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Abstract: High resilient and high nonlinear Boolean functions are desirable for secure
key generators in stream ciphers, for example. This paper first shows that there exists a
tradeoff between resiliency and nonlinearity. Then we show a new simple design method
for high resilient and high nonlinear Boolean functions. Our method gives higher non-
linearity than [Zhang and Zheng 95] while their method gives larger resiliency than
our method. Further, the proposed method provides a tradeoff between resiliency ¢
and nonlinearity Nr by using an intermediate parameter [. If we choose a large [, then
a small ¢ and a large N are obtained. If we choose a small [, then a large ¢ and a small
NpFg are obtained.
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1 Introduction

An n-input and m-output function F(z1,...,z,) = (f1,.-.,fm) is called an
(n,m,t)-resilient function if any function obtained from F' by keeping any ¢
input bits constant is uniformly distributed [Bennett et al. 88, Chor et al. 85,
Stinson 93]. Resilient functions play important roles in cryptography such as key
renewal [Bennett et al. 88, Chor et al. 85] and the design of running-key genera-
tors in stream ciphers against correlation attacks [Siegenthaler 84, Rueppel 86].

A common method for constructing key stream generators is to combine a
set of linear shift registers with a nonlinear function. Some key stream gener-
ator can be broken by ciphertext-only correlation attacks on individual subse-
quences. The immunity against such attacks is quantified by the smallest number
t + 1 of subsequences that must be simultaneously considered in a correlation
attack. [Siegenthaler 84] introduced a new class of combining functions called
tth-order correlation functions, which provides immunity against such an at-
tack. An (n,m,t)-resilient function is a balanced tth-order correlation-immune
function.

On the other hand, linear approximation of Boolean functions is very use-
ful in cryptanalysis on stream ciphers and block ciphers. Ding, Xiao and Shan
[Ding, Xiao, Shan 91] showed the best affine approximation (BAA) attack on
key stream generators with a low nonlinear correlation-immune function. This
cryptanalysis shows that nonlinearity is also a crucial criterion for cryptograph-
ically strong combining functions. (Matsui showed the linear cryptanalysis on

DES [Matsui 94] after BAA attack appeared.)
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Therefore, it is a need to investigate highly nonlinear and high resilient func-
tions. Recently, [Zhang and Zheng 95] showed how to transform linear (n,m,t)-
resilient functions into nonlinear ones with the same parameters.

This paper first shows that there exists a tradeoff between resiliency and
nonlinearity. Then we propose another simple approach for designing (n,m,t)-
resilient functions with high nonlinearity. For the same n and m, our method
gives higher nonlinearity than [Zhang and Zheng 95] while their method gives
larger resiliency than our method. Further, the proposed method provides a
tradeoff between resiliency ¢ and nonlinearity Nz by using an intermediate pa-
rameter /.

2 Preliminaries

2.1 Balance
Let © = (1,...,2,). Let f be afunction: {0,1}™ — {0,1}. Then f(z) is balanced
if
{o | f(z) =0} =z | flz) =1} =2""" .
Let F be a function: {0,1}"™ — {0,1}™. Then F(z) is uniformly distributed if
{z | F(z) =B} =2"""
for any 8 € {0,1}™.
Proposition 1. [Lidl et al. 83] F(z) = (fi(z),..., fm(2)) is uniformly distributed

if and only if all nonzero linear combinations of f1,..., fm are balanced.

2.2 Nonlinearity and Bent functions

For two functions f(z) and g(z), define

d(f,9) = {z | f(z) # g(x)}] .

Definition 2. [Pieprzyk et al. 88] The nonlinearity of f, denoted by Ny, is de-
fined as

A .
NEZ e sy A0 i & B )

ap @ a1x; ® --- ® apx, is called an affine function. N; denotes a distance
between f(z) and the set of affine functions.

Proposition 3. [Meier and Staffelbach 90] Ny < 2"~ ! — on/2-1,

For f(z), define its Walsh transform as

}"(wl, Ce ,wn) é Z(_l)f(w)(_1)w1z1+~..+wﬂzn )

T
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Proposition 4. [Meier and Staffelbach 90]

1
Ny=2"1—> max |F(wy,...,wn)|

2 (2%
Definition 5. [Rothaus 76] f(z) is a bent function if

|F(wr,. e wn)| =272 (1)
for any (wi,...,wn).

Corollary 6. The equality of Proposition 3 is satisfied if and only if f is a bent
function.

