
Model Checking for Abstract State Machines

Kirsten Winter
GMD FIRST

Rudower Chaussee 5, D-12489 Berlin, Germany
email: kirsten@�rst.gmd.de

Abstract: In this paper, we discuss the use of a model checker in combination with
the speci�cation method of Abstract State Machines (ASMs). A schema is introduced
for transforming ASM models into the language of a model checker. We prove that
the transformation preserves the semantics of ASMs and provide a theoretical frame-
work for a transformation tool. Experience with model-checking the ASM model of the
Production Cell demonstrates that this approach o�ers e�ective support for verifying
ASM speci�cations.

Key Words: Formal Methods, Abstract State Machines, Model Checking, Tool Sup-
port, Requirement Speci�cation, Veri�cation

1 Introduction

Abstract State Machines (ASMs) [Gurevich 95] denote a formal method that
allows us to write succinct and understandable speci�cations for a wide spectrum
of applications. The process of speci�cation and veri�cation is guided by the
notion of stepwise re�nement. The developer can choose any level of abstraction
to focus on speci�c aspects of the system. With ASMs, we have a formal method
for practical use, as the list of contributions in [B�orger 95] shows.

When using formal methods for developing safety-critical systems, one of the
major goals is to verify that the safety requirements are satis�ed. InteractiveThe-
orem provers are adequate for showing the properties of in�nite state systems,
but their drawback is the often immense human e�ort needed for veri�cation.
Model checkers are based on a fully automated state exploration technique, but
their application is restricted to systems with a not-too-large �nite state space.

In the model-checking approach, system models are speci�ed as automata
or transition systems. The model checker veri�es whether the given properties
are satis�ed by the system model. These requirements can be formalized as a
temporal logic or as an automaton like the system model. Model checking can
be done either by completely searching the state space of the system model
and testing whether the logical formula is satis�ed in every state, or by testing
bisimulation of the two given automata.

One proposal to overcome the problem of state explosion is to provide a
correctness-preserving reduction to an abstract model with a reduced state space
[Clarke et al. 92], [Dingel, Filkorn 96], [Bharadwaj, Heitmeyer 97]. Using ASMs,
we can start from the opposite direction by exploiting the possibility of modeling
at arbitrary levels of abstraction: we start with an abstract ground model (in
the sense of [B�orger 95a]) to obtain an overview of the problem, and then re�ne
{ ideally in a provably correct way { the model in several steps in order to get
more concrete versions. In this process, which characterizes the ASM method,
we look for an adequate level of abstraction, where the model operates in a state

Journal of Universal Computer Science, vol. 3, no. 5 (1997), 689-701
submitted: 20/12/96, accepted: 20/5/97, appeared: 28/5/97  Springer Pub. Co.

space that can be handled by the model checker, and in which we are able to
express the requirements that are to be checked.

We explain this novel use of model-checking ASMs using the example of the
Production Cell. We have chosen the SMV model checker that o�ers the language
facilities needed to simulate ASM models. We transform the ASM model of the
Production Cell [B�orger, Mearelli 97] into the language of SMV. (We chose the
re�ned model of the Production Cell which also operates in a �nite state space
and allows us to formalize all safety and liveness properties.) The required safety
and liveness properties [Lewerentz, Lindner 95a], [B�orger, Mearelli 97] are for-
malized in a temporal logic. The resulting system model can be checked against
the formalized requirements automatically.

In Section 2, we explain our choice of the SMV model checker. Section 3
describes the transformation of the ASM rules and the structure of the system
model. In Section 4, we describe the (language for the) requirement speci�cation
and give the results of model-checking the requirements of the Production Cell.
We conclude with a discussion of some related research and a look at possible
future work.

2 The Choice of SMV for ASMs

We decided to use SMV [McMillan 93], because like ASMs it is based on transi-
tion systems and on states that are denoted by the values of the state variables.
Internally SMV treat transitions symbolically as binary decision diagrams (which
provide very e�cient algorithms), but this representation is hidden at the level of
the description language. The SMV checks a temporal logic formula against the
system speci�cation and outputs a counterexample if the system fails to meet
this requirement.

