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Abstract: High resilient and high nonlinear Boolean functions are desirable for secure
key generators in stream ciphers, for example. This paper �rst shows that there exists a
tradeo� between resiliency and nonlinearity. Then we show a new simple design method
for high resilient and high nonlinear Boolean functions. Our method gives higher non-
linearity than [Zhang and Zheng 95] while their method gives larger resiliency than
our method. Further, the proposed method provides a tradeo� between resiliency t

and nonlinearity NF by using an intermediate parameter l. If we choose a large l, then
a small t and a large NF are obtained. If we choose a small l, then a large t and a small
NF are obtained.
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1 Introduction

An n-input and m-output function F (x1; . . . ; xn) = (f1; . . . ; fm) is called an
(n;m; t)-resilient function if any function obtained from F by keeping any t
input bits constant is uniformly distributed [Bennett et al. 88, Chor et al. 85,
Stinson 93]. Resilient functions play important roles in cryptography such as key
renewal [Bennett et al. 88, Chor et al. 85] and the design of running-key genera-
tors in stream ciphers against correlation attacks [Siegenthaler 84, Rueppel 86].

A common method for constructing key stream generators is to combine a
set of linear shift registers with a nonlinear function. Some key stream gener-
ator can be broken by ciphertext-only correlation attacks on individual subse-
quences. The immunity against such attacks is quanti�ed by the smallest number
t + 1 of subsequences that must be simultaneously considered in a correlation
attack. [Siegenthaler 84] introduced a new class of combining functions called
tth-order correlation functions, which provides immunity against such an at-
tack. An (n;m; t)-resilient function is a balanced tth-order correlation-immune
function.

On the other hand, linear approximation of Boolean functions is very use-
ful in cryptanalysis on stream ciphers and block ciphers. Ding, Xiao and Shan
[Ding, Xiao, Shan 91] showed the best a�ne approximation (BAA) attack on
key stream generators with a low nonlinear correlation-immune function. This
cryptanalysis shows that nonlinearity is also a crucial criterion for cryptograph-
ically strong combining functions. (Matsui showed the linear cryptanalysis on
DES [Matsui 94] after BAA attack appeared.)
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Therefore, it is a need to investigate highly nonlinear and high resilient func-
tions. Recently, [Zhang and Zheng 95] showed how to transform linear (n;m; t)-
resilient functions into nonlinear ones with the same parameters.

This paper �rst shows that there exists a tradeo� between resiliency and
nonlinearity. Then we propose another simple approach for designing (n;m; t)-
resilient functions with high nonlinearity. For the same n and m, our method
gives higher nonlinearity than [Zhang and Zheng 95] while their method gives
larger resiliency than our method. Further, the proposed method provides a
tradeo� between resiliency t and nonlinearity NF by using an intermediate pa-
rameter l.

2 Preliminaries

2.1 Balance

Let x = (x1; . . . ; xn). Let f be a function: f0; 1g
n ! f0; 1g. Then f(x) is balanced

if
jfx j f(x) = 0gj = jfx j f(x) = 1gj = 2n�1 :

Let F be a function: f0; 1gn ! f0; 1gm. Then F (x) is uniformly distributed if

jfx j F (x) = �gj = 2n�m

for any � 2 f0; 1gm.

Proposition 1. [Lidl et al. 83] F (x) = (f1(x); . . . ; fm(x)) is uniformly distributed
if and only if all nonzero linear combinations of f1; . . . ; fm are balanced.

2.2 Nonlinearity and Bent functions

For two functions f(x) and g(x), de�ne

d(f; g)
4
= jfx j f(x) 6= g(x)gj :

De�nition 2. [Pieprzyk et al. 88] The nonlinearity of f , denoted by Nf , is de-
�ned as

Nf
4
= min

(a0;...;an)2f0;1gn+1
d(f(x); a0 � a1x1 � � � � � anxn) :

a0 � a1x1 � � � � � anxn is called an a�ne function. Nf denotes a distance
between f(x) and the set of a�ne functions.

Proposition 3. [Meier and Sta�elbach 90] Nf � 2n�1 � 2n=2�1.

For f(x), de�ne its Walsh transform as

F(!1; . . . ; !n)
4
=
X
x

(�1)f(x)(�1)!1x1+���+!nxn :
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Proposition 4. [Meier and Sta�elbach 90]

Nf = 2n�1 �
1

2
max

(!1;...;!n)
jF(!1; . . . ; !n)j :

De�nition 5. [Rothaus 76] f(x) is a bent function if

jF(!1; . . . ; !n)j = 2n=2 (1)

for any (!1; . . . ; !n).

Corollary 6. The equality of Proposition 3 is satis�ed if and only if f is a bent
function.

