
Montages Speci�cations

of Realistic Programming Languages

Philipp W. Kutter
(Eidgen�ossische Technische Hochschule, Switzerland

kutter@tik.ee.ethz.ch)

Alfonso Pierantonio
(Universit�a di L'Aquila, Italy

alfonso@univaq.it)

Abstract: Montages are a new way of describing all aspects of programming languages
formally. Such speci�cations are intelligible for a broad range of people involved in
programming language design and use. In order to enhance readability we combine
visual and textual elements to yield speci�cations similar in structure, length, and
complexity to those in common language manuals, but with a formal semantics. The
formal semantics is based on Gurevich's Abstract State Machines (formerly called
Evolving Algebras).

Key Words: abstract state machines, language design, Montages, programming lan-
guages speci�cations, visual formalisms, modular speci�cations

Category: F.3.2, D.2.1, D.3.1

1 Introduction

In recent years, programming languages followed the trend towards higher levels
of abstraction, combining in most cases modularity and object orientedness with
simplicity and e�ciency. As a consequence, nowadays it is hard to envisage a
language which does not support encapsulation in some form. These languages
normally required the e�orts of large groups of persons and experience suggests
that they are not always as compact and coherent as those realized by a single
person, as for instance Pascal. Hence, new languages are de�ned passing through
a number of stages, from initial design to routine{use by programmers, forming
the so{called programming language life cycle.

During this process, designers need to keep track of already taken decisions
and the design intentions must be conveyed to the implementors, and in turn
to the users. Therefore, as for other software artifacts, accurate, consistent and
intellectually manageable descriptions are needed. So far, the only comprehensive
description of a programming language is likely its reference manual, which is
mainly informal and open to misinterpretation. Formal approaches are therefore
sought. Nevertheless, they are regarded very warily, since they caused a certain
dissatisfaction more often than not.

Montages are a semi{visual formalism that allows uni�ed and coherent spec-
i�cation of syntax, static analysis and semantics, and dynamic semantics. They
are compositional and easily understandable. The static aspects of Montage de-
scriptions resemble control and data ow graphs, and the overall speci�cations

Journal of Universal Computer Science, vol. 3, no. 5 (1997), 416-442
submitted: 20/12/96, accepted: 20/5/97, appeared: 28/5/97 Springer Pub. Co.

are similar in structure, length, and complexity to those found in common lan-
guage manuals. Thus, Montages are a formal instrument which can be equally
well understood by language designers, compiler constructors, and programmers.

The semantics of all speci�cation components is formally given using Gure-
vich's Abstract State Machines (ASMs). ASMs have been successfully used
to model the dynamic semantics of Prolog [BR95], Occam [BD96, BDR94], C
[GH93], C++ [Wal94], VHDL [BGM95], and Oberon [Kut97]. At the risk of
oversimplifying somewhat, we can describe some of these models [GH93, Wal94,
Kut97] as follows. Program execution is modeled by the evolution of two func-
tions CT and S. CT points to the part of the program text currently in execution
and may be seen as an abstract program counter. S represents the current value
of the store. Formally one de�nes the initial state of the functions and speci�es
how they evolve by means of transition rules.

These models assume that the representation of the program's control and
data ow in the form of functions between parts of the program text is given. The
control ow functions specify the order in which statements are executed, and the
data ow functions specify how values ow through operations. The transition
rules of the models update the program counter and program state using the
control and data ow functions. By doing so, the dynamic semantics can be
based on the token sequence which is a progress compared to other semantics
speci�cations which are usually based on the abstract syntax tree and assume
often that the analysis of static semantics is known. But the lack of formalization
of the static analysis remains a heavy limitation to the completeness of the given
speci�cation. Moreover, it prevents the speci�cation from being executed using
existing ASM{interpreters [DCIG93].

The idea of specifying the static analysis in an ASM setting is not a nov-
elty. The Occam model described in [BD96] accounts for the static analysis and
the dynamic semantics, and the work in [MJ94] considered ASM's methods for
describing context sensitive formalisms including attribute grammars. Neverthe-
less, the way Montages express the static analysis is new and provides for a nice
formalization of the static semantics as well.

Montages have been used in several case studies. In [KP97] we specify the
complete Oberon language in four subsequent re�nement steps. Complex fea-
tures, such as encapsulation, modularity, inheritance, and pointers, are covered
in a surprisingly short and comprehensive fashion. Montages is the approach be-
ing used at ICSI, Berkeley for the speci�cation of the object{oriented language
Sather [Anl97b] using a tool, GEM ([Anl97a]), described in section 4. In [DiF97]
the SQL direct (ISO 9075) is formalized.

The paper is organized as follows. In the next section, we �rst give a tutorial
introduction by means of a simple expression language. In section 2.2 the formal
semantics of Montages is presented. Section 3 shows some advanced features,
which are used in the large case studies. In section 4 we describe the tool support
for Montage speci�cations. Then a comparison with related works is provided in
section 5. In the last section we summarize the results and outline some topics
for further research.

417Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

The Montage speci�cation of a While loop is informally presented. The
topmost part is the production rule de�ning the context{free syntax. Be-
low is a graphical representation of the control and data ow graph.

TI

StatementSequence END
WHILE Expr DO

S-DOS-Expr

S-StatementSequence

NT TrueTask

Condition

WhileStatement ::=

condition S-Expr.StaticType = Boolean

DO:

NT

CurrentTask := TrueTask
else
CurrentTask := NextTask

endif

if Condition.Value = true then

The NT (NextTask), and
TrueTask arrows denote,
for instance, sequential
control ow, while the
Condition arrow denotes
the data ow. Control
ow arrows are dotted
and data ow arrows are
solid. The control ow
arrows I (initial) and T
(terminal) are special ar-
rows which serve to plug
together the local ow{
information to the global
one. The boxes and cir-
cles denote non{terminal
and terminal symbols, re-
spectively. The third part
of the While Montage
contains the static se-
mantics, that is, the type
of the While-condition must be Boolean. The last part contains the dynamic
semantics rules. This rule is executed as the abstract program counter (Cur-
rentTask) reaches a DO token. In this case, it checks whether the value of the
condition is true. If it is true, the abstract program counter is set to the state-
ment sequence (using the TrueTask arrow), else to the next task. The next task
of the DO token is not de�ned directly by the graph, but it is de�ned through
the mentioned plugging mechanism of the T arrow.

2 Montages

A language speci�cation, i.e. the description of all the syntactical and semantical
aspects, is given as a collection of Montages, each of which is associated with a
production rule. The semantics of such a collection is an ASM. This ASM can be
thought as composed of two other ones, the former declaring the static analysis
and semantics, the latter de�ning the dynamic semantics. Each program of the
speci�ed language de�nes an initial state for the ASM, which contains the parse
tree. The static analysis decorates the leaves of the tree with the control and data
ow building the sequence of token that is needed by the operational semantics.
During the static analysis, the static semantics of each node is checked.

