
Correctness proof

of a Distributed Implementation of Prolog

by means of Abstract State Machines.

Lourdes Araujo
(Dpto. Inform�atica y Autom�atica (Fac. Matem�aticas)

Universidad Complutense de Madrid
Madrid 28040, Spain
lurdes@dia.ucm.es)

Abstract: This work provides both a speci�cation and a proof of correctness for the
system PDP (Prolog Distributed Processor) which make use of Abstract State Machines
(ASMs). PDP is a recomputation-based model for parallel execution of Prolog on dis-
tributed memory. The system exploits OR parallelism, Independent AND parallelism
as well as the combination of both. The veri�cation process starts from the SLD trees,
which de�ne the execution of a Prolog program, and going through the parallel model,
it arrives to the abstract machine designed for PDP, an extension of the WAM (War-
ren Abstract Machine), the most common sequential implementation of Prolog. The
�rst step of this process consists in de�ning parallel SLD subtrees, which are a kind of
partition of the SLD tree for programs whose clauses are annotated with parallelism.
In a subsequent step the parallel execution approach of PDP is modeled by means
of an OR TASK ASM. In this ASM each task is associated with the execution of a
parallel SLD subtree. The execution of the parallel SLD subtree corresponding to each
task is modeled by a NODE submachine which is an extension of the one proposed by
B�orger and Rosenzweig to verify the sequential execution of Prolog. Accordingly, the
veri�cation leans on the results of this work in order to avoid the veri�cation of the
common points with the sequential execution. The new elements of the execution due
to parallelism exploitation are modeled at successive steps of the veri�cation process,
�nally leading to the extended WAM which implements PDP. The PDP veri�cation
proves correctness for this particular system but it can readily be adapted to prove it
in other related parallel systems exploiting AND, OR or both kinds of parallelism.

1 Introduction

Abstract State machines (ASMs) (or Gurevich ASMs) are a useful tool to ex-
press and verify algorithms in a precise way. Originally, the idea was to provide
operational semantics for programs and programming languages by improving
Turing's thesis [Gur91] |according to which every algorithm can be simulated
by an appropriate Turing machine. Translating a given algorithm into a Tur-
ing machine may, however, be very tedious because every step of the algorithm
may require a long sequence of steps of the Turing machine. Gurevich looked
for machines able to simulate algorithms in a stepwise manner |one step of the
simulatingmachine for each step of the algorithm. ASMs are intended to be such
machines. Furthermore, while Turing machines have a �xed level of abstraction

Journal of Universal Computer Science, vol. 3, no. 5 (1997), 568-602
submitted: 20/12/96, accepted: 20/5/97, appeared: 28/5/97 Springer Pub. Co.

|which may be very low, an ASM may be tailored to the abstraction level of
the given algorithm. If an algorithm is given as a program in some programming
language then the appropriate ASM provides the operational semantics for the
program on the abstraction level of the program. One may have a whole hier-
archy of ASMs of various abstraction levels for the same algorithm. At every
abstraction level of the veri�cation process the system is de�ned by both its ba-
sic objects and the elementary operations which determine its dynamic behavior
or state. Thus, each level is represented by means of an ASM consisting of a
pair (A;R), where A is a set of domains with partial functions, and R is a �nite
system of transition rules [Gur91].

ASMs also provide a powerful and simple mechanism for information hiding
and de�nition of the precise interface by means of external functions. Any func-
tion g not appearing in any update of the transition rules R is called external
for R and for the ASM corresponding to R. Otherwise, the function is internal.
The rules of the ASM give no information on the behavior of external functions,
and they can not be modi�ed by the rules, but they can be used in the rules to
determine arguments at which an internal function is changed.

Many programming languages and systems have also been speci�ed or ver-
i�ed by using ASMs. Some of them make a detailed description of a language
or a system architecture: the operational semantics of Occam is described in
[Gur89, B�or94a]; the semantics of the concurrent logic programming language
Parlog has been represented by an ASM [B�or93]; the architecture of the Paral-
lel Virtual Machine (PVM), a software system to manage a heterogeneous set
of computers as a distributed memory system, has been de�ned to provide a
correct understanding of the system at the C-interface level [B�or94c]. In some
cases ASMs have been used not only to specify the system but also to provide
a proof of correctness with respect to the speci�cation of a language or another
system: B�orger and Mazzanti [B�or97] present a correctness proof for pipelining
with respect to the sequential model in RISC architectures; B�orger and Dur-
danovic present a proof of correctness of transputer code with respect to Occam
[B�or96]; a graph narrowing machine is derived from the functional logic program-
ming language BABEL [B�or94b]; using the technique of successive re�nements,
B�orger and Rosenzweig [B�or95a] reconstructed the Warren Abstract Machine
(WAM) [Warr83] (a virtual machine model which underlies most of the current
Prolog implementations) from a Prolog speci�cation ASM. Then, using WAM
correctness as an starting point, some extensions of Prolog have been speci�ed
or veri�ed; e.g. Beierle and B�orger [Bei96] have provided a speci�cation and
correctness proof of a Prolog extended with abstract type constraints. This ex-
tension is focused on the representation and uni�cation of terms, where the type
of the constraints has to be considered.

The aim of this work is to use ASMs to provide a speci�cation and a proof of
correctness for the system PDP (Prolog Distributed Processor) [Ara94, Ara97].
To achieve this we again take WAM's proof of correctness for granted. The
proof given by B�orger and Rosenzweig [B�or95a] to verify the WAM consists
of a number of re�nement steps leading from an ASM, (A;R), closer to the
Prolog model, to an ASM, (B;S), closer to the execution system. Both ASMs
are related by a proof map F mapping states B of (B;S) on states F(B) of (A;R)
and rule sequences R of R on rule sequences F(R) of S. Such a proof map is
considered to establish correctness of (B;S) with respect to (A;R) if F preserves
initiality, success and failure of states. Furthermore, the proof map is considered

569Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

to establish completeness of (B;S) with respect to (A;R) if every terminating
computation in (A;R) is image under F of a terminating computation in (B;S),
since in that case every successful (failing) abstract computation may be viewed
as implemented by a successful (failing) concrete computation. Since the notion
of operational equivalence |reached if both correctness and completeness are
proved| is symmetric, the way F goes is unimportant and thus it may be taken
to map (A;R) on (B;S).

Parallelism is one of the most successful techniques in the search of e�cient
execution systems of Prolog. In spite that most of these parallel models have
been implemented, what allows to check them, only a formal veri�cation of
the system can guarantee the general correctness. This is specially important on
parallel execution systems, in which the execution of a program changes from run
to run, depending on the available processors and the uidity of communications.

PDP is a recomputation-based model for parallel execution of Prolog on
distributed memory. The system exploits OR parallelism, Independent AND pa-
rallelism, and the combination of both.

The extension of Prolog to be analyzed in the present work is mainly con-
cerned with the treatment of the structure of predicates and clauses where par-
allelism appears. The PDP veri�cation process starts from the SLD trees, and
going through the parallel model it arrives to the abstract machine designed for it
|the WAM. An OR parallel execution of a Prolog program can reach a number
of solutions larger that the sequential execution. The search space is explored
depth-�rst, left to right in the sequential execution, so that in�nite branches
cause that solutions on their right be never reached. Therefore, it is not possible
to establish correctness of the parallel execution algorithm with respect to any
model of the sequential one, and the starting point of the veri�cation process
has to be the SLD tree. Thus, the �rst step of this process consists in de�ning
parallel SLD subtrees, which are a kind of partition of the SLD tree for programs
whose clauses are annotated with parallelism.

In a subsequent step the parallel execution approach of PDP is modeled by
means of an OR TASK ASM. In this step every task represents the execution of
a parallel SLD subtree, and the model is proved to be correct wrt the previous
one. Completeness must be restricted to the special case in which each branch
of the SLD tree corresponds to a di�erent parallel SLD subtree, i.e. to the cases
in which every program clause is annotated with parallelism. The execution of
the parallel SLD subtree corresponding to a given task is modeled by a NODE
submachine which extends the one proposed by B�orger and Rosenzweig to verify
the sequential execution of Prolog. Therefore, the veri�cation heavily leans on
the results of this work in order to avoid the veri�cation of the common points
with the sequential execution. Accordingly, in spite that we have tried to make
this article self-contained, by including de�nitions and terminology borrowed
from B�orger and Rozensweig's work, reading their article �rst will certainly help
to understand this one.