Definition 7. [Nyberg 93] The nonlinearity of F(z) = (fi(z),..., fm(z)), de-
noted by Ny, is defined as the minimum among the nonlinearities of all nonzero
linear combinations of the component functions of F":

m

Np émgin{zvg | 9= eifirei €{0,1},(cr,- . cm) £ (0,...,0)}

J=1

Definition 8. F(z1,...,2n) = (fi,...,fm) is an (n,m)-bent function if all
nonzero linear combinations of fi,..., f,, are bent functions.

Proposition 9. [Nyberg 91] There exists an (n,m)-bent function if and only if
n > 2m and n =even.
2.3 Resilient function

Definition 10. F(z1,...,2n) = (f1,-.., fm) Is an (n,m,t)-resilient function if
any function obtained from F' by keeping any ¢ input bits constant is uniformly
distributed.

From Proposition 1, we obtain the following corollary.

Corollary 11. F(z1,...,z,) = (fi,---, fm) i an (n,m, t)-resilient function if
and only if all nonzero linear combinations of fi,..., fm are (n,1,t)-resilient
functions.

Proposition 12. [Xiao and Massey 88] f(x) is an (n,1,t)-resilient function if
and only if its Walsh transform satisfies

Flw)y=0 for0<W(w)<t,

where W(w) denotes the Hamming weight of w = (w1, ...,wn)-



724 Kurosawa K., Satoh T., Yamamoto K.:Highly Nonlinear t-Resilient Functions

3 Tradeoff between resiliency and nonlinearity

In this section, we show that there exists a tradeoff between resiliency and non-
linearity.

Theorem 13. In an (n,1,t)-resilient function f,
2”
t
T ()

Proof. Suppose that f(z) is an (n,1,t)-resilient function. From Parseval’s theo-

Y Py =27 (1)) =22,

T

Nf S 271/71 _

N | =

)

From Proposition 12

> Flw)? =2

w S.t. W(w)>t
Then from Proposition 4

1

2n
Ny =2""1— 5 max |F(w)| < 2" —

2" = 3o ()

N —

O
From Theorem 13, we see that if ¢ is large, then Ny must be small. This shows
a trade-off between resiliency and nonlinearity. The above theorem is generalized

to m > 2 easily.

Corollary 14. In an (n,m,t)-resilient function F,

1 2"

2 t n
2" =30 ()

Proof. For any nonzero vector (ci,...,cn), let

NF S 2n—1 _

m

gé@cjf]- .

i=1

Then
2n

1
2 n
2n — Zi:o (%)

from Theorem 13. Now from Definition 7, we obtain this corollary. O

Ng S 2n—1 _

Again, we see a tradeoff between ¢t and Np.



Kurosawa K., Satoh T., Yamamoto K.:Highly Nonlinear t-Resilient Functions 725

4 Highly Nonlinear t-Resilient Functions

Let ¢ be a function: {0,1}* — {0,1} and ¢ be a function: {0,1}} — {0,1}. Let
x=(z1,...,2,) and y = (y1,...,y). Define
N
f(z,y) = o(z) & ¢P(y) -
Proposition 15. [Seberry et al. 94] The nonlinearity of f(x,y) satisfies
Ny > N,2' + Ny2F — 2N, N, .

Corollary 16. Suppose that 1 (y) is not an affine function. Then the nonlinear-
ity of f(z,y) satisfies
Ny >2'N, .

Proof. From Proposition 3,
2k — 2N, > 22 >0 .
Since ¥(y) is not an affine function,
Ny >0 .
Therefore, from Proposition 15,
Ny > N,2' + Ny (28 —2N,) > 2'N,, .
O

Lemma 17. If o(z) is a (k,1,t)-resilient function, then f(z,y) is a (k+1,1,t)-
resilient function.

Proof. Fix t-bits among (z1,...,Zn,¥1,-.-,y:) arbitrarily. For simplicity, sup-
pose that the fixed bits are

Ty =b1,...,Th =bn,y1 = bay1,. -, Yi—n = by.

First,
(p(b17 A '7bh7mh+17 et 7xk)

is balanced because p(z) is t-resilient and h < ¢t. Therefore, for any fixed values
Cls---3Cl—t+h,

(b1, bhy Thgry - ) D P(bpgrs ooy by Cry o Clppn)
is balanced. Hence,
Lp(blv e '>bh>xh+17 v 71'/9) @¢(bh+1>' . '7bt7yt+1)' e >yl)
is balanced. This means that ¢(z) @ ¥(y) is t-resilient. |

Theorem 18. For any even I such that I > 2m, if there exists an (n — l,m,t)-
resilient function ®(z), then there exists an (n,m,t)-resilient function F(z,y)

whose nonlinearity satisfies Np > 271 — 2n—1/2-1,
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Proof. Let the (n — I, m,t)-resilient function be
QS(:E) = {‘Pl(x)) R ‘Pm(l‘)} .