2.1 Tutorial Introduction

A Montages speci�cation of a language L de�nes an ASM ML that for a given
program P of L analyzes and de�nes the control and data ow, checks the static
semantics, and in turn executes the dynamic semantics. The transition rule of
ML is applied to an initial state IP , which depends on the program P : for each
di�erent program, there is a di�erent initial state.

418 Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

E

S

E \+" T

S F

T\+"E I: e

PT

F*"TF

FI: a EiP

I: b E\(" \)"

S

TE \+"

FT

I: dF

I: c

=
::=
=
::=
=
::=

T j S

F j P

I j EiP

E \+" T

T *" F

\(" E \)"

E, S

E, S \+" T, F, I:

E, T, F, I: \+" T, P

T, F, I: *" F, EiP

\(" E,S \)"

E, T, F, I: \+" T, F,I:
dc

b

a

e

1

2 3 4

5 6 7

8 10

11 12 13

14 15 16

9

E
S
T
P
F
EiP

Grammar of L: Derivation tree of P:

))

Program P of L:

a + b * (c + d) + e

Compact derivation Tree of P:

(

Figure 1: Example for a grammar, a program, and its derivation trees

In the sequel, we �rst illustrate how an initial state is de�ned based on the
syntax of a program, and then how the machine ML models the statics and the
dynamics of the language L.

2.1.1 Initial State | Syntax

The initial state IP encodes the syntax of a program P . L{programs are terms
generated by a context free grammar GL. Each program generated by GL can be
represented as a compact derivation tree. A compact derivation tree is a parse
tree in which a node n together with its single descendant d is collapsed to
one node, having both the labels of n and d and having only the descendants
of d. The initial state IP associated with a program P is given by universes
and functions representing the nodes and branches of the compact derivation
tree. The functions are called selector functions since they allow to select the
descendants of a node.

Figure 1 contains a context{free grammar of an example expression language
L, with non{terminals for Expression, Sum, Term, Product, Factor, and ExprIn-
Parenthesis, a term P of that grammar, the normal derivation tree of P , and its
compact version. The sign \=" is used in the grammar instead of \::=" when-
ever a rule generates only a unique descendant, which can be collapsed with its
parent. Such rules are called synonym productions. All the following is based on
compact derivation trees.

419Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

S-Expression : Sum �! Expression 1 7! 2

2 7! 5

12 7! 14

S-Expression : ExprInParenthesis �! Expression 10 7! 12

S-Term : Sum �! Term 1 7! 4

2 7! 7

12 7! 16

S-Term : Product �! Term 7 7! 8

S-Factor : Product �! Factor 7 7! 10

S-\+" : Sum �! \+" 1 7! 3

2 7! 6

12 7! 15

S-*" : Product �! *" 7 7! 9

Figure 2: Selector functions

The initial state IP contains the compact derivation tree of the program P .
The state IP has a universe, called Node, which contains both the non{terminal
and terminal nodes of the tree. Moreover, we have a sub{universe of Node for each
non{terminal and terminal symbol, in which are contained the nodes belonging
to that category. The universes of the example in �gure 1 are the following,
where the naturals identify the nodes of the compact derivation tree:

Expression = f1 ; 2 ; 5 ; 12 ; 14 g Sum = f1 ; 2 ; 12 g

Term = f4 ; 5 ; 7 ; 8 ; 14 ; 16 g Factor = f4 ; 5 ; 8 ; 10 ; 14 ; 16 g

ExprInParenthesis = f10g Product = f7g

Ident = f4 ; 5 ; 8 ; 14 ; 16 g

*" = f9g \+" = f6 ; 3 ; 15 g

\(" = f11g \)" = f13g

The synonym productions cause some nodes to belong to more than one universe.
Together with the universes, in the initial state IP there are also the selector
functions which link the nodes downwards according to the tree. Since universes
are not disjunct these functions are overloaded, i.e. the same selector function is
used to select descendants from more than one category of nodes. The de�nition
of the selector functions are given in �gure 2. The notation S- stays for \selector"
and it is used for distinguishing the function names from the universe names.

2.1.2 Static Analysis

The de�nition of IP required only the grammar GL of the language L. Now we
illustrate how the static analysis of L is speci�ed using Montages and how the
semantics of this speci�cations generates the control and data ow graph of P .

The control and data ow information is provided as attributes of the to-
kens. Graphically the attributes can be illustrated as labeled arrows between

420 Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

Right Right RightRight

Left Left

I: e
NT NT NT NT NT NT NT

Left

Left

a b d
I: I: I:

c + +e+NTNT NT

*

Figure 3: Control and data ow of P

the tokens. As convention, we use dotted arrows to denote control ow and solid
arrows to denote data ow.

An addition token \+", for instance, has typically two data ow attributes
Left and Right pointing to the tokens representing its left and right arguments.
This is illustrated in the control and data ow of P given in �gure 3, which
contains the control and data ow of the program a+ b � (c + d) + e. The NT{
labeled control ow arrows de�ne the next task attribute in the control ow. The
ow graph links directly tokens of the program text, and does not use internal
nodes of the derivation tree.

Montages provides a method for specifying static analysis, i.e. for de�ning
control and data ow starting from the syntax of the language. The parse tree is
made of recurrent patterns, since it is generated by a grammar. Each production
rule

n ::= E

has di�erent occurrences in the tree, in particular we can imagine the non{
terminal n matching subtrees whose descendants are structured according to
the right{hand side E of the production. The root of such a subtree is a node
corresponding to the left{hand side n. Non{terminal (terminal) symbols in E
represent in this view the direct descendants of that root. Linking together this
symbols results in ow arrows between internal nodes of the derivation tree. In
order to get normal ow graphs we have to move this arrows down to the leaf{
level. How to do this is de�ned by the Montages Method in a simple but universal
way, that allows us to de�ne control and data ow graphs by specifying how the
symbols in the grammar productions { both terminals and non{terminals { are
linked together.

An example are the Montages of L in �gure 4. There we see how the al-
ready mentioned arrows Left, Right, and NT are de�ned between symbols of the
right{hand side of the corresponding (written just above the respective graph)
production rule.

A Montages speci�cation consists of descriptions associated with the pro-
duction rules. Each description, called Montage, contains four parts: the �rst is
the production rule the Montage speaks about; the second contains the graph
de�ning control and data ow as discussed. The third, marked with keyword
condition contains the static semantics condition, using the ow information
(�gure 4 does not contain the third part). And the last box contains the dy-
namic semantics de�nitions for the tokens introduced by the production rule (in
�gure 4, Ident, \+", and *").

Each inner node can be associated with a subtree of the parse tree. The local
control ow among the leaves of the subtree is de�ned by the corresponding

421Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

T *"F
I

Left
Right

TNTNT
T \+"E

EiP ::=

Ident:

Value :=
Store(Name)

CurrentTask :=
NextTask

P ::= T *" F

CurrentTask := NextTask
Value := Left.Value * Right.Value

*":

S ::= E \+" T

CurrentTask := NextTask
Value := Left.Value + Right.Value

\+":

Left
Right

I NT NT T
E

I T

\("E\)"

Figure 4: Montages of L

Montage. The �rst and the last leaves of this local control ow are called initial
and terminal leaves. Incoming control ow is always connected to the initial leaf
and outgoing to the terminal one. The function Initial connects a node to its
initial leaf and the function Terminal to its terminal leaf (see �gure 5).