The new elements of the execution due to parallelism exploitation are mod-
eled at successive steps of the veri�cation process, �nally leading to the exten-
sion of the WAM used to implement PDP. The system is still modeled by the
OR TASK ASM at every veri�cation step, but further ASMs must be included
in order to model the new elements introduced by parallelism in the execution
of goals inside each task.

The exploitation of AND parallelism leads to introduce AND tasks. PDP is

570 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

still modeled by OR tasks, but now they can execute some of their subgoals in
parallel by creating AND tasks. The results of the AND tasks execution must
be synchronized before continuing the OR task execution. This creates new dif-
�culties which have to be dealt with.

At this point the exploitation of combined parallelism is modeled. This leads
to a new distinction among the kind of tasks, primary or secondary, depending
on the kind of their parent task.

External functions are very useful to represent the environment in which an
ASM is de�ned, and they are used in the veri�cation of PDP to represent the
scheduling and communications.

The PDP veri�cation not only provides correctness results for this particular
system but it can be readily adapted to other related parallel systems. In this
way, since the PDP approach to exploit AND parallelism is an extension for
distributed memory systems of the RAP model [Her86], the veri�cation of this
model is also obtained as a particular case. In the same way the veri�cation of
the OR parallel exploitation by recomputation may be easily adapted to systems
which use a di�erent method for the exploitation of OR parallelism, such as the
copying in MUSE [Ali90].

The rest of the paper proceeds as follows: section 2 presents an overview
of PDP; section 3 de�nes the parallel SLD subtrees from which the veri�ca-
tion starts from; section 4 describes the Prolog tree task, the �rst step in the
veri�cation process; section 5 introduces AND tasks to model AND parallelism;
section 6 describes the way in which combined parallelism is modeled; section
7 models the communication level of the system; section 8 introduces stacks in
the tasks to approach PDP's �nal architecture; section 9 deals with predicate
structure, while section 10 deals with clause structure. Finally, after outlining
how the model is completed in section 11, conclusions are drawn in section 12.

2 Overview of PDP

PDP [Ara94, Ara97] is a multisequential system supporting both independent-
AND and OR parallelism, as well as its combination. Parallelism is supposed
to be annotated in the source program. Because the system is devoted to dis-
tributed memory architectures, the execution model has been designed in such
a way that there are no variables in a worker de�ned in terms of variables that
belong to another worker, thus reducing communication overhead. Independent
AND parallelism is exploited by following a fork-join approach, which is an ex-
tension for distributed memory systems of the one followed in the RAP model
[Her86]. Each goal in a parallel call, set of independent goals annotated to be
executed in parallel, is executed in a di�erent processor, if available. Thus, the
results of the execution of each goal are collected in the parent processor (the
one �nding the parallel call).

OR parallelism is exploited by following a recomputation approach [Ara93];
a processor environment is reconstructed by recomputing the initial goal with-
out backtracking (see Figure 1), following the socalled success path, i.e. the se-
quence of clauses which have succeeded, obtained from the parent processor
(the one �nding the parallel clause). Recomputation allows the exploitation of
OR under AND parallelism in a very natural way. The PDP approach to exploit

571Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

.

...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
...

.

...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Processor 1 Processor 2

OR

P1 P2 P2

Figure 1: Recomputation model. Processor 1 has had to explore the search tree on the
left of P1 to arrive at this point, while processor 2 has only computed the shorter path
(success path) until P2, which is annotated to be executed in parallel. This path to P2
is provided by processor 1.

OR under AND parallelism [Ara94] is designed to create, in an automatic and
decentralized way, an independent computation for each solution.

OR parallelism appearing under AND parallelism is exploited by recursively
splitting o� the execution of OR parallel clauses into independent branches of
computation (each with a pure AND parallel call, as illustrated in Fig. 2), thus
taking advantage of the recomputation technique. This approach has two main
advantages: �rst, it avoids storing solutions because no parallel call is waiting
for the completion of the whole set of solutions, and second, the splitting o�
algorithm can resolve any OR under AND parallel call in an automatic, decen-
tralized way, i.e. no processor has to perform the splitting, but anyone which
gets idle selects, by applying the algorithm, its corresponding solution.

The results of the implementation of this model [Ara97] have proved that
OR parallelism exploitation provides a linear speedup for high granularity pro-
grams. For some programs presenting both kinds of parallelism PDP achieves
a greater speedup than the product of the speedups achieved by exploiting
each kind of parallelism separately. The reason is that the exchange of mes-
sages required in the exploitation of AND parallelism is avoided in PDP when
OR under AND parallelism is exploited.

2.1 Task based execution

The computation of a goal in PDP is called a task. Two types of tasks are
distinguished: OR tasks and AND tasks. An OR task computes solutions to the
initial goal by exploring a portion of the search tree. An AND task computes a
solution to a goal which belongs to a parallel call. A task (parent task) exploits
AND parallelism and OR parallelism by creating new AND tasks and OR tasks
respectively. In this way, the parallel execution of a program de�nes a task tree.
The model supports combined parallelism in a very natural way. As a result, the
execution of the search tree is automatically distributed among tasks by means

572 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

...

...

...

...

AND

a

...

...

...

...

AND

a

...

...

...

...

AND

a

.

...
...
...

...
...
...
...

.

...
...
...

...
...
...
...

.

...
...
...

...
...
...
...

.

...
...
...

...
...
...
...

.

...
...
...

...
...
...
...

.

...
...
...

...
...
...
...

.

...
...
...

...
...
...
...

.

...
...
...

...
...
...
...

.

...
...
...

...
...
...
...

.

...
...
...

...
...
...
...

...

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
pppppp

pppppp
pppppp

pppppp
pppppp

ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

...

...

...

...

...

...

...

...

...

...

pppppp
pppppp

pppppp
pppppp

pppppp
ppppppp
pppppp

pppppp
ppppppp

pppppp
pppppp

...

...

...

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...
...
...

...
...
...
...

.

...
...
...

...
...
...
...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

...

...

...

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

fork

join

AND AND AND

OR

b c

d e f

Similarly:

And so on.

AND

a

OR

OR

AND

a

OR OR OR

a b c d e f d e f d e f d e f

d e f

Figure 2: Example to illustrate the combined parallelism algorithm. OR parallelism in
the �rst branch of a parallel call leads to independent computations of the parallel call,
each of them with a di�erent solution for the parallel branch. OR parallelism in the
remaining branches of the parallel call is exploited similarly.

of a combination rule, so that no speci�c task is in charge of the distribution.
The model is outlined as follows:

{ The program execution begins as an OR task (the root of the task tree),
which performs a sequential computation until a parallel call or a parallel
procedure is reached.

{ The execution of a parallel call is carried out by the creation of an AND task
for each independent goal. These AND tasks receive from its parent task
a goal and the computed answer substitution restricted to the variables of
the goal. Each AND task computes its goal, returns the local solution to
the parent task and �nishes. The parent task waits for the answer to each
independent goal and it is in charge of synchronizing the reception of those
answers.

{ The execution of a parallel procedure, i.e. a procedure with OR parallelism, is
carried out by the creation of a new OR task. This receives the success path of
the predecessor OR task and recomputes the initial goal following this path.
After the recomputation, the execution of the next solution is computed
sequentially.

{ If both kinds of parallelism appear combined, parallelism is still exploited by
creating the corresponding tasks. If AND parallelismappears under OR para-
llelism, the execution is performed as in the case of pure AND parallelism,
since the exploitation of OR parallelism produces the same environment as
a sequential execution.

{ If OR parallelism appears under AND parallelism, the OR tasks arising from
an AND task have to re-execute the parallel call in order to �nd new solu-

573Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

tions to it. If this were done blindly, the result would be the simple repetition
of solutions. To avoid this, it has been introduced a combination rule which
decides which branch is explored to solve each independent goal. The an-
cestor goal of an OR task arising from an AND task is de�ned as the goal
executed by this AND task. The key point of the combination rule is to �x
the solution of the goals on the left of the ancestor goal and to combine them
with every solution of the remaining goals.

The PDP approach to exploit combined parallelism { when it appears in the
form OR under AND { is based upon the fact that the recomputation allows
the AND tasks to exploit OR parallelism by creating OR tasks. If an AND task
�nds OR parallelism, it creates a new OR task to deal with the parallel clauses,
and transfers to it the success path leading to the parallel call. Notice that the
AND task has received this information only for this purpose. The new OR task
applies the combination rule in order to decide which solution is to be explored.
The PDP approach to exploit OR under AND parallelism leads to a distinction
between di�erent types of OR and AND tasks. The type of a task depends on
both the type of its parent task and the ancestor goal position. The types of
tasks are:

{ Primary OR task:
This is created by an OR task to exploit OR parallelism. When the recom-
putation of the received success path is completed, the execution proceeds
in the normal way.