An SMV system model is built as follows. After declaring the state variables,
the conditions for the initial state are given. This is followed by the de�nition of
rules for assignments and conditions for transition behavior. Then the require-
ment speci�cation (in our case, a set of safety and liveness properties) is given
in terms of the computation-tree logic CTL. For the sake of structuring, one
can divide the system into modules. As semantics for executing the modules
we can choose interleaving concurrency or simultaneous execution. Within one
module, all enabled assignments and transitions are executed simultaneously.
The communication between di�erent modules has to be modeled using global
variables.

One drawback of the approach, however, is that the structure of the ASM
transition rules has to be transformed to match the SMV language and may be
changed signi�cantly. Moreover, the report facilities of SMV are limited. It is
not possible to inspect the possible computation paths if no failure is found. An
additional simulation tool for analyzing behavior would be helpful.

3 The System Model

In this section, we introduce schemas for e�ective coding from ASM rules into the
SMV language that preserve the semantics. This yields a basis for a compilation

690 Winter K.: Model Checking for Abstract State Machines

algorithm supporting the transformation task.
It is well known that the execution time of the model-checking algorithm of

the SMV depends signi�cantly on the order of the variables. At the end of this
section, we describe how to �nd an adequate variable ordering.

3.1 The Transformation from an ASM Model to a SMV Model

For our case study, we use the Production Cell [Lewerentz, Lindner 95a] mod-
eled with ASMs [B�orger, Mearelli 97]. We restrict our investigation to simple
update rules, sequential and conditional rules [Gurevich 95], because no other
constructs are needed for this example. Further work has to be done to obtain
transformation schemas for other rule constructs of ASMs.

3.2 Transformation Schema for an Update Instruction

Following [Gurevich 95], the semantics of an update instruction R : f(�t) := t0
is that the current value of t0 is mapped to the function f at the current value of
�t, i.e. it is given formally by �ring its update � = (l; y) at the current state of the
system, where l = (f;ValS(�t)), y = ValS(t0) and ValS is the evaluation function
with respect to the current state S. At all other argument values, the function
itself and all other functions remain unchanged. We con�ne our attention to
updates that map a location into a �nite range.

The SMV language deals with variables over a �nite domain, which we use
to denote the locations l of the updates. Updating of a variable can be done by
the next operator next(�), which describes how the value of the variable will
be changed in the next state. If no transition behavior is speci�ed, a variable
behaves nondeterministically. To ensure that a variable will not be changed, we
have to state this explicitly. Otherwise the variable can take any value from
its range (i.e. for each value there exists a computation path in the internal
computation tree).

The next operator can be used in SMV within an assignment or to describe
the transition behavior invariantly. Here, we choose the following schema:

f(�t) := t0

+

ASSIGN next(l) := y

with the location l = (f;ValS(�t)) and the value y = ValS(t0)

The semantics for SMV programs is given as a function that maps a program
fragment p onto a formula [jpj] as its denotation. Since an expression is a formula,
its semantics is denoted by itself: [jej] = e. It is a peculiarity of SMV that
expressions are implicitly treated as nondeterministic. They evaluate to sets of
possible values. A constant is mapped to a singleton.

The semantics of the assignment of the next operator is given in
[McMillan 93] as follows:

[jASSIGN next(l) := y j]R = (l0 2 (running! ([jyj]; l)))

691Winter K.: Model Checking for Abstract State Machines

where l0 is the value of l in the next state.! stands for the if-then-else operator,
which has the intuitive meaning that, if the value of the left side is true, then the
expression evaluates to the �rst element on the right side, or else to the second
element. We can read the semantics of assignments as follows: if the module to
which the statement belongs is running, l0 evaluates to an element of the set of
possible values of the expression y, otherwise it remains as it is.

In the semantics of ASMs, it is intended that every module be active, i.e.
running is always true, and (for sequential ASMs without parallelism) y is a
constant. Therefore, the schema for transforming ASM updates into SMV as-
signments is semantically correct.