TerminalInitial

Inner Node

Incoming ow Outgoing ow

t0 tn� � �

Figure 5: Local control ow

The initial and terminal leaves are de�ned graphically: for each production
rule, the static analysis graph contains a dotted arrow from the box border to
a symbol, called the I{symbol of the production rule, and a dotted arrow from
a symbol, called the T{symbol of the production rule, to the border of the box
(see example in �gure 4). We de�ne the initial and terminal functions over each
node as follows: they are the identity over the leaves; for each inner node the
initial leaf is de�ned as the initial leaf of its I{descendant and the terminal leaf
is the terminal leaf of its T{descendant (see �gure 6).

TerminalInitial TerminalInitial

t0 tn t00 t0
m

� � � � � �

TI

: : :

Initial Terminal

Figure 6: Initial and terminal leaves

422 Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

\+" T, F, I:E, S
e

\+"
a

T, PE, T, F, I:

*"T, F, I:
b

F, EiP

\(" E,S \)"Terminal

E, T, F, I:
c

\+" T, F,I:
d

Terminal

E, S

Terminal

Initial

Initial

Initial Terminal

Terminal
Initial

Initial

Figure 7: De�nition of Initial and Terminal in P

Applied to the compact derivation tree in our example, we get the situation
in �gure 7 where the dotted arrows are the tree structure, and the solid arrows
de�ne the initial and the terminal leaves.

Based on the de�nition of initial and terminal leaf, we can now de�ne which
leaves are linked by control and data arrows as follows:

{ A dotted control ow arrow links the terminal leaf of its source with the
initial leaf of its target. This choice is based on the heuristic that control ow
typically is some kind of sequential control ow and therefore an arrow from
inner node a to inner node b means that after processing the last (terminal)
task of a, one has to process the �rst (initial) task of b.

{ A solid data ow arrow links the terminal leaf of its source with the terminal
leaf of its target. The rationale is the following: assume, for instance, an inner
node representing an expression; the value of the expression can be evaluated,
only if all its sub{terms have been evaluated, i.e. they had control. Thus if the
control is given to the terminal leaf of the expression, the result is available,
and can be stored as �eld of that leaf. This and other typical situations show,
that the terminal leaf is well suited as access point for data ow.

Using these de�nitions, one sees how the four Montages in �gure 4 de�ne the
control and data ow graph of �gure 3. The start point is the compact derivation
tree of P with the de�nitions of Initial and Terminal, as given in �gure 7. Then
for each inner node n in the tree do the following:

1. Find the Montage having one of the labels as left{hand side of its production
rule. It is guaranteed that there is only one matching Montage.

2. De�ne the arrows speci�ed in the graph of that Montage between the de-
scendants of n.

423Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

3. Change each of these arrows to an arrow between leaves as follows:
(a) a control arrow from node a to a node b is changed to an arrow from the

terminal leaf of a to the initial leaf of b;
(b) a data arrow from node a to a node b is changed to an arrow from the

terminal leaf of a to the terminal leaf of b.

Up to now we illustrated how to enrich the grammar for specifying the static
analysis. Usually Montages have also static semantics constraints, which are
�rst{order predicates. Such predicates are evaluated during the static analysis.

2.1.3 Dynamic Semantics

The fourth part of a Montage is the dynamic semantics. It is given by means of
ASM's transition rules. A transition rule is a description of how the current state
evolves. In �gure 4, we have simple rules which describe how the expressions are
evaluated.

Given an initial state, the di�erent states of an ASM are reached by iteratively
triggering the transition rules until the ASM is in a state which cannot evolve
anymore. The initial state of the dynamic semantics is the result of the static
analysis. The transition rule characterizing the dynamic semantics is the union
of all transition rules given in the lowest part of the Montages.

A sequential program typically runs by executing one machine instruction
after the other. The current instruction is pointed by a \program counter". We
already mentioned that the leaves are considered as the instructions in our model,
therefore we call them tasks. As \program counter" we use a nullary function
CurrentTask (abbreviated CT) pointing always to the task which currently has
the control. Typically in each step CT is set to the next task in the control ow,
which can be retrieved as the NextTask attribute of the task. In each Montages
of L we �nd in the dynamic semantics part the update CurrentTask := NextTask
which sets the current task to the next task.

Unlike CurrentTask, NextTask is a �eld (unary function) which takes implic-
itly the current task as argument if another argument is not indicated explicitly
(see section 2.2.3). Each rule is guarded, it is triggered if the CurrentTask points
to a token which is labeled by the symbol indicated by the dynamic semantics
part of the Montage.

For all types of tasks in L (e.g. Ident, \+", and *" tasks) we see that the
�eld Value of the current task is updated. If the current task is an Ident, then
the value of the store for that variable, accessed by means of the �eld Name, is
assigned to the Value �eld

Value := Store(Name)

In this simple example, the store is modeled as a function from variable names
to integers. If the current task is an addition (multiplication) operator, then the
Value �eld of the current task is set to the sum (product) of the Value �eld of the
left task in the data ow and the Value �eld of the right task in the data ow.
The left and right tasks are accessed by the Left and Right �eld, respectively
(�gure 4).

We can now execute the example P in �gure 3. The initial state of the system
consists of the de�nitions of the functions CT, Store and the control and data

424 Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

ow graph. Thus, we need to de�ne the values of the functions CT, and Store.
We set CT to the a{task and Store to f(a, 4), (b, 8), (c,3), (d, 7), (e,9)g. The
repeated execution of the transition rules will now result in the calculation of 4
+ 8 *(3 + 7) + 9. In the �rst step, the Value �eld of the a{task is set to 4 and
parallelly, the current task is set to the b{task. In the second, third, and fourth
step, the Value �eld of the b{, c{, and d{tasks are set to 8, 3, and 7. After those
steps, the current task is equal to the �rst \+"{task. According to the transition
rule for \+"{tasks, the Value �eld of that task is set to the sum of the Value
�elds of the c{ and d{tasks and the current task is set to the *"{task. This task
multiplies the Value �elds of the �rst \+"{task and the b{task, and stores the
result as its own Value �eld. This process continues, until the last \+"{task sets
the current task to unde�ned, since the NT attribute of the last \+"{task is not
de�ned. At this point the system terminates, no update can be triggered any
more. If we made a correct protocol, the Value �eld of the terminal \+"{task
holds the result of the calculation: 93

2.2 Semantics

In this section we give the formal semantics of Montage speci�cations. In sec-
tion 2.2.1 we de�ne how the parse trees are represented in the initial state and
describe how the nodes of compact derivation trees are characterized by a speci�c
subset of the symbols in the grammar. This subset, the so{called characteristic
symbols is the base for the syntax driven modularity of Montages. Section 2.2.2
describes a declarative tree traversal, which is necessary for the static analysis.
In section 2.2.3 the Montage notation is illustrated. In the last section, we de�ne
the formal semantics of Montages.

We assume the basics of the ASM framework and refer the reader for the
de�nitions in [Gur95].