{ Secondary OR task:
This is created by an AND task to exploit OR parallelism.When the recom-
putation of the success path leading to the parallel call is completed, a new
combination of solutions is created.

{ Primary AND task:
This is created to exploit AND parallelism by an AND task, a primary
OR task, or a secondary OR task, provided the latter does not correspond
to a goal on the left of the ancestor goal. Primary AND tasks exploit OR pa-
rallelism appearing during the execution.

{ Secondary AND task:
This is created to exploit AND parallelism by a secondary OR task corre-
sponding to a goal on the left of the ancestor goal. According to the combi-
nation rule, this task must ignore any OR parallelism appearing during the
execution.

The example of Figure 3 illustrates the way in which the di�erent tasks
are created and the way in which the combination rule works to achieve every
solution without repetitions. The parallel execution of the program appearing
in Figure 3a) is represented in Figure 3b). The query of the program presents
AND parallelism (a&b) and thus the goals a and b can be computed at the same
time. Furthermore, the procedures for a and b present OR parallelism (*) and
thus their clauses can be explored simultaneously so as to �nd di�erent solutions.
The query is always executed by a primary OR task, a kind of task able to reach
a �nal solution and to exploit all parallelism found. This OR task �nds out the
goal annotated with AND parallelism (&) and creates primary AND tasks to
execute each subgoal. The �rst solutions (a1 and b1) reached by these tasks are

574 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

returned to their parent task. However, the AND tasks �nd out the annotation
of OR parallelism (*) and thus create new OR tasks to execute the query again
with other clauses. These new OR tasks are secondary since they have been
created by AND tasks and have to follow a particular path to avoid arriving to
solutions already explored. The new OR tasks have the goal a and b as ancestor
goal respectively. Accordingly, the OR task which computes (a2; b1); c exploits
AND parallelism by means of primary AND tasks, because there is not goals on
the left of the ancestor one, while the OR task which computes (a1; b2); c creates
a secondary AND task, which does not exploit OR parallelism, to solve the goal
a which is on the left of the ancestor goal b. The computation of the solution
(a2; b2); c follows the same scheme.

.

.

.

.

..

.

..
.
..
..
..
..
...
...
....
....
........

..
..
.
.
.
.
.
.
.
.
.
.
.
.
...

......
....
...
..
...
..
..
..
..
..
..
.
.
.
.
. Primary OR task

Secondary OR task
.
.
.
.
..
.
..
.

...
...
....

....................

..........

.

.

.

.

.

.

..

.

.

..........
..........

.

...
..
...
..

.

.

.

.

.

a & b

a & b

a & b

a & b

.

.

.

.

.

.

..

..
..
..
..
..
...
...
...
....
.......

..
...
.
.
.
.
.
.
.
.
.
.
.
.
..
..

......
....
...
..
...
..
..
..
..
.
..
.
.
.
.
.
.

.

.

.

.

.

.

..
..

...
...
...
.

....................

..........

.

.

.

.

.

.

.

.

..

..........
..........

...

...
...
..
..

.

.

.

.

.
.
.
.
.
.
.
..
..

...
...
...
.

....................

..........

.

.

.

.

.

.

.

.

..

..........
..........

...

...
...
..
..

.

.

.

.

.

.

.

.

.

.

.

..

..

...
...
...
.

....................

..........

.

.

.

.

.

.

.

.

..

..........
..........

...

...
..
..
..
.

.

.

.

.

.

..........

....
...
....
.....
...
....
....
.

....................

............................

....................

............................

..........

....
...
....
.....
...
....
....
.

............................

............................

............................

...

...

.............................

............................

.............................

b)

a b

b ba

a b

a

(a2,b2),c

(a2,b1),c (a1,b2),c

(a1,b1),c

............................

............................

............................

............................

............................

a)

b

a
a

b b2

a2

b1

*

*

Goal: (a & b), c

a1

Secondary AND task

Primary AND task

Figure 3: PDP execution scheme of a goal annotated with AND parallelism (&) whose
clauses are annotated with OR parallemism (*).

2.2 PDP Architecture

In order to reduce the communications overhead, PDP has been designed with a
hierarchic scheduling policy. PDP is composed of a set of clusters, each of them
consisting of a scheduler and a set of workers. Schedulers are responsible for the
distribution of pending work among idle workers. Each worker operates on its
own private memory and interprocessor communication is performed only by the
passing of messages. A worker executes a task of any type until it is �nished,
then executes a new one, and so on.

Every worker implements an extension of the WAM [Warr83] consisting in
the addition of new data structures and instructions related to parallelism.
The success stack and the success pointer (SP) have been added to record the
success path. Other data structures have been introduced with the purpose of
synchronizing the execution of a parallel call. The Cross Product Environment
(CPE) associated with each parallel call has been introduced in order to perform
the combination of solutions according to the combination rule. Prolog programs

575Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

are compiled to PDP instructions. These consist of WAM instructions along with
instructions to manage each kind of parallelism. A complete description of the
PDP data structures and instructions can be found in [Ara94, Ara97]. The de-
tailed re�nement steps arriving to the PDP architecture are not included in this
work but can be found elsewhere [Ara96].

3 Parallel SLD subtrees

From now on this work will deal with logic programs annotated with paral-
lelism. These annotations may be added to clauses (OR parallelism) or to goals
(AND parallelism).

Def 3.1 A labeled program clause is a pair consisting of a clause and the con-
stant parallel:

((A B1; � � � ; Bn); parallel)

Def 3.2 A labeled logic program is a �nite set of program clause and labeled
program clauses.

The SLD tree may be partitioned into a number of subtrees, all of them
with the query as root. The idea of these subtrees is that they correspond to an
OR parallel computation.

Def 3.3 Let P be a labeled program with an order established among their clauses,
and let G be a goal and R a computation rule. Then a parallel SLD subtree for
P [fGg via R is de�ned as follows:

1. Each node of the tree is a goal.
2. The root node is G.
3. Let A1; � � � ; Am; � � � ; Ak (K � 1) be a node in the tree and let Am be the

atom selected by R. Then this node has a descendent for (the variant under
renaming of) each clause in the subset of clauses A B1; � � � ; Bq of P such
that Am and A are uni�ables for each one of them, they are in sequence, the
�rst of them is either the �rst of the predicate or the following to a labeled
program clause, and the last of them is either a labeled program clause (the
only in the subset) or the last of the predicate.

4. Nodes which are the empty clause have no descendent.

Figure 4 shows an example for the following labeled program:

((p p1); parallel)
(p p2)
((p p3); parallel)
(p p4)
(p p5)

(p1 q1)
(p1 q2)

� � �

576 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

Thus, the clauses of a predicate can be seen as a set of subsequences, where
subsequences can be executed in parallel:

[[p p1]; [p p2; p p3]; [p p4; p p5]]

.

..
...
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
...
..
...
..
...
...

.

..

...
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
...
..
...
..
...
...

.

...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
...
..
...

.

...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
...
..
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

p4 p5

.

...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
...
..
...

.

...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
...
..
...
...
..
...
...
..
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

p p p

p1

q1 q2

p3p2

...

Figure 4: SLD subtrees. The set of clauses until one marked parallel (including it) are
assigned to the same SLD subtree.

The relation of parallel SLD subtrees and the SLD tree is easily established:

Theorem 3.1 Each success branch of a parallel subtree corresponds to a success
branch of the SLD tree, and each failure and in�nite branch of a parallel subtree
corresponds respectively to a failure and in�nite branch of the SLD tree.

Proof By induction over the number of parallel clauses.

4 Prolog tree task

As the initial ASM with respect to which the correctness and completeness of
the PDP implementation of Prolog will be proved, let us choose an OR task
ASM. The idea is to de�ne a universe OR TASK whose elements correspond to
a depth-�rst, left to right execution of a parallel SLD subtree. The Prolog tree
representation proposed in [B�or95a], extended to deal with parallelism, has been
adopted as a submachine which models the execution of the goals inside each
task.

The computation inside each OR task is modeled by a NODE submachine,
an adaptation of the one proposed by B�orger and Rosenzweig [B�or95a] for the
whole SLD tree:

(NODE; root; currnode; father)

with the function
fnode : OR TASK ! NODE

The function fnode provides the currnode of the task.
In order to make the paper selfcontained, the ASM proposed as initial level

in [B�or95a] is outlined here. For a complete explanation of the rules of the
node machine see the work by B�orger and Rosenzweig [B�or95a]. Let us call act
(activator) the selected literal of a node n. For n they are created as many sons as
unlabeled alternatives there are to solve act. Each son has associated a candidate
clause of the program. The sons of n are attached to it as the list cands(n),

577Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

reecting in this way the order of the clauses. When a labeled alternative is
reached a new task is created.