3.3 Transformation Schema for Sequences and Conditional Rules

The semantics of a guarded transition rule in ASMs is given by the update,
which should be �red when the rule is executed. The semantics of �ring the rule
R : if g0 then R0 elseif g1 then R1 : : : elseif gk then Rk endif is that
whenever gi holds in a state S, and for all j < i; gj does not hold, the update to
�re is given by the rule Ri. In [Gurevich 95], the semantics of R is given in terms
of update sets: Update(R;S) = Update(Ri; S) if gi is the �rst guard that holds,
and Update(R;S) = ; if none of the guards is true in S (i.e. nothing should be
done).

If the inner rules Ri are update rules for the same location, it su�ces to
expand the transformation schema for update instructions to a transformation
schema that is guarded. In an SMV model, guarded updates can be speci�ed
with a case expression within an assignment. A case expression returns the
value of the �rst expression on the right-hand side, of which the corresponding
condition on the left-hand side is true. The last branch should always be guarded
with true (i.e. 1) to indicate the default case. This is used to describe explicitly
that the variable will remain as it is if the transition rule will not �re, which is
the desired semantics within ASMs. This is exactly the semantics of executing a
guarded transition rule in ASM, if only one location is the subject of all updates
Ri. We use the schema:

if g0 then R0
elseif g1 then R1
: : : elseif gk then Rk endif

with 8i 0 � i � k :
Ri == f(�t) := ti

)

ASSIGN next (l) :=
case

g0 : y0 ;
g1 : y1 ;

...
gk : yk ;
1 : l ;

esac ;

where location l = (f;ValS(�t))and values yi = ValS(ti) for all i:

To enable this schema to be used for conditional transition rules in general,
we have to modify the transition rules in two steps. First, we have to
atten the
structure of the ASM rule; and second, we have to reorder these simple derived
rules and assemble the rules which update the same location.

692 Winter K.: Model Checking for Abstract State Machines

1. Every if-then-elseif construction containing nested rules has to be broken
down into a
at sequence of simple if-then-else rules with only update in-
structions inside. We simplify the if-then-else rules to if-then structures and
duplicate the rules (or the guards of the rules) in order to get one rule for
each update.
To be more precise, we are obliged to take the following steps to transform
a nested conditional transition rule into the required
at structure:

if g0 then Ri else Rj
with Ri = Ri1 ; : : : ; Rin and Rj = Rj1 ; : : : ; Rjm

and 8p : 1 � p � n : Rip == fq(�tp) := t0p
and 8q : 1 � q � m : Rjq == fq(�tq) := t0q

+

if g0 then Ri ; if :g0 then Rj

+

if g0 then Ri1 ; : : : ; if g0 then Rin ;
if :g0 then Rj1 ; : : : ; if :g0 then Rjm

The semantics of a sequence of transition rules R = R1; : : : ; Rn is given
by the conjunction of the respective update sets Update(R1; S) [: : : [
Update(Rn; S). In our case, we have the update set Update(Ri1 ; S) [: : : [
Update(Rin ; S) [Update(Rj1 ; S) [: : :[Update(Rjm ; S). Each of the subsets
is a singleton and guarded by g0 or :g0, respectively. Whenever g0 is true,
the update set is given by Update(Ri1 ; S) [: : :[Update(Rin ; S). Whenever
g0 is false, the update set is given by Update(Rj1 ; S) [: : :[Update(Rjn ; S).
We can see that the semantics is preserved by the transformation.

2. In the next step, we search for all update rules that map the same location to
various values, i.e. for all rules Ri with update set Update(Ri; S) = f(l; �)g,
where l is the location of the update. This set of updates at location l can
be transformed into the SMV language in the following way:

if g0 then R0 ;
...

if gh then Rh

)

ASSIGN next (l) :=
case

g0 : y0 ;
...

gh : yh ;
1 : l ;

esac ;

where for all Ri; 0 � i � h; the update location is some l = ValS(f(�t));
and the value is some yi = ti, which may di�er for di�erent indices i.