2.2.1 Tree Representation

The generation of a string S by a grammar can be described as usual by means
of a derivation tree. A derivation tree can be made more compact by putting
multiple labels in the case of synonym productions [Ode89], i.e. rules of the form
n ::= s1js2j : : : jsm, which give place to nodes with only one child. In such cases
we do not append new nodes but we keep track of the synonym productions by
adding a new label to the current node. The resulting trees are called compact
derivation trees and we distinguish a synonym production n ::= E by writing
n = E.

According to the above de�nitions, each node is labeled with at least one
terminal or one non{terminal, which is the left{hand{side of a non{synonym
production. Such symbols are called characteristic symbols since it can be shown
that each node is labeled with exactly one of them. If a node is labeled with a
characteristic symbol s we say as well that the node is characterized by s. Such
a characterization partitions the set of nodes. This partition is the base for the
modularity of Montages.

Given a program, its compact derivation tree is represented in the associ-
ated initial state. Our setting requires some speci�c universes. In particular, the
nodes and the leaves of the compact derivation tree constitute the universe Node

425Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

and Token, respectively. Moreover, each terminal and non{terminal symbol s is
interpreted by a sub{universe of Node containing those nodes which are labeled
by s.

A number of selector functions reects the structure of compact derivation
trees and allows us to retrieve the syntactical elements of the program text.
Since descendants of a node are constructed by a production rule, we de�ne the
functions accordingly. Let x be a node whose descendants have been constructed
by a production due to a rule n ::= E, then

{ If E is of the form \s1s2:::sm" we access the new nodes in the universes
s1; s2 � � � , and sm by unary functions

(S-si : Node! si)i2f1;:::;mg

If the same symbol s occurs more than once in \s1s2 � � � sm", we enumerate
the functions from left to right: S1-s maps x to the �rst s{descendant, S2-s
to the second and so on.

{ If E contains a symbols s in a f g part, then an element of a universe ListNode
is created and serves as access point of the whole list. The details are given
in section 3.2.

We need also an auxiliary function Up : Node �! Node, which links the descen-
dants to their parents.

In our approach we assumed the initial state to contain the parse tree. The
GEM Tool [Anl97a] is a static structure generator generator, i.e. starting from
a Montage speci�cation it generates a parser which creates for each program
source the initial state for the ASM associated with the language.

2.2.2 Tree Traversal

The static parts of a Montage speci�cation describes the static analysis and
semantics by transition rules which can be used to de�ne a traversal of the
compact derivation tree. Such traversal executes at each node an action, which
depends on the characteristic symbol.

We start with a rule executing the action for all nodes in parallel. Then we
show how to specify an action depending on the characterization of the node. In
order to execute an action R for each node, we use the vary construct of ASMs.
The rule

vary Self over Node (7)
R

endvary

executes R for each element in Node simultaneously. The bound variable Self
(current node) can be used in R to access the single elements. If for instance
Node is a universe with two elements a and b, the above rule corresponds to a
block of twice R, once with Self substituted by a and once with Self substituted
by b.

Using the fact that the nodes are partitioned by their characterization, we can
execute a specialized rule Rn, the so called action of n, for all nodes characterized
by n by replacing R in the above vary rule by a block of conditionals, one for
each characterizing symbol n:

426 Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

if n(Self) then (8)
Rn

endif

Such a conditional triggers Rn only, if Self is in the universe n. For convenience
we say henceforth action of a node, if we mean the action of its characterization.

Up to now, the actions of all nodes are executed in parallel. The next task is
to introduce the possibility to sequentialize the execution. Typically the actions
should be executed for lower level nodes �rst, and in some order between the
children of a node. The situation where actions of lower level nodes are executed
�rst allows already for direct representation of structural induction: each node
(representing a parsed term) can use the results of the actions (de�nitions) per-
formed for the descendants (representing sub{terms). In addition we need often a
certain sequentialization between descendants, e.g. actions for declaration parts
in programs must typically be performed before actions for statement parts.

For the sequentialization task, we need a boolean dynamic �eld

Visited: Node! Bool

which is initialized with false for each node. This �eld indicates whether a node
has been visited, i.e. whether its action has been executed. A relation

before: Node�Node! Bool

relates nodes sequentially. The relation (a before b) indicates that node a must
be visited before node b. The relation before can be de�ned with a parallel tree
traversal (see the next section).

Using the above de�nitions, a sequentialized traversal is de�ned by the fol-
lowing rule

vary Self over Node (9)
satisfying

for all node in Node holds
node before Self implies node.Visited

R
Self.Visited := true

endvary

where again R is re�ned to a case distinction by characterization (8). The �nal
state or termination of a sequentialized tree traversal is typically reached if the
root of the tree is visited.

2.2.3 Notational Shortcuts

The textual parts of the Montage speci�cation adopt some syntactical conven-
tions in order to enhance the readability while retaining a full mathematical
rigor. The conventions are based on the fact that there are four kindes of func-
tions in Montage speci�cations:

{ selector functions These functions are statically de�ned by the representa-
tion of the parse tree and they are marked by the S- pre�x.

427Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

tk tk+n� � � tj

StaticType

� � �

S-Expr

Expr
Terminal

Self

Figure 8: Explanation of S-Expr.StaticType

{ initial and terminal As discussed these two functions link the inner nodes
of the parse tree with the tokens.

{ �eld functions These dynamic functions take always a token as their �rst
argument and deliver another token or some value. They can be speci�ed
graphically by means of arrows.

{ global functions These functions are used for global links, such as a symbol
table in the static analysis.

The notational shortcuts concern terms built up only from selector functions
and �eld functions.

(a) static terms Such terms are used in the static part of a Montage speci�-
cation, e.g. static analysis and static semantics conditions. Their syntax is
a possibly empty list of selector functions followed by a possibly empty list
of �eld functions. As usual the functions are composed by means of a \.".
If both lists are empty then Self is used. For instance, a valid static term is
the one in the condition of the While Montage (box on page 3), i.e.

S-Expr.StaticType (10)

This is a shorthand for ASM terms used within the tree traversal pattern
(3). In fact, the above syntax is translated in the ASM notation by pre�xing
the term with Self and inserting between the selector functions and the �elds
the function Terminal. The static term (10) is therefore translated to

Self.S-Expr.Terminal.StaticType

The explanation can be found in the way the tree is represented and tra-
versed, this is depicted in �gure 8. The selector functions are used for de�ning
a path in the parse tree, the terminal maps the term to the leaves level, and
the �eld functions de�ne a path among the tokens. Consider one may have
a nesting of both selector and �eld functions.

(b) dynamic terms We de�ne the dynamic terms as those terms which are used
in the dynamic part of a Montage and which are built up only from �eld
functions. Fields either store data or provide a link to another token. The
starting point for the application of �eld functions is always the current
task. Thus, we do not write it explicitly, and a dynamic term is a list of �eld
functions. For instance, the term

428 Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

Condition.Value (11)

in the conditional rule in the While dynamics is translated into the following
term

CurrentTask.Condition.Value

The dynamic rule in each Montage performs a case distinction on the token
universe. Such a rule has always the following form

if TokenUniverse(CurrentTask) then (12)
R

endif

The rule R is triggered each time the nullary function CurrentTask points to a
token belonging to the universe TokenUniverse. In order to make the presentation
of the dynamic rule less verbose we use the following convention to represent the
rule (12)

TokenUniverse:

R

It is a mere syntactic sugar, but together with the static and dynamic term
syntax, it improves considerably the presentation of the overall speci�cation.