When a node n gets �rst visited (Call mode) new nodes are created for each
cands(n) and the mode changes to Select. In this mode the �rst unifying son from
cands(n) gets visited (currnode), again in Call mode. If in Select mode there are
no cands(n) left, then control returns to the father of currnode (backtracking).
The father function then may be seen as representing the structure of Prolog's
backtracking behavior. The mentioned switching modes are represented by a
distinguished element mode 2 fCall; Selectg.

Now, in order to complete the description of this level we have to complete
the signature and to de�ne the transition rules. We assume the universes of
Prolog literals, goals, terms and clauses of [B�or95a]:

LIT;GOAL = LIT �; TERM;CLAUSE

The computation state of a node is associated by functions on universe NODE.
The representation of the cut (!) operator at this level follows the one of

[B�or95a]. The goals waiting for execution in a state are not represented lin-
early, but as subsequences in which clause bodies are decorated with cutpoints
to which they are to return in case of backtracking. Thus, we have the following
representation:

DECGOAL = GOAL�NODE
decglseq : NODE ! DECGOAL�

Assuming a SUBST universe of substitutions we have the following functions

s : NODE ! SUBST

unify : TERM � TERM ! SUBST [fnilg
subres : DECGOAL� � SUBST ! DECGOAL�

where s represents the current substitution in a state, unify associates to two
terms either their unifying substitution or the indication that there is none, and
subres yields the result of applying the given substitution to all goals in the
sequence. It is also assumed a substitution concatenating function �.

As in [B�or95a], the renaming of variables is represented by the function:

rename : TERM �N ! TERM

which renames the variables of the term with the given index. The current re-
naming index is given by the 0-ary function vi.

Furthermore, we will use all the usual list operations adopting standard no-
tation. hd and bdy are also used to select head and body of clauses, respectively.

As in [B�or95a], it is still used an abstract universe CODE of clause occur-
rences, with the functions cll(n) being the candidate clause occurrence of a can-
didate son n of a computation state, and clause(p) being the clause pointed to
by p. It is also assumed a procdef function to yield the list of candidate clause
occurrences for the given literal in the given problem.

clause : CODE ! CLAUSE

cll : NODE ! CODE

procdef : LIT � PROGRAM ! CODE�

578 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

Components of a decorated goal sequence are accessed as:

goal � fst(fst(decglseq))
cutpt � snd(fst(decglseq))
act � fst(goal)
cont � [< rest(goal); cutpt > j tail(decglseq)]

where act stands for the selected literal, and cont for continuation.
Now, the OR TASK ASM is de�ned. Parallel subtrees are represented by

a set, OR TASK, with a distinguished element, initial task. Each element of
OR TASK has the information for the state of computation of the subtree it
represents. This information consists of the pending resolvent, the substitution
computed so far, and the sequence of alternative resolvents that have not been
tried yet.

The introduction of parallelism requires extending the signature of the NODE
submachine. Parallel annotations in the Prolog program are considered by in-
cluding a universe and a function:

MARKCLAUSE = CLAUSE � fseq; org
orparallel :MARKCLAUSE ! BOOL

Let us also introduce a universe

SUCCESS PATH = (MARKCLAUSE �N)�

representing the sequence of followed successful clauses along with the repre-
sentation of the renaming index, what allows to ensure the same renaming in
parallel computations.

The structure of the task tree is given by the function:

success path : OR TASK ! SUCCESS PATH

which associates the sequence of clauses leading to the current resolvent of a
task. If the last clause of a success path is labeled with parallelism, then the
end of the parallel subtree corresponding to the task has been reached and the
alternative clauses are explored in a new task which is created at this point.

Then, the task ASM is de�ned:

(OR TASK; initial task; success path)

This is a dynamic ASM and the elements of OR TASK are created dynami-
cally by the computation out the initial task, consisting of the query goals and
an empty success path.

The STATUS universe is also introduced with the function:

status : OR TASK ! fworking; recomputing; reporting; finishedg

to distinguish among di�erent modes of computation. The recomputation status
corresponds to a task which is reconstructing the state of its parent task out of
its success path. The remaining status have the obvious meaning.

The parallel treatment of cut in PDP consists in restricting the parallelism
exploitation to goals outside the scope of a cut. This naive approach provides
better performance than other approaches when they are applied to distributed

579Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

memory systems. On this kind of systems the overhead due to the communi-
cations required in more complex approaches may be greater than the speedup
achieved by the parallelism exploitation. The chosen approach leads to intro-
duce a boolean function scopecut used in order to know whether goal is inside
the scope of a cut in a clause, that is, whether its execution may be pruned by
cut in the clause.

scopecut : DECGOAL� ! BOOLEAN

Once the signature has been established, let us introduce the set of transition
rules. In the initial OR task ASM the success path is empty and the currnode
of the task is the one having nil as root which is the father of currnode; the
latter has a single element list [< query; root >] as decorated goal sequence, and
empty substitution; the mode is Call; db is the given program and the list cands
is not yet initialized. The parameter currnode is usually abbreviated in the rules
(father � father(currnode), cands � cands(currnode), s � s(currnode) and
decglseq � decglseq(currnode).

The query success rule is modi�ed with respect to the one in [B�or95a] in
order to view Prolog as returning all solutions. This rule triggers backtracking

if all done
then backtrack

where all done represents decglseq = [].
Rules goal, true, fail and cut of the Prolog tree ASM by B�orger and Rosenzweig
are maintained in the present representation:

if goal = []
then decglseq := rest(decglseq)

if act = true
then succeed

if act = fail
then backtrack

And the cut rule is as follows

if act = !
then father := cutpt

succeed

where success represents decglseq := cont.
Rules call, selection and query success of the NODE machine by B�orger and

Rosenzweig [B�or95a] have to be modi�ed to introduce the new data representa-
tion. While in the machine for the WAM model the Call rule creates as many
sons of currnode as there are candidate clauses in the procedure de�nition of its
activator, the machine for the PDP model creates either tasks or nodes depending
on the appearance of parallelism.

580 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

if status(t) = working
then if is user de�ned(act) & mode = Call

then
let n = length(procdef(act, db))
seq i = 1,� � � , n

cl := nth(procdef(act, db), i)
if orparallel(clause(cl)) & not scopecut(decglseq(act))
then

extend OR TASK by taski with
success path(taski) := append(success path(t),< cl; vi >)
status(taski) := recomputation
endextend

else
extend NODE by tempi with
father(tempi) := fnode(t)
cll(tempi) := cl
success path(tempi) :=

append(success path(fnode(t)),< cl; vi >)
cands := append(cands, [tempi])
endextend

mode := Select

with the abbreviations currnode � node(t) and act � act(t).
According to this rule, a new task appears for each parallel clause, while

clauses not annotated with parallelism are put in the cands list. The rule states
that only if act is outside the scope of a cut the parallelism is exploited. In this
way it is avoided to create tasks to compute branches that may be pruned by a
cut.
The selection rule, which attempts to select a candidate resolvent state, is main-
tained as in the WAM mode since the selection of nodes follows the sequential
model inside each task. It has the following form:

if status(t) = working
then if is user de�ned(act) & mode = Select

thenif cands = [] then backtrack
else
let clause = rename(clause(cll(fst(cands))),vi)
let unify = unify(act,hd(clause))
if unify = nil
then cands := rest(cands)
else currnode := fst(cands)

decglseq(fst(cands)):=
subres([hbdy(clause),fatherijcont],unify)

s(fst(cands)) := s � unify
cands := rest(cands)
mode := Call
vi := vi + 1

As in the node machine of the WAM model vi is a technicality representing the
renaming index for the variables. Now, backtrack is the following abbreviation

581Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

backtrack � if father = root
then status(t) := �nished
else currnode := father

mode := Select

New rules have to be introduced to take into account the di�erent values of
status.

The termination occurs when the status of every task is �nished. In order to
represent termination a boolean element stop is used.

if 8 t status(t) = �nished
then stop = true

A new rule is introduced to express the process when the status is recomputation.
The rule says that the selected clause is the one indicated be the success path
until all their components have been considered. sp represents a pointer to the
point of the success path currently being considered.

if status(t) = recomputation
then if success path(act,sp) = nil /* success path �nished */
then status := working
else let vi = snd(hd(success path(act,sp)))

let clause = rename(fst(hd(success path(act,sp))), vi)
let unify = unify(act,hd(clause))
decglseq(currnode):=

subres([hbdy(clause),fatherijcont],unify)
s(currnode) := s � unify
sp := sp + 1

I want to remark in this rule that the renaming index vi is included in the
success path. This ensures that the recomputation process will produce the same
substitutions with the same renaming as in the parent task until the point in
which the computation is split.

