changes in the hierarchy of ancestors. In this case, new SIFF

functions for all the objects of the descendants must be reproduced.

The deletion of a generalization relationship may a�ect the hierarchy of ob-

jects in two ways. First, deletion causes the superclasses of the low-level classes to

change. This requires that new SIFF functions for all objects of the superclasses

be produced. Second, the deletion causes the hierarchy of the object to be re-

moved. Hence the authorization-instance of the deleted object must be deleted

from the AC. If the changes a�ect both the subclasses and the superclasses,

new SIFF for objects of the associated superclasses must be produced. AC is

left intact. Finally if a relationship with one or more objects is deleted, new

SIFF functions with one collision less must be selected. The SIFF functions are

replaced by the new ones.

8.2 Addition of Objects

An object might be added to the database as an object of an existing class, or

as a new object of a new class. In the case of a new object of the old class, it is

su�cient to complete the process described in Section 6.1. In the case of a new

object of a new class, we can distinguish the following three possibilities: (i) a

746 Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

new class is added to a leaf, (ii) a new class is added to an intermediate level,

and (iii) a new relationship is created.

If a class is added as a new leaf, then a process similar to the one described in

Section 6.1 must be completed for all objects of the new class. Moreover, since the

subclasses of the superclasses change, new SIFF functions for all object instances

of the superclasses must be regenerated.

If a class is added to an intermediate node, �rst, the process described in

Section 6.1 must be completed for objects of the new classes. Next, new SIFF

functions must be regenerated (see Step 2 of Phase 2 in Section 6.1).

In the case of the addition of new relationships, a new SIFF function as

described in Step 2 of Phase 2 of Section 6.1, must be regenerated for all objects

of descendants or superclasses.

9 Grouping and Group Updating

When users have the grant authorization (speci�ed by SPONSORSHIP), they
can create user groups and become their sponsors. They can give the privileges

to the members of the group by running the grant command (see Section 6.2.1).

Members of a group with the grant option (i.e., if SPONSORSHIP is on) can

propagate privileges to other users. They have a user group hierarchy similar to

the one shown in Figure 2. An important issue in the group hierarchy is that of

group updating.

We can distinguish three possible cases:

1. a member of a group, who is the sponsor of the group, is deleted,

2. a new user or a group is added, and

3. a member of the group (or the sponsor of the group) is replaced by another

one.

The impact of each modi�cation on the group organization and the necessary

updates are as follows.

9.1 Deletion of Memberships

Deletion of memberships in a group structure is done by revoking the user au-

thorizations by the sponsor of the group (s)he is a member of.

Case: the deleted user is a member of the group. It is required that the

associated authorization-instance be removed from the AC, and a new SIFF

function, with one collision less be selected. The new SIFF function replaces the

old one in the authorization-instance associated with users in the MEMBER-
LIST of the sponsor. The MEMBER-LIST must be updated too.

Case: the deleted user is the sponsor of a group. In this case, the authorization-

instance of the user and entries associated with the users (all members of the

group) must be deleted from the AC. Note that even if the entries associated

with the users who are granted access by the deleted sponsor are not deleted, the

access to the entity by these users will be denied immediately after the deletion

of the sponsor. The same process described before must be done for the group

in which the deleted user is a member (a new SIFF function for the remaining

members of the group must be regenerated).

747Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

9.2 Addition of New Memberships

A user who has the sponsorship privilege gives his/her privileges to a new user.

The new user can be an individual user or the sponsor of a group. In every case,

it is required that the process described in Section 6.2.1 be completed.

9.3 Replacing

A member in a group can be replaced by a new member, or the login password

of a member in the group is changed. The member can be the sponsor of the

group, or can be a normal user. It is required that a new password for the

member is selected and then the associated authorization-instance of the member

is updated. A new SIFF for the group of which the user is member is regenerated.

If the replaced user was the sponsor of the group, a new SIFF function is also

regenerated for the group.

10 Security of the Authorization System

The authorization based on SIFF is a complex system whose proof of security

is a di�cult (or perhaps impossible) task. We are going to give some plausi-

ble arguments to support our claim that the proposed authorization system is

\secure".