The syntactical translation of the static and dynamic terms should be per-
formed after the application of the user de�ned macros. Clashes between global
functions and �elds are solved in the context or by explicit mentioning them.

2.2.4 Semantics of Montages

The semantics of a Montages speci�cation is an ASMM that for a given program
checks the static semantics, initializes the control and data ow functions, and
in a second phase executes the dynamic semantics. The transition rule of M
consists thus of two rules, one modeling the �rst phase, called statics rule, and
one modeling the second phase, called dynamics rule.

The statics rule is a sequentialized traversal (3). The visual part and the
condition of a Montage of a symbol s de�ne the action of s in this traversal. The
de�nition of the before{relation for the statics rule is done by a parallel traversal
(1) with case distinction by characterization (2). The actions of this traversal are
de�ned such that lower nodes in the tree must be visited before higher nodes,
and that siblings are visited in the order corresponding to their left{before{right
and top{before{bottom order in the graph of the Montages.

We can thus de�ne the s-action in the parallel traversal de�ning the before-
relation of the statics rule as follows:

before(Self.S1, Self.S2) := true
before(Self.S2, Self.S3) := true
: : :
before(Self.Sn�1, Self.Sn) := true
before(Self.Sn, Self) := true

429Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

where S1, S2, : : : , Sn are the selector functions accessing the descendants of
an s-node in the left-before-right and top-before-bottom order de�ned by the
Montage of s.

Example The corresponding action for the While Montage (box on page 3) is

before(Self.S-Expr, Self.S-DO) := true
before(Self.S-DO, Self.S-StatementSequence) := true
before(Self.S-StatementSequence, Self) := true

The actions of the statics rule are explained step by step in the following.
Lets assume for the discussion a �xed Montage for a symbol s. The action for
this Montage is built up as block of updates. Each arrow in the control and data
ow graph de�nes one update in the action. This update links not directly the
graphically related nodes but two of their leaf-descendants, in particular those
given by the functions

Initial : Node �! Node Terminal : Node �! Node

which denote the �rst and the last leaf in the control ow between the leaf-
descendants of a node.

The arrows in the graph de�ne three di�erent kind of updates in the action,
one for the above described Initial and Terminal functions, one for data ow
arrows,and one for control ow arrows:

1. To de�ne the functions Initial and Terminal, we specify which node in the
graph contains the initial and terminal leaf, respectively. We call this nodes
I{node and T{node. I{node is de�ned as the target of a dotted arrow labeled
with I, and T{node is the source of a dotted arrow labeled with T. The
corresponding fragment of transition rule obtained by specifying I{node and
T{node graphically is the following block:

Self.Initial := Self.S-I.Initial
Self.Terminal := Self.S-T.Terminal

where S-I is the selector function linking the parent node, corresponding
to Self, with its I{descendant and S-T is the selector function linking the
parent node with its T{descendant. We call this fragment{1.

2. Each solid edge as, for instance, the following

S-dst S-src

DataField

de�nes the update Self.S-src.Terminal.DataField := Self.S-dst.Terminal which
links the terminal leaves of the source and the target. Such arrows, called
data ow functions are allowed between square and circle nodes. We call the
block of these updates fragment{2.

3. Each dotted edge as the following

430 Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

S-src S-dst

ControlField

de�nes the update Self.S-src.Terminal.ControlField := Self.S-dst.Initial which
links the terminal leaf of the source with the initial leaf of the target. Such
arrows, called control ow functions, are as well allowed between square and
circle nodes. We call the block of these updates fragment{3.

The action of the statics rules may contain in addition to the updates cor-
responding to the arrows a rule which is given textually in the second part of
the Montage (see section 3). The form of this rule resembles that of updates
generated by the second fragment, using the notational conventions.

The static semantics condition is checked before the updates of the action
happen, and a nullary function Abort is set to true if the condition is false. In
order to make the rule easier to read, we write the corresponding conditional rule
at the beginning of all updates. The condition predicate is also written using the
notational conventions, in particular the ones for the static terms.

The action of a characteristic symbol s in the sequentialized traversal being
the statics rule of the Montages semantics is

if not Condition then
Abort := true

endif

fragment{1.

fragment{2.

fragment{3.

TransRule

where Condition is the static semantics constraint of Montage s, TransRule is the
textual rule in the second part of Montage s, and the fragment{1., fragment{
2., and fragment{3. are the updates de�ned by the graph of Montage s. The
Condition and TransRule being written using the notational conventions need
to be syntactically resolved.

Example We give for the While (box on page 3) Montages the corresponding
action, as follows:

if not Self.S-Expr.StaticType = Boolean then
Abort := true

endif

Self.Initial := Self.S-Expr.Initial fragment-1

Self.Terminal := Self.S-DO.Terminal

Self.S-DO.Terminal.Condition := Self.S-Expr.Terminal fragment-2

Self.S-Expr.Terminal.NT := Self.S-DO.Initial fragment-3

Self.S-DO.Terminal.TrueTask := Self.S-StatementSequence.Initial
Self.S-StatementSequence.Terminal.NT := Self.S-Expr.Initial

431Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

3 Advanced Features

In the previous section we gave the basics of the Montage visual language. Sev-
eral aspects of language speci�cations must deal with scaling up to realistic
languages. It is important to avoid the scattering of the knowledge among the
speci�cation which would cause a combinatorial explosion. Therefore, in sec-
tion 3.1 we introduce a technique which allows to specify within one Montage
control and data ow which relates nodes produced by two di�erent production
rules. Such arrows are called inter{level arrows. Section 3.2 presents a convenient
aid to list processing. Both these features enhance expressiveness without com-
promising the readability and the manageability of the overall speci�cation (see
[KP97]). In section 3.3, we sketch how parallel and non{deterministic evaluation
can be modeled with Montages.

3.1 Inter{level arrows

In the previous section, we have seen arrows between nodes and their meaning
in terms of ASM. Control and data ow may require more complex arrows than
just those relating siblings. The inter{level arrows are still arrows between boxes
but they refer to boxes which are inside other ones (see �gure 9 and �gure 10).