In order to clarify the process, let us consider the example in Figure 3. Its
execution process (Figure 5) at this level can be sketched as follows: At the
beginning there is only the initial task with a single node root. This node has
as decorated list of goals only one element which is the initial query decorated
with the cutpoint root. AND parallelism (&) is ignored at this point and, after
setting act to a, the continuation list is assigned the remaining goals in the
query. Then the function procdef provides the sequence of clauses matching act.
According to the Call rule, depending on the appearance of parallelism, new
nodes or tasks are created for each element of the procedure for act. In this case
the clauses are marked as parallel, and new tasks T1 and T2 are created. Each
of them is provided with a success path which leads them to compute di�erent
solutions. Let us consider for instance the process in the �rst of the new tasks
T1, which appears in Figure 6. The new task T1 has to compute also the initial
query. However, its starting status is recomputation and thus it follows the given
success path until �nishing it. During the recomputation process parallelism is
not exploited (otherwise solutions would be repeated). When the recomputation

582 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

Initial task:

{ status = working
success path = []
Nodes:
root

� mode = Call
decglseq = [< [a&b; c]; root >]
act = a
cont = [< [b; c]; root >]
procdef(act,db) = fa a1,a a2g
New tasks:

� T1: success path = [< a a1; 0 >], status = recomputation
� T2: success path = [< a a2; 0 >], status = recomputation

cand = []
mode = Select

backtrack
stop = true

Figure 5: Scheme of the initial execution process.

T1:
{ status = recomputation

success path = [< a a1; 0 >]
vi = 0
clause = fa a1g
status = working
Nodes:
root
� mode = Call

decglseq = [< [a1]; root >;< [b; c]; root >]
act = a1
cont = [< [b; c]; root >]
procdef(act,db) = fa1.g
New Nodes: N1(a1)
cands = [N1]

mode = Select
a1 is solved

mode = Call
decglseq = [< [b; c]; root >]
act = b
cont = [< [c]; root >]
vi = 0
procdef(act,db) = fb b1,b b2g
New tasks:
� T3: success path = [< a a1; 0 >;< b b1; 1 >], status = recomputa-
tion

� T4: success path = [< a a1; 0 >;< b b2; 1 >], status = recomputa-
tion

cand = []

Figure 6: Scheme of the execution process of a task initialized by recomputation

583Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

�nishes, the mode of the only node in the task changes to Call and the next goal
a1 in the �rst element of decglseq is considered. After solving it the �rst goal in
the �rst element of decglseq is assigned to act. When solving it OR parallelism
appears again and new tasks T3 and T4 are created. For instance, the success
path of T3 indicates that when solving the goal a the �rst clause in the procedure
has to be chosen, and the same for the goal b. The process for the remaining
tasks follows the same scheme.

The node classi�cation proposed in [B�or95a] can be applied to the nodes of
a task. According to this classi�cation a node is

{ visited if it has already been the value of currnode;
{ active if it is currnode or it is on the path from currnode to root;
{ abandoned if it has su�ered backtracking;
{ candidate if it belongs to the cands list of an active node.

By introducing some modi�cations to the B�orger and Rosenzweig results at
this point, it can be established correctness of the task model.

Lemma 4.1 Given a pure Prolog program and a query, every visited node of a
task corresponds to a node of the parallel SLD subtree with the same success path
and the same substitution as the visited node.

Proof B�orger and Rosenzweig [B�or95a] have proved that given a pure Prolog
program and a query, every visited node of the Prolog tree corresponds to a
node of the SLD-tree with the same substitution. It has been showed by in-
duction over the time of the �rst visit (number of rule executions preceding).
Induction step follows from the Select rule together with the de�nition of SLD-
tree and candidate clause. Since the Select rule of [B�or95a] has been maintained
in the task tree representation and since theorem 3.1 establishes a one-to-one
correspondence between the branches in the SLD tree and those of the parallel
subtrees, the same result is ful�lled. Furthermore, considering the Call rule, in
which the success path is constructed as the sequence of clauses chosen to solve
the current goal together with the renaming index, and the Recomputation rule,
in which a given success path is followed, it is also true that the success path of
the task is the path of the corresponding node in the SLD tree.

Lemma 4.2 Given a pure Prolog program and a query, every abandoned node
of a task corresponds to a failure node of the parallel SLD subtree with the same
success path as the abandoned node.

Proof B�orger and Rosenzweig [B�or95a] have proved that given a pure Prolog
program and a query, every abandoned node of the Prolog tree corresponds to
a failed node of the SLD-tree. It has been showed by induction over the aban-
donment time. Because of theorem 3.1 this result is extended to parallel SLD
subtrees.

The previous lemmas allow stating the following:

Task theorem. Given a pure Prolog program and a query,
(i) If a task reaches n times states with all done, then the corresponding parallel
SLD subtree has at least the same number of successful branches with the same

584 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

substitutions.
(ii) If a task fails without reaching any state with all done, the parallel SLD
subtree (�nitely) fails.

This result together with the relation between the SLD tree and the parallel
SLD subtrees establishes correctness of the task model wrt SLD resolution.

Counterexamples to completeness could be easily found. However, it can be
established in a particular case:
Restricted Completeness theorem. If each branch of the SLD tree corre-
sponds to a di�erent parallel SLD subtree, i.e. when every program clause is
annotated with parallelism, then every successful node of a parallel SLD subtree
corresponds to a successful task and every failure node of a parallel SLD subtree
corresponds to a failure task.

Proof If every program clause is annotated with parallelism, according to the
Call rule a di�erent task is created for each branch of the SLD-tree. Thus, the
existence of in�nite branches in the SLD-tree does not a�ect the tasks whether
they are exploring successful or failure branches.

5 Introducing AND tasks

Now the exploitation of AND parallelism is going to be considered. The program
may also present AND parallelism annotations. That is, a set of goals in the body
of a clause can be annotated to be executed simultaneously before continuing
the execution of the remaining resolvent. Let us de�ne a parallel call as a set of
goals annotated to be executed in parallel:

Def 5.1 A parallel call is a pair consisting of a set of consecutive goals (which
may be executed in parallel) and the constant parallel:

((G1; � � � ; Gn); parallel)

The following clauses represent examples of parallel calls:
p! a; b; ((c; d); parallel); d.
q ! ((e; f); parallel).

The ASM represents these annotation by means of a new universe and func-
tion:

PAR CALL = GOAL�

parcall : GOAL! PAR GOAL

where parcall gives the parallel call where the goal is.
The AND parallelism is going to be modeled by introducing a new universe

AND TASK with functions:

goal : AND TASK ! GOAL

s : AND TASK ! SUBST

status : AND TASK ! STATUS

father task : AND TASK ! TASK

585Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

where TASK is a new superuniverse with both kinds of task, with a function
to determine the kind of a task and the speci�cation of the type of task of
initial task

TASK � OR TASK;AND TASK

type task : TASK ! for; andg
initial task 2 OR TASK

However, AND TASKs are not elements of the ASM which models the PDP
system. AND tasks do not �nd solution to the initial query but to subgoals in a
parallel call. Thus, the ASM of the PDP system is still that of the OR tasks, but
now these OR tasks have the capability of performing the uni�cation of a goal
(act) by creating an AND task, and thus in parallel. Nevertheless, the superset
TASK has been de�ned in order to unify the rules, since they are similar for both
kinds of tasks, and the di�erences are distinguished by consulting the type task
value.

The execution inside an AND task is now modeled by the ASM SUBNODE.

(SUBNODE; assigned goal; currnode; father)

The only di�erence with the NODE ASM which models the execution inside an
OR task is that the root node is substituted by the parallel node assigned to the
AND task. Thus, the rules of this ASM are those of the NODE machine and in
the following re�nements only those are presented.

At this point it is necessary to represent the transmission of data among
tasks. The time at which a transmission occurs depends on the status of the
concerning tasks. The STATUS universe is extended

status: TASK ! fworking; reporting; waiting; sleeping; finished;
recomputingg

As an informal explanation of these status let us consider the description of the
evolution of a typical AND task. It begins in working status when its father task
�nds AND parallelism. When the computation �nishes the task turns to report-
ing status. If there are cands in the task, it changes to sleeping after reporting.
Otherwise, it changes to �nished status.