De�nition 7. [Nyberg 93] The nonlinearity of F (x) = (f1(x); . . . ; fm(x)), de-
noted by NF , is de�ned as the minimum among the nonlinearities of all nonzero
linear combinations of the component functions of F :

NF
4
= min

g
fNg j g =

mM
j=1

cjfj ; cj 2 f0; 1g; (c1; . . . ; cm) 6= (0; . . . ; 0)g

De�nition 8. F (x1; . . . ; xn) = (f1; . . . ; fm) is an (n;m)-bent function if all
nonzero linear combinations of f1; . . . ; fm are bent functions.

Proposition 9. [Nyberg 91] There exists an (n;m)-bent function if and only if
n � 2m and n =even.

2.3 Resilient function

De�nition 10. F (x1; . . . ; xn) = (f1; . . . ; fm) is an (n;m; t)-resilient function if
any function obtained from F by keeping any t input bits constant is uniformly
distributed.

From Proposition 1, we obtain the following corollary.

Corollary 11. F (x1; . . . ; xn) = (f1; . . . ; fm) is an (n;m; t)-resilient function if
and only if all nonzero linear combinations of f1; . . . ; fm are (n; 1; t)-resilient
functions.

Proposition 12. [Xiao and Massey 88] f(x) is an (n; 1; t)-resilient function if
and only if its Walsh transform satis�es

F(!) = 0 for 0 �W (!) � t ,

where W (!) denotes the Hamming weight of ! = (!1; . . . ; !n).
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3 Tradeo� between resiliency and nonlinearity

In this section, we show that there exists a tradeo� between resiliency and non-
linearity.

Theorem13. In an (n; 1; t)-resilient function f ,

Nf � 2n�1 �
1

2

2nq
2n �

Pt
k=0

�
n
k

� :

Proof. Suppose that f(x) is an (n; 1; t)-resilient function. From Parseval's theo-
rem, X

!

F (!)2 = 2n
X
x

((�1)f(x))2 = 22n:

From Proposition 12 X

! s.t. W (!)>t

F (!)2 = 22n:

Then from Proposition 4

Nf = 2n�1 �
1

2
max
!

jF (!)j � 2n�1 �
1

2

2nq
2n �

Pt
k=0

�
n
k

� :

ut

From Theorem 13, we see that if t is large, then Nf must be small. This shows
a trade-o� between resiliency and nonlinearity. The above theorem is generalized
to m � 2 easily.

Corollary 14. In an (n;m; t)-resilient function F ,

NF � 2n�1 �
1

2

2nq
2n �

Pt
k=0

�
n
k

� :

Proof. For any nonzero vector (c1; . . . ; cm), let

g
4
=

mM
j=1

cjfj :

Then

Ng � 2n�1 �
1

2

2nq
2n �

Pt
k=0

�
n
k

�

from Theorem 13. Now from De�nition 7, we obtain this corollary. ut

Again, we see a tradeo� between t and NF .
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4 Highly Nonlinear t-Resilient Functions

Let ' be a function: f0; 1gk ! f0; 1g and  be a function: f0; 1gl ! f0; 1g. Let
x = (x1; . . . ; xk) and y = (y1; . . . ; yl). De�ne

f(x; y)
4
= '(x)�  (y) :

Proposition 15. [Seberry et al. 94] The nonlinearity of f(x; y) satis�es

Nf � N'2
l +N 2

k � 2N'N :

Corollary 16. Suppose that  (y) is not an a�ne function. Then the nonlinear-
ity of f(x; y) satis�es

Nf > 2lN' :

Proof. From Proposition 3,

2k � 2N' � 2k=2 > 0 :

Since  (y) is not an a�ne function,

N > 0 :

Therefore, from Proposition 15,

Nf � N'2
l +N (2

k � 2N') > 2lN' :

ut

Lemma17. If '(x) is a (k; 1; t)-resilient function, then f(x; y) is a (k+ l; 1; t)-
resilient function.

Proof. Fix t-bits among (x1; . . . ; xn; y1; . . . ; yl) arbitrarily. For simplicity, sup-
pose that the �xed bits are

x1 = b1; . . . ; xh = bh; y1 = bh+1; . . . ; yt�h = bt:

First,
'(b1; . . . ; bh; xh+1; . . . ; xk)

is balanced because '(x) is t-resilient and h � t. Therefore, for any �xed values
c1; . . . ; cl�t+h,

'(b1; . . . ; bh; xh+1; . . . ; xk)�  (bh+1; . . . ; bt; c1; . . . ; cl�t+h)

is balanced. Hence,

'(b1; . . . ; bh; xh+1; . . . ; xk)�  (bh+1; . . . ; bt; yt+1; . . . ; yl)

is balanced. This means that '(x) �  (y) is t-resilient. ut

Theorem18. For any even l such that l � 2m, if there exists an (n � l;m; t)-
resilient function �(x), then there exists an (n;m; t)-resilient function F (x; y)

whose nonlinearity satis�es NF > 2n�1 � 2n�l=2�1.
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Proof. Let the (n� l;m; t)-resilient function be