S-Beta

S-Gamma S-Alpha
T

DataField

NTI

Theta ::= Alpha Beta

(a)

S-Beta

S-GammaS-Alpha
T

DataField

NTI

Theta ::= Alpha Beta

(b)

Figure 9: Samples of inter{level arrows

A box inside another one is a constraint over the non{terminal represented
by the outer box. It requires that the rule associated to such non{terminal, or to
its synonyms, must contain the symbol associated with the inner box. Figure 9
shows two of such inter{level arrows, in both cases the rules associated with the
non{terminal Beta must have the non{terminal Gamma in the right-hand{side,
therefore they can be either Beta ::= � � � Gamma � � � or Beta = Beta0 j Beta00,
Beta0 ::= � � � Gamma � � � , and Beta00 ::= � � � Gamma � � � In the examples, the
inner boxes are square boxes, but they might have been circle boxes as well. The
arrows in �gure 9.a and 9.b are translated in the following two rules, respectively

Self.S-Alpha.Terminal.DataField := Self.S-Beta.S-Gamma.Terminal
Self.S-Beta.S-Gamma.Terminal.DataField := Self.S-Alpha.Terminal

A more complex example of inter{level arrow is in �gure 10, where an arrow
accesses a box which is nested within a number of boxes. The situation is not

432 Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

S-Alpha
I TNT

S-Omega

S-Delta

S-Gamma

.

.

.

S-Beta

DataField

Theta ::= Alpha Beta

Figure 10: Yet another inter{level arrow

more complex than in the previous cases. The nesting of boxes requires that the
grammar rule(s) associated to Beta contains the non{terminal Gamma, whose
rule(s), in turn, containes Delta, and so on until Omega. This is translated to
the following

Self.S-Alpha.Terminal.DataField :=
Self.S-Beta.S-Gamma.S-Delta. � � � .S-Omega.Terminal

The most general case in which a data ow arrow, say DataField, goes from
a box S-s within the nesting S-s1, : : : ,S-sn to a box S-s0 within another
nesting S-s01, : : : , S-s

0

m, requires that the corresponding grammar rules contain
all the symbols which appear in the two nestings. The arrow is translated in the
following update

Self.S-s1. � � � .S-sn.S-s.Terminal.DataField :=
Self.S-s01. � � � .S-s

0

m.S-s
0.Terminal

Inter{level arrows de�ning control ow are de�ned in a similar way. If we
consider the most general case as the one above, the translation is as follows

Self.S-s1. � � � .S-sn.S-s.Terminal.ControlField :=
Self.S-s01. � � � .S-s

0

m.S-s
0.Initial

Inter{level arrows are very useful, especially when combined with the speci-
�cation of lists, as we will see in the next section.

3.2 List Processing

In many approaches a major part of a language speci�cation is concerned with
the processing of lists. Therefore we decided to include in Montages a simple, yet
powerful list model together with graphical and textual speci�cation elements
that can be used to avoid explicit list processing.

If the right{hand{side of a production rule contains a symbol in a f g part,
a list of descendents is generated. An additional node, a so{called list node, is

433Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

TerminalInitial TerminalInitial

t0 tn� � � t
0

0 t
0

m
� � �

Self

[1] [S-Alpha.ListLength]

: : :

S-Alpha

Initial Terminal

Figure 11: The tree associated with a list node

generated as well. It provides access to the elements and to all needed informa-
tions about the list. An attribute ListLength of the list node is set to the length
of the generated list and a binary in�x function

[] : ListNode�Nat! Node

can be used to retrieve the elements of the list. Moreover, a function

Position : Node �! Nat

returns the physical position of an element within a list. The initial and terminal
leaves of a list node are de�ned to be the initial leaf of the �rst element, respec-
tively the terminal leaf of the last element in the list. If the list is empty, they
point to the list node itself, which then serves as dummy element. The dynamic
semantics of that dummy element corresponds to the skip command.

For convenience we assume that a number of patterns in the right-hand-side
of production rules are recognized and treated as simple lists. These patterns
are

fsg sfsg s faTerminal sg [s faTerminal sg]

where aTerminal is usually a separator and s a symbol of the grammar. For
all these patterns just one list node is generated, which can be accessed by the
selector function S-s. The [] function can then be used to access all generated
s-descendants from left to right, regardless of which s in the pattern generated
the descendant. The situation is depicted in �gure 11.

A typical use of lists is, for instance, a variable declaration. Figure 12 de-
scribes a Montage, whose production rule generates a list of Var{descendants
and a node labeled with Type. The list is graphically represented by a box,
which is labeled in the upper right corner with the keyword list. The single
StaticType{arrow speci�es a family of data ow arrows, one from each variable
object to the type{node. At the same time, the action of the list node links all
variable objects sequentially with a NextTask arrow.

434 Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

T

I

::= Varf\," Varg \:" Type

S-Var S-Type
NT

LIST

StaticType

VarDeclaration

Figure 12: A variable declaration Montage

The section is organized as follows. In section 3.2.1 we present the static
analysis for list nodes. Section 3.2.2 de�nes the semantics of inter{level arrows
involving list boxes.

3.2.1 Static Analysis

We introduce now the static analysis for the list nodes. For the sake of simplicity,
we de�ne the action in the before-de�nition such that the elements must be
visited from left to right and that they are visited before the list node Self.

vary i over f1, : : : , Self.ListLength - 1g (13)
before(Self[i], Self[i + 1])

endvary

before(Self[Self.ListLength], Self) := true

In addition, the action in the statics rule of a list node always links the elements
with a NextTask control arrows and sets the initial and terminal leaf to the
corresponding leaves of the �rst and last element:

Self.Initial := Self[1].Initial (14)
Self.Terminal := Self[Self.ListLength].Terminal
vary i over f1, : : : , Self.ListLengthg
Self[i].Terminal.NextTask := Self[i + 1].Initial

endvary

In general, we do not need to �x an a priori ordering valid for all the lists as we are
doing. One possibility would be to choose among a number of ordering policies
which may be indicated in the statics graphs as well. Moreover not necessarily
the control ow order de�ned by the NextTask function in (14), must be the
same as the static one in (13). Nonetheless, the case{study in [KP97] showed
that this solution works �ne with the most complex cases we had to cope with
in the speci�cation of Oberon.

3.2.2 Semantics

As mentioned, lists have a graphic counterpart. A square or a circle box within
a list box is the generic representant of the elements in the list (see �gure 13).
List arrows, i.e. arrows which involve list boxes, may access to nodes within list
boxes or may depart from them, as well. In the rest of the section, we give the
semantics of such arrows.

435Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

LIST

S-Alpha

(a)

LIST

S-Beta

(b)

Figure 13: List boxes

DataField

LIST

S-srcS-dst

(a)

DataField(�)

LIST

S-dst S-src

(b)

Figure 14: List arrows

An arrow from a node within a list box as in �gure 14.a corresponds to
a family of arrows from all the elements in that list. Formally it de�nes the
following update

vary i over f1, : : : , Self.S-src.ListLengthg (15)
Self.S-Src [i].Terminal.DataField := Self.S-dst.Terminal

endvary

in other words, it results in a multiple de�nition of the function DataField over
the terminal leaves of the item in the list S-src. The rule (15) can be abbreviated
as

vary x over list Self.S-src
x.DataField := Self.S-dst.Terminal

endvary

where list l denotes the set of all elements in the list of list{node l, as follows

list l , fl[i] j i 2 f1, : : : , l.ListLengthg

The situation changes considerably if we consider the list arrow in �gure 14.b.
In this case, the function should point to all the items of the list. Therefore, the
�eld DataField is a binary function

DataField : Token�Nat �! Token

which links a leaf to all the items in the list and the natural denotes the position
of the item in the list. The semantics of the arrow is the following

vary x over list Self.S-dst
Self.S-src.Terminal.DataField(x.Position) := x.Terminal
x.Terminal.DataFieldPosition := x.Position

endvary

436 Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

TI
S-Call

NT
S-Expr

LIST

ActualParameters(�)

ParamProcCall ::= Call\(" [Expr f\," Exprg] \)"

Figure 15: A Montage for a procedure call

where DataFieldPosition is the position function. Its name has been obtained by
post�xing the �eld name, i.e. DataField in this case, with Position. Each arrow
determines a di�erent position function. The reason is that the position of an
item within a nesting of list boxes may be relative to the source of the arrow
which points to it.