In this re�nement step, the exploitation of OR parallelismwithin an AND task
is not considered. Thus, the call rule for an AND task becomes similar to the
one of the sequential case. The exploitation of OR under AND parallelism will
be considered in the next section.

The call and rule (speci�c for AND tasks) is as follows

if type(t) = and
& status(t) = working

then if
is user de�ned(act)
& mode = Call
then
let n = length(procdef(act, db))
extend NODE by temp1; � � � ; tempn with
father(tempi) := currnode
cll(tempi) := nth(procdef(act,db),i)
success path(tempi) := success path(father)
cands := [temp1; � � � ; tempn]

endextend
mode := Select

586 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

The call rule (for tasks of type or) is maintained except for an initial query to
check that the type of the task is or.

The query success rule is also speci�c for an AND task, arising the suc-
cess and rule

if type(t) = and & all done
then status = reporting

When AND parallelism is exploited the execution of the resolvent after the
parallel call can not be done until the execution of every goal in the parallel call
has been completed. In order to perform this synchronization a new element has
been introduced, the waiting list. This is a list of parallel call representations,
each element including the number of goals and the status of the task executing
each goal in the parallel call .

The transition rules of the task ASM are those of the OR task ASM extended
with the following:

if status(t) = working
thenif is user de�ned(act)

& mode = Select
thenif act 2 goal(snd(hd(waiting list(t))))
then status := waiting
elseif cands = []

then backtrack
elseif length(parcall(act)) > 1
then

let n = length(parcall(act))
extend TASK by task1; � � � ; taskn with
father(taski) := t
success path(taski) := []
decglseq(taski) = act + i
type(taski) := and
status(taski) := working
waiting list(t) := [hn; (task1; � � � ; taskn)ijwaiting list(t)]
endextend
fst(fst(decglseq)) := fst(fst(decglseq)) - parcall(act)

else
let clause = rename(clause(cll(fst(cands))),vi)
let unify = unify(act,hd(clause))
if unify = nil
then cands := rest(cands)
else
currnode := fst(cands)
decglseq(fst(cands)):=

subres([hbdy(clause),fatherijcont],unify)
s(fst(cands)) := s � unify
cands := rest(cands)
mode := Call
vi := vi + 1

587Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

This rule extends the universe TASK with new AND tasks which are in charge
of solving the goals of a parallel call (while OR tasks solve the initial goal).
The rule establishes that if act belongs to a parallel call being executed, and
therefore it is in the waiting list, the status changes to waiting. In other case act
is executed. It is checked if act belongs to a parallel call (length(parcall(act)) >
1). If so new AND tasks are created, the representation of the parallel call is
added to the waiting list and the goals in the parallel call are erased from the
resolvent. In other case act is solved as in the previous Select rule.

The next waiting rule establishes that a task waiting for the answer of a set
of AND tasks becomes working when every of the AND tasks is reporting. A
reporting AND task changes to status sleeping if there are candidate clauses for
its goal and its exploration may be requested in case of backtracking. The task
changes to �nished status otherwise.

if status(t) = waiting
then if 8 ti 2 snd(hd(waiting list(t)))

status(ti) = reporting
then status(t) := working

let n := fst(hd(waiting list(t)))
seq i = 1,� � �,n

s(t) := s(t) � s(ti)
if cands(ti) = []
then status(ti) := �nished
else status(ti) := sleeping

endseq

The backtrack operation is also changed to take into account the new situ-
ations. If currnode belongs to a parallel call and any task collaborating in the
computation is sleeping (what means with pending candidate clauses), then its
status is changed to working in order to explore a new candidate.

backtrack � if father = root
then status(t) := �nished
else currnode := father

if length(parcall(currnode)) > 1
then taski := take task(waiting list(t))

if status(taski) = sleeping
then status(taski) := working

status(t) := waiting
else backtrack

else
mode := Select

where take task takes the �rst task in the waiting list which is sleeping.
Let us consider again the example in Figure 3, but now let us assume that

the �rst clause for a contains a parallel call:

a a1&d

The execution of the parallel call a1&d is sketched in Figure 7.

588 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

T1:
{ status = recomputation

success path = [< a a1; 0 >]
vi = 0
clause = fa a1g
status = working
Nodes:
root
� mode = Call

decglseq = [< [a1&d]; root >;< [b; c]; root >]
act = a1
cont = [< [d]; root >< [b; c]; root >]
procdef(act,db) = fa1.g
New Nodes: N1(a1)
cands = [N1]

mode = Select
parcall(a1) = fa1, dg
New tasks:

� Tand1: to solve a1
� Tand2: to solve d

Waiting list = [< 2; [Tand1(working); Tand2(working)] >]
decglseq = [< [b; c]; root >]
status = waiting

After Tand1 and Tand2 are �nished
Waiting list = [< 2; [Tand1(�nished); Tand2((sleeping)] >]
status = working

mode = Select
� � � and the process continues

Figure 7: Scheme of the execution process when AND parallelism is exploited

When the goal a1 is going to be solved in Call mode, it is found out that the
goal belongs to a parallel call. Therefore new AND tasks, which are included in
the Waiting list, are created to solve each goal in the parallel call. These goals
disappear of decglseq and the status changes to waiting. When the execution of
the AND task �nishes the Waiting list is updated indicating the status of the
task (sleeping means that there are pending alternatives to solve d), and the
status is working again.

The state component map is the identity between the new OR tasks and
the previous ones. In order to establish correctness of the rules of this extended
OR TASK model let us name calls and callp to the sequential and parallel parts
of the call rule of the previous section, being Select and Call the complete rules
of that section. Let us call Selectas and Selectap the sequential and parallel
parts of the current select rule. Then, the rule map, which does not change for
the remaining rules, is de�ned as follows:

F([Selectap; waiting]) = [Select; Call; goal]
F([call and; success and]) = [Calls]

The de�nition of the implicate rules allows stating that F commutes, giving

589Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

Prop 5.1 The model of 5 is correct and complete wrt that of 4.

6 Modeling OR under AND parallelism

A fundamental point in modeling PDP is the appearance of OR under AND
parallelism. This event may happen in an AND task. According to the combina-
tion rule, OR parallelism appearing in an AND task is exploited by creating new
OR tasks with the appropriate success path. The set of solutions to a parallel
call are explored in a distributed way by creating a new task for each element of
the cross product among the solutions to each goal in the parallel call. In this
way no synchronization is needed and all annotated parallelism is exploited.

At is was stated in Section 2.1, the ancestor goal of a task created by an
AND task is the goal executed by this AND task. Then the combination rule
�xes the solution to the goals on the left of the ancestor goal and combines
them with every solution of the remaining goals. Accordingly, the model has
to distinguish between tasks able to explore parallelism or not. This leads to a
new classi�cation of the tasks. The OR TASK and AND TASK universes are
now re�ned to distinguish between primary and secondary tasks depending on
whether they have a particular path to follow (secondary) or they have to explore
every alternative to the assigned goal (primary).

OR TASK � PRI OT; SEC OT

AND TASK � PRI AT; SEC AT

TASK � PRI OT; SEC OT; PRI AT; SEC AT

type task : TASK ! fpri or; sec or; pri and; sec andg
initial task 2 PRI OT
ancestor goal : TASK ! GOAL

cpe : TASK ! CPE

where informally a secondary task do not exploit OR parallelism and ances-
tor goal is a partial function which maps a task to the goal belonging to a parallel
call whose OR parallelism has caused the task. The position of this goal in the
parallel call determines the solution to the parallel call which corresponds to the
task. A new universe is also introduced: the CPE (cross product environment),
used to specify the combination of solutions to a parallel call which corresponds
to a task. Each task records its CPE list (cpel).