Similar to the simple next operation, the semantics of an assignment containing
a case block is given by

693Winter K.: Model Checking for Abstract State Machines

2
666666664

��������������

ASSIGN next (l) :=
case

g0 : y0 ;
...

gh : yh ;
1 : l ;

esac ;

��������������

3
777777775
R

=

g0 ! ((l0 2 (running ! ([jy0j]; l)));
g1 ! ((l0 2 (running ! ([jy1j]; l)));

g2 ! :::
: : : ; gh ! ((l0 2 (running !

([jyhj]; l)));
(l0 = l)):::)

If gi is the �rst condition that evaluates to true, then the value of l0 is a
member of the set of possible values of [jyij] whenever the module is running.
With deterministic evaluation of values yi and permanently running modules,
we have l0 evaluating to yi whenever gi is true.

With the proposed transformation steps we get a set of assignments with the
structure shown above. Under the appropriate conditions, each of them assigns
a new value to one location only. We can see that this set has exactly the same
semantics as the initially given ASM rule.

3.4 Transformation Schema for ASM Modules

As mentioned above, the SMV language allows modules to be used as an encap-
sulated collection of declarations that may depend on speci�c parameters. They
have to be instantiated within the calling module (i.e. the parent). The variable
running is an implicit parameter of an instance of a module, which is inherited
by the running variable of its parent. Hence, a module is always running when
the parent module is. We get the semantics of true concurrency in the sense of
simultaneous execution. On the other hand, if we instantiate a module with the
keyword process, then the semantics is that of interleaving concurrency: no two
modules with the same parent run at the same time.

In ASMs, modules and all the transition rules inside a module are running
concurrently. We transform ASM modules into SMV modules that are instanti-
ated without the keyword process, which yields the right semantics of simulta-
neous execution.

We also borrow some ideas from the schema of Havelund and Shankar
[Havelund, Shankar 95]. To be able to simulate the communication with global
variables, we need a module state consisting of the declaration of all variables
that are used in common. Since, in the case of the Production Cell, the naming
of the functions is unique (with the exception of bottomPos and topPos that we
rename for the press module), we chose to declare all variables in the module
state { not only the common variables. This means that only one parameter is
given to all modules: the module state. (If we decide to decompose more complex
systems in order to check the modules separately, we certainly have to distin-
guish between global and local variables of the ASM model.) We preserve the
module structure as given in the ASM model. For the Production Cell, we get
six modules that describe the transitional behavior of the respective agents in
the ASM model. Finally, a module main is used to instantiate all modules. We
get the following schema for the overall SMV system model:

694 Winter K.: Model Checking for Abstract State Machines

MODULE state
VAR : : : (declaration of all variables)
INIT : : : (initialization of all variables)

MODULE FeedBelt (s)
ASSIGN : : : ; (assignments of FeedBelt)

...

MODULE DepositBelt (s)
ASSIGN : : : ; (assignments of DepositBelt)

MODULE main
VAR

s : state;
FB : FeedBelt (s);

: : :
DB : DepositBelt (s);

SPEC : : : (CTL formula as system speci�cation)

With this transformation schema, the module structure of the ASM program
is preserved. All modules are running whenever the module main or the system
is running.

By way of an example, Figure 1 shows a fragment of the SMV model of the
Production Cell. (In the SMV code, we shorten the variable names and remove
the macro de�nitions as given in [B�orger, Mearelli 97].)

MODULE DepositBelt (s)

ASSIGN

next(s.Critical):=

case

(s.DBMot=run & !s.Critical) & s.PieceInLightBarr : 1;

(s.DBMot=run & s.Critical) & !s.PieceInLightBarr : 0;

1 : s.Critical;

esac;

next(s.DBMot):=

case

(s.DBMot=run & s.Critical) & !s.PieceInLightBarr : idle;

(s.DBMot=idle) & !s.PieceAtBeltEnd : run;

1 : s.DBMot;

esac;

: : :

Figure 1: The Module Deposit Belt in the SMV Production Cell

3.5 The Variable Ordering

As stated above, the SMV description of the system is treated as a Boolean
formula. Internally, a graph representation as binary decision diagrams (BDDs)

695Winter K.: Model Checking for Abstract State Machines

is used, which is reduced and ordered as well (we get ROBDDs). To construct
this graph, the tool sequentially looks at each variable of the formula. The order
in which these variables are evaluated determines the size of the ROBDD.