An example of this kind of list arrow is, for instance, needed for the actual
parameters of a procedure call, which is in �gure 15. The ActualParameters
arrow in the Montage de�nes a binary function ActualParameters which maps
a call task c and a position n to the n{th actual parameter of c.

Nested lists are common in programming languages. They can be given a
general semantics. We have already seen that nested boxes correspond to a com-
position of the corresponding selector functions. This holds also for the list boxes
with some minor adjustments.

LIST

LIST

DataField

S-middle

S-src S-dst

Figure 16: A nested list arrow

An arrow which goes from a box within two nested list boxes de�nes a family
of family of updates. For instance, the arrow in �gure 16 de�nes the function
DataField in, say, two degrees of freedom, since its semantics is the following

vary x over list Self.S-middle
vary y over list x.S-src
y.Terminal.DataField := Self.S-dst.Terminal

endvary

endvary

Figure 17 shows two arrows which both reach a box within two nested list
boxes. Similarly to �gure 14.b, we have a function DataField1 which points to
all the elements of the nested lists, therefore it is a function of arity three

DataField1 : Token�Nat�Nat �! Token

437Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

S-src

LIST

S-middle

LIST

S-dst

DataField1(�,�)

DataField2(�)

Figure 17: Yet other list arrows

The position of each item is given by a pair of projection functions

DataField1Position1 : Token �! Nat and
DataField1Position2 : Token �! Nat,

respectively. The semantics is the following

vary x over Self.S-middle
vary y over x.S-dst
Self.S-scr.Terminal.DataField1(x.Position,y.Position) :=

y.Terminal
y.Terminal.DataField1Position1 := x.Position
y.Terminal.DataField1Position2 := y.Position

endvary

endvary

In other words, the two lists are viewed as forming a matrix and the position
functions return the position of a given item in the matrix.

Although this is a very natural way of conceiving a nesting of lists, experience
suggested that often one may prefer other ways of arranging the lists. In par-
ticular, it results too verbose to do quanti�cations over each list. Therefore, the
�eld DataField2 accesses the items in a linear way, as if they were belonging to
a single list, allowing to quantify the items in just one dimension. The semantics
of DataField2 is

vary x over Self.S-middle
vary y over x.S-dst
Self.S-src.Terminal.DataField2(Linear(x.Position,y.Position)) := y.Terminal
y.Terminal.DataField2Position := Linear(x.Position,y.Position)

endvary

endvary

where Linear is a macro de�ned as follows

Linear(u,v) ,
Pu-1

k=1 Self.S-middle [k].S-dst.ListLength + v

438 Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

3.3 Parallel and Non{deterministic Evaluation Order

In most programming languages, the order in which arguments of expressions
are evaluated is not de�ned. In some, e.g. ANSI{C, it is even not de�ned that
the arguments must be evaluated sequentially. A speci�cation should thus be
abstract and not �x the evaluation order. In the Montages framework this situ-
ation can be modeled using the same technique as for the sequentialized graph
traversal (3): all tasks of a program are executed in parallel, and a relation is
used to sequentialize the execution partially.

In order to do so, the initial leaf must be generalized to a set of initial
leaves. The semantics of a control ow arrow de�nes then a relation rather than
a function. For each control arrow this relation is established from the single
terminal leaf of the source to each initial leaf of the target. Instead of the abstract
program counter CurrentTask, there is a set ToDo of tasks which must still
be executed. Non{determinism can be modeled by an external function which
prevents certain tasks in the ToDo set from being executed immediately. The
dynamic behavior of this function determine whether all arguments are evaluated
at once, in some sequential order, or in a mixed form, e.g. not allowing more
than a certain number of additions to be done in parallel.

Multiple initial leaves can be speci�ed graphically by several I{arrows. The
semantics of a Montage with several I{arrows is that the initial leaves are the
union of all initial leaves of all descendants pointed by an I{arrow. The terminal
leaf remains the terminal leaf of the descendant pointed by the T{arrow. As
example we show a sequential Sum Montage and then we give a parallel version of
it. Figure 18 shows the sequential one. The static semantics of the sum expresses

TI

CT := NextTask

Left

S2-Expr

Sum ::=

NT NT
S1-Expr S-\+"

Value := Left.Value + Right.Value

Right

Expr \+" Expr

condition Is Num(S1-Expr.StaticType)
and Is Num(S2-Expr.StaticType)

\+":

Figure 18: A Montage for a Sum expression

that both components must be of numeric type. In the de�nition we use a static
function Is Num(�) which maps all numeric types to true. The graph specifying
control and data ow de�nes again NextTask control ow arrows, and �eld arrows
Left, Right, which are used to reference the left respectively right argument of
the \+" token. The dynamic semantics rule of the \+"{token assigns to the
Field Value of the CurrentTask the result of the addition and control is passed
to the next task. In �gure 19 there is the Montage of the parallel Sum. Apart

439Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

T

I

I

S-\+"

S2-Expr

Sum ::= Expr \+" Expr

Right

Left

NT

NTS1-Expr

Figure 19: A Sum Montages where the arguments may be evaluated in parallel

from the statics graph the other parts of the Montage are identical with the
sequential version. Detailed solutions to the problems related with parallelism,
e.g. concurrent recursive procedure calls, and a discussion why it is important
to abstract from a concrete evaluation order are given in [KH97].

4 Tool Support

At the moment, di�erent endeavors are being carried out to provide Montages
with an adequate tool support. The GEM Tool1 has been implemented at ICSI in
the Sather project. It is a stand{alone application and consists of a graphic front{
end which assists the designer in editing and managing the speci�cation. From
the speci�cation it generates a static structure generator, i.e. a parser able to
build the initial states for the ASM de�ned by the Montage speci�cation. High{
quality hyper-textual presentation of the speci�cation can also be generated
automatically.

Another tool is being realized at INRIA in Sophia{Antipolis [DGKP97]. By
using the symbolic representation of the speci�cation generated by GEM, it
realizes the static part of Montages using Centaur. This tool is not an imple-
mentation but executes a natural semantics version of the Montage's formal
semantics.