The call rule changes according to the mechanism explained above. OR pa-
rallelism is not exploited by secondary AND TASKs, which follows a success
path already explored leading to the goal to be executed. The �rst clause do not
generated a new OR task in order to provide a solution to its assigned goal for its
parent task. It is speci�ed in the rule that OR tasks created by another OR task
have the same ancestor goal as its parent task, while if the type of current task
is and the ancestor goal of the new OR TASKs is the act goal. Then, the rule
takes the form:

590 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

if status(t) = working
then if is user de�ned(act)

& mode = Call
then
let n = length(procdef(act, db))
seq i = 1,� � �,n

cl := nth(procdef(act, db), i)
if i > 1 & orparallel(clause(cl)) & not scopecut(decglseq(act))&
(pri or(t) _ sec or(t) _ pri and(t))
then

if (pri or(t) _ sec or(t))
createor taski with
initial(t,cl,ancestor goal(t),taski)
endcreateor

else
createor taski with
initial(t,cl,act,taski)
endcreateor

else
extend NODE by tempi with
father(tempi) := fnode(t)
cll(tempi) := cl
success path(tempi) :=

append(success path(fnode(t)),< cl; vi >)
endextend

mode := Select

with the mnemonic abbreviations:

createor
initial(t,cl,act,taski)

endcreateor

� extend TASK by taski with
status(taski) := recomputation
father(taski) := t
success path(taski) :=

append(success path(t),< cl; vi >)
cpel(taski) := cpel(t)
if pri or(t) then pri or(t) := true
else sec or(t) := true

ancestor goal(taski) := act
cpe := last(cpel(taski))
cpe(act)++

endextend

That is, the new OR task begins recomputing the success path consisting of the
success path of its parent task followed by the parallel clause and if the new task
is secondary the cpe is updated to lead to a new combination of solutions to the
parallel call.

The waiting rule is also modi�ed to take the cpe into account:

591Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

if status(t) = waiting
then if 8 ti 2 snd(hd(waiting list(t)))

status(ti) := reporting
then status(t) := working

let n := fst(hd(waiting list(t)))
seq i = 1,� � �,n

s(t) := s(t) � s(ti)
sp(t) := append(sp,success path(ti))
cpe(ti) := end(success path(t))
if cands(ti) = []
then status(ti) := �nished
else status(ti) := sleeping

endseq

The working selection rule takes the following form:

if status(t) = working
thenif is user de�ned(act)

& mode = Select
thenif act 2 snd(hd(waiting list(t)))
then status := waiting
elseif cands = [] then backtrack

elseif length(parcall(act)) > 1
then

let n = length(parcall(act))
createand task1; � � � ; taskn with

initial(t,act,task1; � � � ; taskn)
endcreateand
initial(cpe)
waiting list(t) := [hn; (task1; � � � ; taskn)ijwaiting list(t)]
fst(fst(decglseq)) := fst(fst(decglseq)) - parcall(act)

else
let clause = rename(clause(cll(fst(cands))),vi)
let unify = unify(act,hd(clause))
if unify = nil then cands := rest(cands)
else
currnode := fst(cands)
decglseq(fst(cands)):=

subres([hbdy(clause),fatherijcont],unify)
s(fst(cands)) := s � unify
cands := rest(cands)
mode := Call, vi := vi + 1

where

592 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

createand
initial(t,act,task1; � � � ; taskn)

endcreateand

� extend TASK by task1; � � � ; taskn with
status(taski) := working
father(taski) := t
success path(taski) := []
decglseq(taski) = act + i
cpel(taski) := cpel(t)
if (pri or(t) _ pri and(t) _

(sec or(t) & i � ancestor goal(t))
then pri and(t) := true
else sec and(t) := true

endextend

initial(cpe) � extend CPE by cpe with
seq i = 1,� � � , n

cpe[i] := nil
endextend

Let us consider again the example of Figure 3, extended as in Figure 7 (i.e.
substituting the �rst clause for a by a a1&d). Let us assume an AND task T
created to solve b, being b the ancestor goal itself. Figure 8 sketches the process.
T is a primary AND task, so it has the capability of creating new OR tasks

T:
{ status = working

type = pri and
success path = [< a a1; 0 >< [d];0 >]
vi = 0
clause = fb b1g
Nodes:
root
� mode = Call

decglseq = [< [b; c]; root >]
act = b
cont = [< [b]; root >]
procdef(act,db) = fb b1,b b2g
ancestor goal = b
New Node: N' (to solve with b b1).
New Task: T'

type = sec or
success path = [< a a1; 0 >< d:;Nd >;< b b2;Nb >]
status = recomputation
� � � and the process continues

Figure 8: Scheme of the execution of combined parallelism

if OR parallelism is found. T solves b using the �rst clause in the predicate
and �nds OR parallelism. Since b is not on the left of the ancestor goal the
second clause for b will be explored by a new OR task T 0, which is given its
corresponding and updated success path.

593Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

At this point it can be described a mapping F between the current OR task
ASM and the one of section 5. The state component of the proof map F is the
identity (primary and secondary or tasks can be identi�ed with a general or task
with a particular set of alternative clauses to explore). In order to prove it let
us distinguish between di�erent actions formulated within a rule. Then, in the
Working Select (WSelect) rule let us call WSelectw to the change to waiting
status, WSelectb to the case of backtrack, WSelectp to the parallel case, and
WSelects to the last case (sequential). In WSelectp, let us distinguish between
WSelectpp and WSelectps corresponding to the parts creating a primary and a
secondary AND task respectively. In the working call (WCall) rule, let WCallp
and WCalls denote the parallel and sequential parts respectively. And in the
Select rule introduced in the previous section (and tasks) let us call Selectb to
the backtrack part and Selects and Selectp to the sequential and parallel parts
respectively.

Then the rule map is homonymous except for

F([WSelectpp;WSelectw;Waiting]) = [Selectp; Selectw;Waiting; Selectb]
F([WSelectps;WSelectw;Waiting]) = [Selectp; Selectw;Waiting]

F([WCallp; Recomp]) = [Call and; Selectb]
F([WCalls]) = [Calls]

F([WCallp;WSelectps]) = [success and]
F([WCallp;WSelectpp]) = [success and; Selectb]

Commutativity of F with rule comes from these correspondences yielding

Prop 6.1 The task model of 6 is correct and complete wrt that of section 5.

7 Introducing Workers and Communications

At this point it is introduced in the model a correspondence among tasks and
processors. In order to do this, a new universe WORKER is de�ned.

External functions provide a exible and open framework to represent the
environment in which an ASM is intended to work. Since there is a number
of possible scheduling policies, and the choice of one of them does not a�ect
the correctness of the system, but only its performance, the notion of external
function is used to model the scheduler of the system. The function scheduler
has as arguments the state of the workers of the system as well as pending tasks.
A worker may be idle, busy (working) or o�ering (with pending task). Applying
a �x algorithm (exchange of work among closer workers, the oldest work, etc)
the scheduler decides which o�ering worker if going to give a task to which idle
worker. This is the output of the scheduling function.

Then, the rules are modi�ed in order to replace the creation of a task by
an annotation of the possibility of creating the corresponding task if it can be
assigned to a worker.

The creation of an OR TASK is replaced by annotating the corresponding
parallel clause in a new list, the pending alt list. This change is reected in the
Call rule.

The creation of an AND TASK is replaced by pushing the parallel goal into
a new stack, the goal stack. A new universe PENDING GOAL is introduced to
model the new actions. The Select rule reects the change.

594 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

For the sake of brevity we do not include here the new rules, but they can
be found in [Ara96].

Now, it is necessary to introduce mechanisms to deal with the pending AND
and OR tasks. Let us assume that the scheduler function is able to detect the
change in the state of the workers and to check the goal stack and pending
alternative list. With these data the scheduler decides the task to be assigned to
a worker that has become idle. The creation of the tasks takes place by indication
of the scheduler. To model this process a new universe COMMUNICATION is
introduced as well as the function.

com state : TASK ! finput; output; restg

By default com state(t) is assumed to be rest. Communications are modeled
by external functions input and output, whose behavior consists in copying the
data of the structure output men of a task with com state output to the structure
output men of the task assigned to the worker destiny. A task with the possibility
of creating new tasks does it when the its input function adopts the appropriate
request value. A new rule [Ara96] is introduced to model the system behavior
when com state becomes input.

It is necessary to model the behavior of an AND task, which now in case of
failure has to explicitly communicate this result to its parent task. In order to
specify the parallel call to which the failed goal belongs, a new data structure is
introduced in the creation of the AND task: the parent task data. Backtracking
has also to take into account that if a goal to be reexecuted belongs to a parallel
call and has been solved by an AND task, the new solution has to be requested
to this task, and thus a new backtracking rule appears (this can be found in
[Ara96]).

In case there is no idle processor in the system, a mechanism is needed
by means of which the pending tasks are developed by the current task itself.
In the case of the OR tasks, the pending alternatives are taken automatically
in the backtracking process. Then, we only need to update the pending alt list
during the backtracking process. In the case of the AND tasks the Waiting rule is
modi�ed to take goals from the goal stack of the task itself. In order to compute
by itself any of these goals, the status universe is extended with a new value
working inside. The rule for this state is just as the one for working except for
the former does not change to waiting status when the goal belongs to a parallel
call since there are not answers to wait for from other tasks.