There are two classes of users in an authorization system. The �rst one

consists of users who have been admitted by the security o�cer as users of the

system. They are called insiders. The second one includes all users who are not

part of the system. They are called outsiders. The authorization system is secure

if any insider who wants to access entities outside their privileges, may succeed

with a very small probability (say 2
�64

).

Claim 1 Assume that the tamper-proof module (TM) is accessible to the DBMS
only, and the computational power of an insider is polynomially bounded. If the
SIFF scheme, the pseudo-random functions, the user authentication scheme, and
the cryptosystem used for encryption are all secure, then the authorization system
is secure as well.

Justi�cation:

There are two possibilities for an insider to have an unauthorized access. The

�rst one is impersonation. This means that the intruder can guess or disclose

the login password of the owner or one of the grantees of entity j, say Ul, so
the intruder can compute nl;j = fPSl(Ul � EIDj) and access authorization-

instance associated with user Ul. This contradicts that the user authentication
system is secure. The second possibility is either to access unauthorized objects

or to exercise nonexistent privileges. In the �rst case, this means that either

the intruder generates a valid access key and an associated SIFF function, and

an access privilege key for entity j, KP
j ; h

P
j ; and Kop

, or the intruder who is

authorized to access a component of the object hierarchy, accesses high-level

objects. This means that the intruder is able to predict the output of the pseudo-

random function and to �nd collisions for the SIFF function. This contradicts

the assumption that the pseudo-random function and SIFF are secure. In the

748 Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

second case, this means that the intruder is able to modify his/her privileges or

someone else's. For example, the intruder modi�es partial authorization to full

authorization, changes ownership, changes the read privilege to write privilege,
etc. If this happens, the ability of the intruder is equivalent to breaking the

cryptosystem which is used for encryption of DAC-INFO. This again contradicts
our assumption.

For an outsider, there are two possibilities as well. The intruder �nds a valid

password, and enters the system as a legal user. If this happens, this means that

the intruder has broken the user authentication system, which contradicts our

assumption. The second one is the intruder bypasses the database management

system, and accesses the data �le directly. This means that either the operating

system is not secure or that the access control to the data �les fails.

11 Complexity of The System

As discussed before, there are two hierarchies in an object-oriented data model:

inheritance and composite hierarchy. The DBMS evaluates the authorizations

along the object hierarchies. The most e�cient way of evaluation is to employ the

proposed hierarchical access control. There are two di�erent approaches to the

hierarchical access control problem. The �rst is based on the RSA cryptosystem.

The second one uses one-way hash functions.

In 1982, Akl and Taylor [1] were the �rst to propose a solution to the hier-
archical access control problem. Their solution was based on the RSA cryptosys-

tem [19]. There are several problems with this scheme. The scheme can work

only with a rigid hierarchical structure and cannot be used in object-oriented

database systems where the database schema may evolve. Each node stores two

integers. The �rst integer is a prime assigned to the node and the second integer

is product of primes associated with other nodes that are not descendants of

the given node. The average length of the second component is large and hence

expensive in terms of storage. Moreover, the entire system must be prede�ned by

a trusted central authority, and there is no way to expand or modify it according

to changes of the hierarchy. Some other solutions to overcome these problems

have been proposed [4, 12]. A common drawback of these solutions is that they

are based on the di�culty of breaking the RSA cryptosystem, and make heavy

use of the underlying algebraic properties of the crypto-function.

The SIFF solution has several attractive features. The SIFF construction is

based on the assumption of the existence of a one-way function. So the SIFF

can be based on MD4 (MD5 or HAVAL) instead of the very slow RSA system.

Each node in the hierarchical structure needs to keep only one key of length n
(n = 128 bits), and hence the required storage is low. Moreover, expansion of

SIFF according to the change of the hierarchy is straightforward and easy.

Let us give a brief comparison of the time and space complexity of the SIFF

construction with the RSA one.