In ROBDDs, transition systems are represented as a conjunction of several
transition conditions (or assignments). In order to make the graph structure
as small as possible, we assemble the variables as they occur in the conjunction
such that single conjunctive terms can be evaluated completely in their respective
sequence. The evaluation thus can be aborted as soon as one conjunctive term
evaluates to false.

As a consequence, we have to assemble the variables in the order they occur
in the assignments. Using this simple heuristic, we made good progress in the
case study. This procedure could be automated for all ASMs.

4 Speci�cation of the System Requirements

In our experiments with the ASM model of the Production Cell, we �rst consider
the safety properties of the system as listed in [B�orger, Mearelli 97] (Section
4.2) and then the liveness property (Section 4.3). Furthermore, we show how
model checking can be used to support manual proving by checking particular
lemmas like the Agent Progress Lemma as introduced for the liveness proof in
[B�orger, Mearelli 97] (Section 4.4).

We formulate the system requirements in the temporal logic CTL, which
is based on atomic formulas that express information about states using state
variables and Boolean connectors. In addition, we need only the following path
quanti�ers:

{ AG' (' holds in every reachable state of every path (i.e. always)),
{ AX' (in all reachable next states of every path, the formula ' holds) and
{ AF' (in every path eventually ' holds).

4.1 The Safety Properties of the Production Cell

In the ground model, the safety properties are based on several assumptions
concerning the system. In the concrete model, these assumptions are used to
re�ne the behavior of the abstract model. We therefore choose the re�ned ASM
model as the system description we want to check. Continuous intervals as for
the angle values were treated as a �nite set of discrete values, because \only a
�nite number of the real values are relevant" [B�orger, Mearelli 97], (Section 4.3).

The safety properties of the Production Cell are given as properties of its
components, but the complexity of the system allows us to check the system as
a whole. We specify each property as a single formula and form the conjunction
of this set of formulas in order to get the requirement speci�cation.

By way of an example, we discuss here the safety property of the press. The
example shows how dependencies between the behavior of several modules can
be checked easily. We have the following two safety requirements for the press:

1. The press is not moved downward if it is in the bottom position; it is not
moved upward if it is in the top position
This is easily described using the state variables that model the motion of

696 Winter K.: Model Checking for Abstract State Machines

the press motor and the oracle functions for the position of the press: if
the bottom position is reached, the press motor should not move downward;
similarly, if the top position is reached, the press motor should not move
upward.
We have to bear in mind that the condition of reaching the top or bottom
position is also a condition for switching the motor to idle. Thus we pro�t by
the next step quanti�cation of CTL stipulating that whenever the boundary
is reached in all possible next states, the motor should not move the press in
this direction.1 We get:

AG (bottomPositionPress � > AX (PressMot 6= down))
^ AG (topPositionPress � > AX (PressMot 6= up))

2. The press only closes when there is no robot arm inside it.
The press is closing/closed when the motor is running up. In this case, neither
arm 1 nor arm 2 should ever be in the press. In terms of the ASM press model,
arm i (i = 0; 1) is in the press if the angle has the value ArmiToPress and
the arm is completely extended. This leads to the following formula:

AG (PressMot = up
� > :(Arm1Ext = Arm1IntoPress ^ Angle = Arm1ToPress)

^ :(Arm2Ext = Arm2IntoPress ^ Angle = Arm2ToPress))

We have similar simple formulas for the safety requirements of the other
agents. The behavior of the oracle functions (that determine the behavior of
the modules) has to be speci�ed to re
ect the Cell Assumption that requires a
reasonable system environment.