On the other hand, from Proposition 9, there exists a (I, m)-bent function

T(y) = {1 (y), - ¥m(y)}

for our (I, m). Define

F(z,y) 2 {¢1(2) @ ¥1), -, 9m(2) @ ¥m(y)} -
Now for any (c1,...,¢m) # (0,...,0), let

F(@,9) £ e1(1(2) & 61 (1) @ -+ & e (om (@) B Y (y)
= (ap1(x) ® - @ cnpm(2)) @ (a1(z) ® - & cnbm(z)) -
From Corollary 11,
c1p1(z) D - © Cmpm()

is t-resilient. From Definition 8,

cl¢1(x) D---D cm¢m(x)

is a bent function. Then from Lemma 17 and Corollary 16, f(z,y) is t-resilient
and
Nf > 2n—l(2l—1 _ 2[/2—1)-
Therefore, F(z,y) is an (n, m, t)-resilient function and Ny > 271 — 27 1/2-1,
O

In Theorem 18, we can choose even [ arbitrarily in 2m <1 <n —m. If [ is
large, then we obtain small ¢ and large Np. If [ is small, then we obtain large ¢
and small Np.

5 Comparison

Zhang and Zheng showed how to transform linear resilient functions into non-
linear resilient functions [Zhang and Zheng 95].

Proposition 19. Let F be a linear (n,m,t)-resilient function and G be a per-
mutation on {0,1}™ whose nonlinearity is Ng. Then F'= G o F is an (n,m,t)-
resilient function whose nonlinearity satisfies Nz = 2"~ Ng.

This section shows that for the same n and m,

— Theorem 18 gives higher nonlinearity than Proposition 19.
— Proposition 19 gives larger resiliency than Theorem 18.

Suppose that we obtain an (n,m,t)-resilient function F' with nonlinearity

Nr from Theorem 18 and an (n, m, t)-resilient function F with nonlinearity N
from Proposition 19.
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5.1 On resiliency

Theorem 18 requires the existence of an (n — I, m, t)-resilient function such that
I > 2m. Proposition 19 requires the existence of a linear (n,m,t)-resilient func-
tion. Therefore, if we ignore “linear”, then ¢t > t¢.

5.2 On nonlinearity

In Proposition 19,
NG’ S 2m—1 _ 2m/2—1 .

from Proposition 3 and Definition 7. Therefore,
N <ont—on-m/2-1 (2)
On the other hand, from Theorem 18,
Np > 27t _gn-l/2-1 5 gn—1_ gn-m-1
since [ > 2m. Hence,

Nﬁ‘ S 2n71 _ 2n7m/271 < 2n71 _ 2n7m71 < NF .

6 Examples

6.1 Comparison with Zhang and Zheng

It is known that there exists a linear (n,m,t)-resilient function if and only if
there exists a linear [n,m,t + 1]-code. Suppose that we want a (36, 8,t) resilient
function with high nonlinearity Npg.

Proposed method

From [Verhoeff 87], there exists a linear [18,8, 6]-code. So there exists a linear
(18,8, 5)-resilient function. In Theorem 18, let [ = 18. Then we obtain a linear
(36,8, 5)-resilient function with nonlinearity

Np > 235 — 226

Zhang and Zheng method

On the other hand, there exists a linear [36, 8, 16]-code from [Brouwer]. So there
exists a linear (36,8, 15)-resilient function. Then from Proposition 19 and eq.(2),
we obtain a linear (36,8, 15)-resilient function with nonlinearity

N> 935 _ 931

We summarize the above results in [Tab. 1]. From this table, we see that
our method gives higher nonlinearity Np than Zhang and Zheng method while
Zhang and Zheng method gives larger resiliency ¢ than our method.
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| Proposed |Zhang and Zheng
5 15
> 935 _ 926 <935 _ 931

t
Nr

Table 1: Comparison of Theorem 18 and Proposition 19 on (36, 8,t)-resilient functions

t 7 5 4 3 2 1 0

Np|235 = 227 935 _ 926 935 _ 925 935 _ 924 935 _ 923 935 _ 922 935 _ 921

) 16 18 20 22 24 26 28

Table 2: Tradeoff between t and lower bounds of Np on (36,8, t)-resilient functions

6.2 Tradeoff

The proposed method provides a tradeoff between resiliency ¢ and nonlinearity
Np by using an intermediate parameter [. In Theorem 18, if [ is large, then we
obtain small ¢ and large Ng. If [ is small, then we obtain large ¢t and small Np.
This tradeoff is illustrated in [Tab. 2] for n = 36 and m = 8.
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