Let k be the number of objects in the hierarchical structure. Let n be the

length of keys. Assume that MD5 and polynomials of degree k over �nite �elds

GF (2n) (n = 128) are used to construct the SIFF hash function. The system

based on the SIFF requires O(log k) modular multiplications of 128 bits long for
key derivation (see Appendix A). Note that, because computation time of the

pseudo-random function andMD5 is negligible, it is ignored. If the RSA approach

749Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

is used for authorization derivation and generation, the time complexity of the

system will be O((k + 1) log k) modular multiplications of n bit long integer; n
must be at least 512 bits long, that is four times more. If the computation time

of integers associated with objects is added up, then the time complexity will be

much higher.

Let m be the entire number of objects in the database. Each object in the

proposed system holds two keys and a hash function. Hence, the proposed SIFF

approach requires O(3mn) space in total. Since n bit strings are compressed by

MD5, then it is su�cient that the length n be chosen close to 128 bits long. In

the RSA approach, each object holds a key. However the public parameters such

as integers must be stored too, then the total space is O(3nm log k). Note that
n must be at least 512.

Finally, in order to increase the e�ciency of the system and to get bene�t

of the order access privileges, the set of access privileges is partially ordered

such that the lower access privilege can be inferred from higher access privi-

leges. The access privilege keys (Krd;Kr; : : : ;Kc
) can be chosen so that lower

keys are computable from higher keys. This results in having a shorter list of

privileges, and the SIFF function has smaller number of collisions. For example,

the Equation (1) in Section 6.1 can be simpli�ed as:

hPi (nj;ikK
w
) = hPi (nj;ikK

c
) = hPi (nj;ikK

d
) = KP

i :

12 Conclusion and Remarks

This paper proposes a cryptographic mechanism for discretionary access con-

trols in object-oriented database systems. The mechanism is based on unique

and secure access keys for each entity (object or class). Owners and user groups

are identi�ed by their unique passwords. Pseudo-random functions and SIFF

are applied in such a way that access keys can be derived by the objects which

have relationship with or by the user who are members of the group. We use

an authorization class (AC) to store security information, the AC information is

used during query processing to evaluate access request and enforce the security

policy. The security of the system is based on the di�culty of predicting the out-

put of pseudo-random functions and �nding extra collisions for SIFF functions,

both of which are known to be computationally di�cult.

Object-instances based authorization system presents a �ner granularity than

class-based authorization system and enables the control to be imposed on in-

dividual objects. Note that as the numbers of users and objects in the system

grow, the number of instances in the authorization class AC will increase and the

security enforcement and manipulation of the object structure become resource

expensive. To alleviate this problem, view mechanism can be used to de�ne views

which contain objects with same owners or grantees. Then use the views as the

units of authorization in the system.

Some aspects of the presented solution in this paper need further investi-

gation. There is a need to implement a prototype of our proposal in order to

investigate the applicability, e�ciency, and performance of the access control

mechanism. This will give a clearer picture on how complex the administration

becomes in real life. Moreover, insights may be gained into what other require-

ments are essential for a successful cryptographic mechanism. We assumed that

750 Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

there are two types of access: partial and full. In the full authorization, a lower-

node is accessed by all higher-nodes of hierarchical structure. In the partial

authorization, a speci�c node is only accessed. There is also a need for further

investigation of a situation where a lower-node in a hierarchical structure may

be accessed only by some higher-nodes.

APPENDIX A. An Improvement of the Construction of k-SIFF

Assume that a polynomial P (x) of degree k over �nite GF (2n) has k colliding
points.

P (x) = a0 + a1x+ : : :+ ak�1x
k�1

= (x+ b0)(x + b1) : : : (x+ bk�1)

where a0; a1; : : : ; ak�1; b0; b1; : : : ; bk�1 2 GF (2n).
When it is evaluated, the evaluation costs k modular multiplications, O(k).

The number of modular multiplications can be reduced if the evaluation of the

polynomial is done as shown in Figure 4. The OWHF is any one-way hash

function such as MD4, MD5 [20, 21], or HAVAL [26]. The UHF is any universal

hash function with the collision accessibility - this is our polynomial P (x)

OWHF

OWHF

OWHF

OWHF

OWHF

OWHF

2-UHF

2-UHF

2-UHF

2-UHF

2-UHF

2-UHF

.