The model checker concluded that the conjunction of all safety formulas is
satis�ed by the SMV model of the Production Cell. The output shows the re-
sources used:

-- specification AG (s.FBM = on & s.deliv & !s.pfl ! !s.... is true

resources used:

user time: 3.8 s, system time: 1.03333 s

BDD nodes allocated: 43529

Bytes allocated: 18087936

BDD nodes representing transition relation: 25718 + 1

4.2 The Liveness Property of the Production Cell

We formalize the liveness property, re
ecting the whole process as a sequence
of di�erent steps, and check that always the next action of this sequence (in
the sense of the Blank Progress Lemma in [B�orger, Mearelli 97], see below) will
eventually be executable.

We split the cyclic process into subprocesses at the points where \blanks can
progress" owing to the actions of the cell components. For the liveness property,
it su�ces to show that every blank is forwarded by every component of the cell

1 In the real-life system, we have to require that the boundary be set with a su�cient
margin in order to be able to stop the motor at a safe distance to prevent a collision.

697Winter K.: Model Checking for Abstract State Machines

in the regular sequence: it is transported by the feed belt to the elevating rotary
table, then moved by the robot to the press, and from there to the deposit belt,
where the traveling crane puts it back on the feed belt. (This is what is stated
in the Blank Progress Lemma [B�orger, Mearelli 97].)

The presence and location of \blanks" in the system is formalized in terms
of the ASM model notions, e.g. a blank is transported from the beginning of the
feed belt to the end when the feed belt changes from NormalRun to CriticalRun.
(By the Cell Assumption, it is guaranteed that within these phases a blank will
be passed through.) We de�ne CTL formulas like

AG (action executable � > AF (next action executable))

which are satis�ed if it is always (in every path in every state) the case that once
action is executable, then eventually next action will be executable. Following
the Blank Progress Lemma, we consider all pairs of blank-forwarding actions
and their successor blank-forwarding actions. The liveness property is expressed
by the conjunction of all these "one-step-liveness" formulas.

Moreover, to ensure that action executable will be reached at all, we have to
verify that eventually the action will be executable: (AF action executable) has
to be checked for every �rst action in the set of action pairs.

Integrating the Agent Progress Lemma used in [B�orger, Mearelli 97] in the
proof of the Blank Progress Lemma, we obtain the following sequence of ac-
tions characterizing the control-critical moments in the life of a blank in the
Production Cell: FeedBelt is in NormalRun, FeedBelt is in CriticalRun,
Table is stopped in load position, Table is stopped in unload position,
Robot has unloaded the table, Press is OpenForLoading,
Robot has loaded the press, Press is ClosedForForging,
Press is OpenForUnloading, Robot has unloaded the press,
Robot has loaded the DepositBelt, DepositBelt is in NormalRun,
DepositBelt is in CriticalRun, Crane has unloaded the DepositBelt,
Crane has loaded the FeedBelt.

We checked our speci�cation of liveness against the SMV model of the
concrete system of the Production Cell. We found that the system satis�es
the property if (and only if) the initial condition guarantees that there are
at least two blanks in the system. (This has to do with the order of the
robot actions; see the discussion in [B�orger, Mearelli 97].) Since we do not
model an operator that puts new blanks on the feed belt, we have to change
the initial condition in order to get more than one blank within the system
(see the Insertion Priority Assumption and the proof of the Strong Perfor-
mance Property in [B�orger, Mearelli 97]). We have determined that initially
FeedBeltMot is idle, FeedBeltF ree is false, PieceInFeedBeltLightBarrier is
true, Robot is WaitingInUnloadTablePos, TableLoaded is true, PressLoaded
is true, DepBeltMot is idle, DepositBeltIsReadyForLoading is false,
PieceAtDepBeltEnd is true, and CraneMagnet is on. This initial condition
models the situation that seven blanks are in the Production Cell. If we add
more blanks (e.g. by setting Arm1Mag to on), the model checker �nds a dead-
lock.
With respect to the changes listed above and a complete model of the system
environment, we get the following output:

698 Winter K.: Model Checking for Abstract State Machines

-- specification AG (s.FBM = on & !s.deliv ! AF (s.FBM =... is true

resources used:

user time: 10.1333 s, system time: 0.95 s

BDD nodes allocated: 56832

Bytes allocated: 18350080

BDD nodes representing transition relation: 25718 + 1

We conclude that the system model satis�es the liveness property as claimed
in the problem de�nition.