5 Related Work

We have used Kahn's Natural Semantics [Kah87] for the dynamic semantics
of Oberon [Kut96]. Although we succeeded due to the excellent tool support
by Centaur [BCD+87], the result was much longer and more complex then the
ASM counterpart given in [Kut97], since one has to carry around all the state
information in the case of Natural Semantics. Natural Semantics and many other
settings have the problem of the scattering of the knowledge, i.e. the speci�cation
of a construct does not refer to a local piece of formal description, but rather to
the whole speci�cation causing a certain combinatorial explosion.

The major similarity between attribute grammars [Knu68] and Montages is
that both have a nice natural structural decomposition that corresponds to the
syntactic structures of the language. Attribute grammars decorate a tree with

1 The GEM Tool is available on the world wide web at the location
http://www.icsi.berkeley.edu/~maffy/gem

440 Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

attributes. Such attributes may be either inherited or synthesized, which corre-
sponds to a top{down and a bottom{up evaluation, respectively. In general, at-
tribute grammars evaluators may be generated only for attribute grammars with
only synthesized attributes. Montages may be interpreted as attribute grammars
with only two synthesized attributes, i.e. the Terminal and Initial leaves. In con-
trast to traditional attribute grammars, these attributes are pointers into the
token sequence. We can therefore manipulate attributes in the token sequence
resulting in global e�ects. The restriction of the computation to direct descen-
dent's attributes causes a lack of expressiveness and use of attribute grammars.
Moreover, they tend to be very long if applied to realistic languages ([Ode89]).

Static analysis has been already modelled by means of ASMs in previous
works. In [BD96] the static analysis and the dynamic semantics of Occam have
been speci�ed. The static analysis is performed while building the parse tree in
a top{down fashion. The experience with Montages shows that static semantics
can only be checked while traversing the tree in a bottom{up fashion taking
advantage of the static analysis of the lower levels.

[MJ94] gives a characterization of a number of grammar formalisms, includ-
ing attribute grammars, by means of ASMs building the parse tree. Our work
assumes that the parse tree is given in the initial state.

Using ASMs for dynamic semantics, the work in [PH94] de�nes a framework
comparable to ours. Although it has di�erent aims, namely e�cient execution.
For the static part, it proposes occurrence algebras which integrate term alge-
bras and context free grammars by providing terms for all nodes of all possible
derivation trees. This allows to de�ne all static aspects of the language in a
functional algebraic system, which is supported by the MAX tool. back{end of
Montages, both for e�cient execution of speci�cations and automated reasoning.
The additional mathematical machinery is rather complex and should be hidden
from the user. In the existing form the speci�cations are pretty cryptic.

Acknowledgments

We gratefully acknowledge Egon B�orger, Yuri Gurevich, Jim Huggins, and Eu-
genio Omodeo for their constructive comments on early drafts of the paper.
Thanks goes to David Espinosa, Daniel Schweizer, Chuck Wallace, and Richard
Waldinger who helped us with the writing; Richard proposed the name Mon-
tages. We are also indebted with the anonymous referees for their insightful
comments.

References

[Anl97a] M. Anlau�. GEM a Graphical Editor for Montages, User Manual. ICSI,
Berkeley, 1997.

[Anl97b] M. Anlau�. The Semantics of the Object{Oriented Programming Language
Sather. Technical report, International Computer Science Institute, Berke-
ley, 1997. In preparation.

[BCD+87] P. Borra, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and
V. Pascual. CENTAUR: The System. Technical Report 777, INRIA, Sophia
Antipolis, 1987.

441Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

[BD96] E. B�orger and I. Durdanovi�c. Correctness of Compiling Occam to Trans-
puter Code. Computer Journal, 39(1):52 { 92, 1996.

[BDR94] E. B�orger, I. Durdanovi�c, and D. Rosenzweig. Occam: Speci�cation and
Compiler Correctness. Part I: The Primary Model. In IFIP 13th World
Computer Congress, Volume I: Technology/Foundations, pages 489 { 508.
Elsevier, Amsterdam, 1994.

[BGM95] E. B�orger, U. Gl�asser, and W. M�uller. Formal De�nition of an Abstract
VHDL'93 Simulator by EA{machines. In Semantics of VHDL, volume 307
of The Kluwer International Series in Engineering and Computer Science.
Kluwer, 1995.

[BR95] E. B�orger and D. Rosenzweig. The WAM - De�nition and Compiler Cor-
rectness, chapter 2, pages 20 { 90. Series in Computer Science and Arti�cial
Intelligence. Elsevier Science B.V.North Holland, 1995.

[DCIG93] G. Del Castillo, Durdanovi�c I., and U. Gl�asser. An Evolving Algebra Ab-
stract Machine, volume 1092 of LNCS, pages 191 { 214. Springer Verlag,
1993.

[DGKP97] T. Despeyroux, M. Gaieb, P.W. Kutter, and A. Pierantonio. Natural Se-
mantics of Static Aspects of Montages and Generated Tool Support using
Centaur. Technical report, INRIA Sophia{Antipolis, 1997. In preparation.

[DiF97] B. DiFranco. Semantica Statica e Dinamica di SQL diretto (ISO 9075)
mediante i Montaggi. Master's thesis, Universit�a di L'Aquila, 1997. In
preparation (in italian).

[GH93] Y. Gurevich and J.K. Huggins. The Semantics of the C Programming Lan-
guage, volume 702 of LNCS, pages 274 { 308. Springer Verlag, 1993.

[Gur95] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. B�orger, editor,
Speci�cation and Validation Methods. Oxford University Press, 1995.

[Kah87] G. Kahn. Natural Semantics. In Proceedings of the Symp. on Theoretical
Aspects of Computer Science, Passau, Germany, 1987.

[KH97] P.W. Kutter and J.K. Huggins. Abstraction from Evaluation Order and
Sequentiality. in preparation, 1997.

[Knu68] D.E. Knuth. Semantics of Context{Free Languages. Math. Systems Theory,
2(2):127 { 146, 1968.

[KP97] P.W. Kutter and A. Pierantonio. The formal speci�cation of oberon.
J.UCS, 3(5), 1997. This volume.

[Kut96] P.W. Kutter. Executable Speci�cation of Oberon Using Natural Seman-
tics. Term Work, ETH Z�urich, implementation on the Centaur System
[BCD+87], 1996.

[Kut97] P.W. Kutter. Dynamic Semantics of the Programming Language Oberon.
TIK-Report 25, ETH Z�urich, 1997.

[MJ94] L.S. Moss and D.E. Johnson. Grammar Formalisms Viewed As Evolving
Algebras. Linguistics and Philosophy, 17:537{560, 1994.

[Ode89] M. Odersky. A New Approach to Formal Language De�nition and its Ap-
plication to Oberon. PhD thesis, ETH Z�urich, 1989.

[PH94] A. Poetzsch-He�ter. Developing E�cient Interpreters Based on Formal
Language Speci�cations. In Compiler Construction, volume 786 of Lecture
Notes in Computer Science, pages 233 { 247. Springer{Verlag, 1994.

[Wal94] C. Wallace. The Semantics of the C++ Programming Language. In
E. B�orger, editor, Speci�cation and Validation Methods, pages 131 { 164.
Oxford University Press, 1994.

442 Kutter Ph. W., Pierantonio A.: Montages Specifications of Realistic ...