.

.
.
.

.
.
.

.

2-UHF : 2-Universal Hash Function

. . .

. . .

OWHF : One Way Hash Function

K

K

K

K

K

K

1

2

3

4

k-1

k

d

d

d

d

d

d

d

d

d

d

1

2

3

4

k-1

k

1,2

3,4

(k-3)(k-2)

(k-1)k

K

k- UHF (Polynomial P(x))

Figure 4: Some improvement of implementation of k-SIFF.

In the �rst layer, polynomials of degree two are de�ned or in other words they

have two collisions. It is then required to calculate k=2 polynomials P1;2(x); P3;4(x);
: : : ; P(k�1);(k)(x) such that P1;2(d1) = P1;2(d2) = d1;2; P3;4(d3) = P3;4(d4) =

d3;4; : : : ;

751Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

In the second layer, again k=4 polynomials of degree two are de�ned such that
they collide each pair outputs of the polynomials of the �rst layer, i.e., the poly-

nomials P1;2;3;4(x); P5;6;7;8(x); : : : ; P(k�3);(k�2);(k�1);(k)(x) such that P1;2;3;4(d1;2)=

P1;2;3;4(d3;4) = d1;2;3;4; P5;6;7;8(d5;6) = P5;6;7;8(d7;8) = d5;6;7;8; : : :
If this is continued, the resulting last polynomial will generate the key K.

Thus, the above approach provides this possibility to get the same number of

collisions (k) while derivation for a given key will take O(log k) modular multi-
plication (each polynomial has degree two so its calculation takes O(1) modular
multiplication).

There is however one problem to be solved; as there are many di�erent poly-

nomials and only one \path" is used, the system must know which key is being

used. To clarify this, P (x) generates the proper key as long as we plug in the

correct key (one from K1;K2; : : : ;Kk). In order for key Ki the proper path is

chosen, it is suggested that if i is odd, Pi;(i+1)(x) is used. In case that i is even,

P(i�1);i(x) is used.

References

1. S. G. Akl and P. D. Taylor. Cryptographic Solution To AMultilevel Security Prob-
lem. In D. Chaum, L. Rivest, and A. T. Sherman, editors, Advances in Cryptology
Proceedings of CRYPTO'82, pages 237{250. Plenum Press, NY, August 1982.

2. E. Bertino, F. Origgi, and P. Samarati. A New Authorization Model for Object-
Oriented Databases. In J. Biskup, M. Morgenstern, and C. E. Landwehr, editors,
Database Security VIII (A-60), pages 199{222. Elsevier Science Publishers B. V.
(North-Holland) IFIP, 1994.

3. Elisa Bertino and Lorenzo Martino. Object-Oriented Database Systems: Concepts
and Architectures. International computer science series. Addison-Wesley, 1993.

4. G. C. Chick and S. E. Tavares. Flexible Access Control With Master Keys. In
G. Brassard, editor, Advances in Cryptology Proceedings of CRYPTO'89, pages
316{322. Springer-Verlag, 1990.

5. Hans Dobbertin. Cryptanalysis of MD4. In D. Gollmann , editor, Fast Soft-
ware Encryption, volume 1039 of Lecture Notes in Computer Science, pages 53{69.
Springer-Verlag , 1996.

6. Hans Dobbertin. Cryptanalysis of MD5 Compress. Annoucement, May 1996.
7. E. B. Fernandez, R. C. Summers, and C. Wood. Database Security and Integrity.

Addison-Wesley Publishing Company, 1981.
8. E. Gudes, H. Song, and E. B. Fernandez. Evaluation of Negative, Predicate, and

Instance-based Authorization in Object-Oriented Databases. In S. Jajodia and
C.E. Lanwehr, editors, Database Security IV, pages 85{98. Elsevier Science Pub-
lishers B. V. (North-Holland) IFIP, 1991.