4.3 The Agent Progress Lemma

B�orger and Mearelli [B�orger, Mearelli 97] introduce the Agent Progress

Lemma in order to prove the liveness of the system. Proof of this lemma re-
quires inspection of the rules. We suggest supporting the user with the model
checker in order to check the interactive behavior of the overall system.

The Agent Progress Lemma is split into six parts. Each part describes the
progress of one of the agents with respect to the values of the interface functions.
We formalize each of the parts in one CTL formula. The conjunct of these
formulas gives the formalization of the progress requirement of the agents.

Model-checking the formulas of progress veri�es that the SMV model satis�es
the progress requirements if we choose the same initial condition as described
in the last section. We conclude that the Agent Progress Lemma holds for the
given system model.

5 Related Work and Conclusion

Initially, model checkers were developed to verify circuits speci�ed as Boolean
functions. More recently, the area of applications has been extended to consider
more generally the veri�cation of embedded or concurrent systems. A combina-
tion of model checkers and more sophisticated speci�cation languages (as com-
pared with Boolean functions) is needed. In this context, several authors have
discussed the transformation from an operational speci�cation language to the
language of a chosen model checker. [Day 1993] uses the Voss model checker to
apply model checking to Statecharts. [Grahlmann, Best 93] present a system en-
vironment for developing programs with Petri nets that includes a model checker.
Bharadwaj and Heitmeyer report on their experiences in combining SCR with
the model checker SPIN in [Bharadwaj, Heitmeyer 97].

In the context of the ASM methodology, our work is related to the \Abstract
State Machine/Virtual Architecture" (ASM/VA, formerly known as EAM) by
Del Castillo, Durdanovi�c and Gl�asser [Del Castillo et al. 96]. With their ASM-
based speci�cation and design environment, they also address the scope of tool
support. Among other things, they supply the developers with a simulation tool
for ASMs. Compared with the ASM/VA, the SMV model checker provides very
limited simulation facilities. The user will see only one computation path if a
counterexample is reported in the case of failure. On the other hand, it is not
possible to use the ASM/VA for automated veri�cation of system requirements.

In this paper, we evaluated the model-checking approach using the given
ASM model of the Production Cell [B�orger, Mearelli 97]. It was to be expected

699Winter K.: Model Checking for Abstract State Machines

that additional e�ort would be needed for formalization. The informal natural-
language descriptions of the safety and liveness properties had to be transformed
into temporal-logic formulas. In particular, the behavior of the environment had
to be de�ned, because otherwise every possible behavior would be examined by
the model checker, yielding counterexamples that are not relevant assuming a
well-behaved environment.

To verify safety and liveness properties of the ASM Production Cell, we �rst
transformed the ASM model into a SMV model by applying the transformation
steps described above. We proved (in Section 3) that the transformation steps
preserve the semantics of ASMs. We speci�ed the behavior of the environmental
variables (i.e. the oracle functions). We modeled the safety and liveness require-
ments as CTL formulas and checked them against the derived SMV model. The
results show that safety and liveness are satis�ed by the SMV model. From the
correctness proofs of the transformation steps, we conclude that the ASM model
is correct with respect to the requirements under consideration.

In our concept of transforming an ASM model into the description language
of the model checker SMV, we break down the structure of the transition rules.
Only simple updates or guarded rules that update one location can be expressed
by the language of the SMV. Some of the transformation steps can be carried out
automatically, as the given schemas show. For a complete model, however, the
transformation has to be guided by the user in order to handle the remaining
formalizations. In future work, we have to develop schemas for the remaining
rule constructors that were not used in the ASM model of the Production Cell.
A compilation algorithm should be implemented for automatic transformation;
it could be enhanced with interaction facilities for user guidance.

To cover all proof obligations, the combined use of a model checker and a
theorem prover would be interesting. Dingel and Filkorn [Dingel, Filkorn 96]
suggest a procedure of this sort. Also, a more powerful simulation facility would
help to analyze system behavior if it fails to meet the requirements. To pro-
vide adequate tool support, a combination of the model checker SMV and the
ASM/VA [Del Castillo et al. 96] might be fruitful.