�(x) = f'1(x); . . . ; 'm(x)g :

On the other hand, from Proposition 9, there exists a (l;m)-bent function

	(y) = f 1(y); . . . ;  m(y)g

for our (l;m). De�ne

F (x; y)
4
= f'1(x)�  1(y); . . . ; 'm(x)�  m(y)g :

Now for any (c1; . . . ; cm) 6= (0; . . . ; 0), let

f(x; y)
4
= c1('1(x) �  1(y))� � � � � cm('m(x) �  m(y))

= (c1'1(x) � � � � � cm'm(x))� (c1 1(x) � � � � � cm m(x)) :

From Corollary 11,
c1'1(x) � � � � � cm'm(x)

is t-resilient. From De�nition 8,

c1 1(x) � � � � � cm m(x)

is a bent function. Then from Lemma 17 and Corollary 16, f(x; y) is t-resilient
and

Nf > 2n�l(2l�1 � 2l=2�1):

Therefore, F (x; y) is an (n;m; t)-resilient function and NF > 2n�1 � 2n�l=2�1.
ut

In Theorem 18, we can choose even l arbitrarily in 2m � l � n �m. If l is
large, then we obtain small t and large NF . If l is small, then we obtain large t
and small NF .

5 Comparison

Zhang and Zheng showed how to transform linear resilient functions into non-
linear resilient functions [Zhang and Zheng 95].

Proposition 19. Let F be a linear (n;m; t)-resilient function and G be a per-

mutation on f0; 1gm whose nonlinearity is NG. Then F̂ = G �F is an (n;m; t)-
resilient function whose nonlinearity satis�es NF̂ = 2n�mNG.

This section shows that for the same n and m,

{ Theorem 18 gives higher nonlinearity than Proposition 19.
{ Proposition 19 gives larger resiliency than Theorem 18.

Suppose that we obtain an (n;m; t)-resilient function F with nonlinearity

NF from Theorem 18 and an (n;m; t̂)-resilient function F̂ with nonlinearity NF̂
from Proposition 19.
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5.1 On resiliency

Theorem 18 requires the existence of an (n� l;m; t)-resilient function such that

l � 2m. Proposition 19 requires the existence of a linear (n;m; t̂)-resilient func-

tion. Therefore, if we ignore \linear", then t̂ � t.

5.2 On nonlinearity

In Proposition 19,

NG � 2m�1 � 2m=2�1 :

from Proposition 3 and De�nition 7. Therefore,

NF̂ � 2n�1 � 2n�m=2�1 : (2)

On the other hand, from Theorem 18,

NF > 2n�1 � 2n�l=2�1 � 2n�1 � 2n�m�1

since l � 2m. Hence,

NF̂ � 2n�1 � 2n�m=2�1 < 2n�1 � 2n�m�1 < NF :

6 Examples

6.1 Comparison with Zhang and Zheng

It is known that there exists a linear (n;m; t)-resilient function if and only if
there exists a linear [n;m; t+1]-code. Suppose that we want a (36; 8; t) resilient
function with high nonlinearity NF .

Proposed method

From [Verhoe� 87], there exists a linear [18; 8; 6]-code. So there exists a linear
(18; 8; 5)-resilient function. In Theorem 18, let l = 18. Then we obtain a linear
(36; 8; 5)-resilient function with nonlinearity

NF > 235 � 226 :

Zhang and Zheng method

On the other hand, there exists a linear [36; 8; 16]-code from [Brouwer]. So there
exists a linear (36; 8; 15)-resilient function. Then from Proposition 19 and eq.(2),
we obtain a linear (36; 8; 15)-resilient function with nonlinearity

NF̂ � 235 � 231 :

We summarize the above results in [Tab. 1]. From this table, we see that
our method gives higher nonlinearity NF than Zhang and Zheng method while
Zhang and Zheng method gives larger resiliency t than our method.
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Proposed Zhang and Zheng
t 5 15

NF > 235 � 226 � 235 � 231

Table 1: Comparison of Theorem 18 and Proposition 19 on (36; 8; t)-resilient functions

t 7 5 4 3 2 1 0

NF 235 � 227 235 � 226 235 � 225 235 � 224 235 � 223 235 � 222 235 � 221

l 16 18 20 22 24 26 28

Table 2: Tradeo� between t and lower bounds of NF on (36; 8; t)-resilient functions

6.2 Tradeo�

The proposed method provides a tradeo� between resiliency t and nonlinearity
NF by using an intermediate parameter l. In Theorem 18, if l is large, then we
obtain small t and large NF . If l is small, then we obtain large t and small NF .
This tradeo� is illustrated in [Tab. 2] for n = 36 and m = 8.
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