9. T. Hardjono, Y. Zheng, and J. Seberry. A New Approach to Database Authenti-
cation. In Research and Practical Issues in Databases: Proceedings of the Third
Australian Database Conference (Database'92), pages 334{342, 1992.

10. T. Hardjono, Y. Zheng, and J. Seberry. Database authentication revisited. Com-
puters & Security, 13(7):573{580, 1994.

11. Thomas Hardjono. Applications of Cryptography for the Security of Database and
Distributed Database Systems. PhD thesis, University College, University of NSW,
Sydney, Australia, 1991.

12. L. Harn, Y.-R Chien, and T. Kiesler. An Extended Cryptographic Key Generation
Scheme For Multilevel Data Security. In Proceedings of the IEEE Computer Society
Symposium on Security and Privacy, Oakland, CA., May 1990. IEEE Computer
Society Press.

752 Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

13. R. Impagliazzo, L. Levin, and M. Luby. Pseudo-Random Generation from One-
Way Functions. In Proceedings of the 21st ACM Symposium on Theory of Com-
puting, pages 12{24. , 1989.

14. Won Kim. Object-Oriented Databases: De�nition and Research Directions. IEEE
Transactions on Knowledge and Data Engineering, 2(3):327{341, September 1990.

15. M. M. Larrondo-Petrie, E. Guides, H. Song, and E. B. Fernandez. Security Policies
in Object-Oriented Databases. In D. L. Spooner and Landwehr, editors, Database
Security III, pages 257{269. Elsevier Science Publishers B. V. (North-Holland)
IFIP, 1990.

16. T. F. Lunt. Multilevel Security for Object-Oriented Database Systems. In D. L.
Spooner and Landwehr, editors, Database Security III, pages 199{209. Elsevier
Science Publishers B. V. (North-Holland) IFIP, 1990.

17. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the 21st ACM Symposium on Theory of Computing,
pages 33{43. ACM Press, 1989.

18. F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A Model of Authorization for
Next-Generation Database Systems. ACM Transactions on Database Systems,
16(1):88{131, March 1991.

19. R. L. Rivest, A. Shamir, and L. Adleman. A Method For Obtaining Digital Signa-
tures And Public-Key Cryptosystems. Communications of the ACM, 21(2):120{
128, 1978.

20. Ronald L. Rivest. The MD4 Message Digest Algorithm. In Advances in Cryptol-
ogy, Proceedings of CRYPTO'90, pages 281{291. Springer-Verlag, 1990.

21. Ronald L. Rivest. The MD5 Message Digest Algorithm. MIT Laboratory for
Computer Science and RSA Data Security, Inc., Request for Comments (RFC),
1992.

22. J. Rumbaugh, M. Blaba, W. Premerlani, F. Eddy, and W. Larensen. Object-
Oriented Modeling and Design. Printice Hall Inc., 1991.

23. Yair Wand. A Proposal for a Formal Model of Objects. In W. Kim and F. H.
Lochovsky, editors, Object-Oriented Concepts, Databases, and Applications, pages
537{559. Addison-Wesley, Reading, Massachusetts, ACM Press, 1989.

24. Mark N. Wegman and J. Lawrance Carter. New Hash Functions and Their Use
in Authentication and Set Equality. Journal of Computer and System Sciences,
22:265{279, 1981.

25. Y. Zheng, T. Hardjono, and J. Pieprzyk. The Sibling Intractable Function Family
(SIFF): Notation, Construction and Applications. IEICE Transactions, Funda-
mentals, E76-A(1):4{13, January 1993.

26. Y. Zheng, J. Pieprzyk, and J. Seberry. HAVAL- A One-Way Hashing Algorithm
with Variable Lenght of Output (Extended Abstract). In Advances in Cryptology,
Proceedings of AUSCRYPT'92, volume 718 of Lecture Notes in Computer Science,
pages 83{104. Springer-Verlag, 1992.

753Baraani-Dastjerdi A., Piepryzk J., Safavi-Naini R., Getta J.R.: Using Cryptographic ...