Acknowledgments My special thanks are due to E. B�orger and L. Mearelli for
encouraging my work on their ASM model of the Production Cell. I also wish to
thank S. Herrmann and J. Burkhardt for discussing with me the problems that
had to be solved, as well as T. Santen, A. Sodan and C. S�uhl for their helpful
comments.

References

[Bharadwaj, Heitmeyer 97] Bharadwaj, R., Heitmeyer, C.: \Verifying SCR Require-
ments Speci�cation Using State Exploration"; Proc. First ACM SIGPLAN
Workshop on Automatic Analysis of Software, Jan., (1997).

[B�orger 95] B�orger, E.: \Annotated Bibliography on Evolving Algebras"; in B�orger,
E. (Eds.): \Speci�cation and Validation Method"; Oxford University Press,
(1995), 37-51.

[B�orger 95a] B�orger, E.: \Why Use Evolving Algebras for Hardware and Software En-
gineering?", Bartosek, M., Staudek, J., Wiedermann, J. (Eds.), SOFSEM'95;
LNCS 1012, (1995), 236-271.

700 Winter K.: Model Checking for Abstract State Machines

[B�orger, Mearelli 97] B�orger, E., Mearelli, L.: \Integrating ASMs into the Software
Development Life Cycle"; contribution in this volume.

[Burch et al. 92] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwan, L.J.:

\Symbolic model checking 1020 states and beyond"; Information and Com-
putation, 98, 2 (1992), 142-170.

[Bryant 86] Bryant, R.E.: \Graph-Based Algorithms for Boolean Function Manipula-
tion"; IEEE Transactions On Computers, C-35, 8, (1986).

[Clarke et al. 92] Clarke, E., Grumberg, O., Long, D.: \Model-Checking and Abstrac-
tion"; Proc. 19th ACM Symposium on Principles of Programming Languages,
ACM Press, (1992), 343{354.

[Chang et al. 92] Chang, E., Manna, Z., Pnueli, A.: \The Safety-Progress Classi�ca-
tion"; Dep. of Comp. Science, Stanford Univ., STAN-CS-92-1408, (1992).

[Day 1993] Day, N.: \A Model Checker for Statecharts (Linking CASE Tools with
Formal Methods)"; Tech.Report 93-35, Dep. of Computer Science, Univ. of
British Columbia, Vancouver, B.C., Canada, (1993).

[Del Castillo et al. 96] Del Castillo, G., Durdanovi�c, I., Gl�asser, U.: \An Evolving Al-
gebra Abstract Machine"; Proc. CSL'95, LNCS 1092, (1996), 191-214.

[Dingel, Filkorn 96] Dingel, J., Filkorn, T.: \Model checking for in�nite state systems
using data abstraction, assumption-commitment style reasoning and theorem
proving"; Proc. CAV '95, LNCS 939, (1996), 54-69.

[Grahlmann, Best 93] Grahlmann, B., Best, E.: \PEP { More than a Petri Net Tool";
Procs. of TACAS'96, Springer LNCS 1055, (1996).

[Gurevich 95] Gurevich, Y.: \Evolving Algebras 1993: Lipari Guide"; E. B�orger (Eds.):
\Speci�cation and Validation Methods"; Oxford University Press, (1995).

[Havelund, Shankar 95] Havelund, K., Shankar, N.: \Experiments in Theorem Proving
and Model Checking for Protocol Veri�cation"; SRI International Menlo Park,
Report, USA (1995).

[Lewerentz, Lindner 95a] C. Lewerentz, T. Lindner: \Formal Development Of Reactive
Systems. Case Study \Production Cell""; Springer LNCS 891 (1995), 9-21.

[Long 93] Long, D.,E.: \Model Checking, Abstraction and Compositional Veri�ca-
tion"; CMU Report, USA (1993).

[McMillan 93] McMillan, K.: \Symbolic Model Checking"; Kluwer Academic Publish-
ers, Boston (1993).

701Winter K.: Model Checking for Abstract State Machines