The task model of this section turns out to be correct and complete wrt that
of 6 as it is shown in [Ara96].

8 Introducing Stacks in the Tasks

In a way similar to the step from Trees to Stack in [B�or95a], the path of active
nodes in a task may be viewed as a stack, if cands list are represented elsewhere.

The CODE universe is re�ned to CODEAREA, which represents sequencing
of clauses in a Prolog program, with

+ : CODEAREA! CODEAREA

cll : NODE ! CODEAREA

clause : CODEAREA! CLAUSE + fnilg
procdef : LIT � PROGRAM ! CODEAREA

595Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

procdef now yields an element of CODEAREA, i.e. a pointer, instead of a list;
the old list can easily be reconstructed [B�or95a].

The information contained in currnode is separated from other active nodes,
by recording the former in 0-ary functions. These are identi�ed with

decglseq s cll

NODE is renamed to STATE, root to bottom, father(currnode) and father to
0-ary and unary b (for backtracking).

b 2 STATE b : STATE ! STATE

replacing the previous NODE submachine

(NODE; root; currnode; father)

by the statetree ASM
(STATE; bottom; b; b)

More formally, it will be the mapping F proposed by B�orger and Rosenzweig
[B�or95a] the one which maps stack elements to task nodes as:

(decglseq; s; cll; b; bottom; vi)! (node; root; vi))

where the node decorations in the task are recovered from the registers and the
decorations of the stack elements as follows:

decglseq(currnode) = decglseq
s(currnode) = s

cands(currnode) = mk cands(node,cll)
father(currnode) = F(b)

with F : STATE ! NODE an auxiliary function such that

decglseq(F(n)) = decglseq(n)
s(F(n)) = s(n)

cands(F(n)) = mk cands(F(n), cll)
father(F(n)) = F(b(n))
F(bottom) = root

where:

mk cands(Node, Cll) � if clause(Cll) = nil
then []
else [hNode;Cllijmk cands(Node;Cll ++)]

This F is the one adopted in [B�or95a] when the state ASM is introduced, but
adding the new data structures corresponding to the success path and to the
cpe list.

Assuming the representation of data proposed in [B�or95a]

(DATAAREA; +;�; val);

where
+;� : DATAAREA! DATAAREA

val : DATAAREA! PO+MEMORY

596 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

where PO (for Prolog Objects) is a universe supplied with functions

type : PO! fRef;Const; List; Struct; Functg
ref : PO! ATOM +DATAAREA+ ATOM � ARITY

where ARITY = 0; � � � ;maxarity and MEMORY is a universe containing DA-
TAAREA. It is also assumed (partial) functions

deref : DATAAREA! DATAAREA

term : DATAAREA! TERM

The success path will be represented on the SUCCESS STACK, a submachine
of DATAAREA

(SUCCESS STACK; sp; bsp; +;�; val)

to be used as a stack, with sp; bsp 2 SUCCESS STACK representing top and
bottom.

For the CPE list it is introduced CPE LIST, with cpe and bcpe representing
the beginning and the end of the list.

(CPE LIST ; cpe; bcpe; +;�; val)

The elements of the NODE ASM are recovered as follows

node(currtask) = F (b(currtask))
success path(currtask) = F (bsp)

cpel(currtask) = F (bcpe)

These changes are reected in a new set of rules [Ara96].
As it is stated in [B�or95a], the \stacks" maintain the node tree structure

corresponding to a task: they are not discarded when they are \popped" on
backtracking, but they are still there and may be used when needed. The struc-
ture of visited nodes would be completely preserved if it is possible to establish
a complete correspondence with the nodes of a task of the previous section by
using F. Assuming F on rules as homonymy, the commutativity of the rule
executions is obtained with F , giving

Prop 8.1 The stack model of 8 is correct and complete wrt sets of Prolog nodes.

8.1 Optimization in the creation of choicepoints

In the analysis of [B�or95a], an optimization is introduced at this point of the
construction of the stacks. The aim of this optimization is not to create a choice
point if the selected unifying clause fails. To do this the signature of the previous
section is essentially retained and the action of the select rule is decomposed into
more primitive steps, in order to reorganize them more e�ciently. These steps
are controlled by the 0-ary function mode, which now extends its values by
decomposing old Select mode. This decomposition may be applied directly to
the re�nement step of the PDP system.

Pushing a choice point will be now carried out either by mode value of Try or
by Try par if parallelism appears. Attempting uni�cation is performed by mode

597Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

value of Enter. Reusing a choicepoint is invoked either by Retry mode, or by
Retry par mode in case of parallelism. Old Call mode will retain its role.

A new 0-ary function (`cutpoint register') ct 2 STATE is introduced. It
will, in call mode, store b's old value in order to �nd it in Enter mode. (See
[B�or95a, Ara96] for details).

9 Predicates structure: OR parallelism

The code for the extended WAM which corresponds to OR parallelism exploita-
tion appears when the disjunctive structure of Prolog predicates is considered.
As in [B�or95a], a predicate is represented as a sequence of instructions to man-
age choicepoints. This leads to slightly modify the signature. cll and clause are
replaced with p (for `program pointer') and code, assuming a special location
start. It thus results

p; start 2 CODEAREA
code : CODEAREA! INSTR + CLAUSE + fnilg+ fcode(start)g

where

INSTR = f try me else(N); retry me else(N); trust me(N);
try(N); retry(N); trust(N)
try par(N); retry par(N)jN 2 CODEAREAg

The INSTR universe has been enlarged with respect the one of [B�or95a] at
this point with the parallel instructions. Besides, it will be more enlarged in
the sequel, as more WAM and speci�c PDP instructions are introduced. The
operations of previous ASMs in Try,Retry modes will now be simulated by
executing instructions, try me else or try in case of mode Try, retry me else,
retry, trust me, trust in case of modeRetry, and try par and retry par in cases
of modes Try par and Retry par.

The same remarks of [B�or95a] in the corresponding stage of abstraction allow
to establish that the model of 9 is correct and complete wrt that of 8 (see [Ara96]
for details).

10 Clause structure: AND parallelism

The PDP extension to the WAM for the exploitation of AND parallelism ap-
pears when the compilation of clause structure into WAM is analyzed. Follow-
ing the B�orger and Rosenzweig analysis, this section deals only with simpli�ed
clause structure (using only instructions for environments and parallel call ((de-
)allocation, uni�cation and calling). Thus, terms and substitutions are considered
independently and the analysis of [B�or95a] is adopted directly for them.

Viewing decglseq as a stack, the previous model may be seen as a stack of
stacks, which contains common structures. These stacks contain a number of
common copied structures which can be (partially) avoided by sharing common
pieces in a new data structure, the environment. In general, when a clause is
considered a new environment is allocated, containing the data necessary to

598 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

continue the computation once the goals of the body are solved. Following the
scheme of [B�or95a], it is de�ned a universe ENV with functions

cg : ENV ! GOAL

cutpt : ENV ! STATE

ce : ENV ! ENV

where cg is the continuation goal, and ce links the environment stack (for contin-
uation environment). The role of (0-ary and unary) decglseq will now be taken
over by

goal 2 GOAL goal : STATE ! GOAL

e 2 ENV e : STATE ! ENV

with goal being the goal component of the list decorated goal of decglseq, while
its cutpoint and continuation are contained in e.

The AND parallelismmanagement requires the introduction of further struc-
tures. The waiting list is also kept in form of stack. Then the PCE (Parallel
Call Environment) universe is introduced, with functions:

pgoal : PCE! GOAL

pce 2 PCE pce : PCE ! PCE

Then, there are stacks of choicepoints, environments and parallel call environ-
ments. They are usually represented in the WAM as interleaved on a single
stack.

The backtracking process is complicated because of AND parallelism ex-
ploitation. If the failed goal is inside a parallel call, it is known that the back-
tracking of any other goal inside the parallel call would not change the fail since
they are independent. Thus, during backtracking this fact has to be checked.
Furthermore, for goals belonging to a parallel call the backtracking process has
to distinguish between goals executed by a di�erent task and by the task itself.
And in both cases, the process has to distinguish whether the goal has pending
alternatives. All these facts are controlled by introducing objects as markers in
the stack. This in turn leads to introduce new instructions and to modify the
backtracking process (see [Ara96] for details).

The interleaving of the stack is modeled by means of a new superuniverse of
states, environments, parallel call environments and a number of markers, with
a stack-linking function and a common bottom

STACK � STATE;ENV; PCE;markers

� : STACK ! STACK

bottom 2 STATE \ENV \ PCE \markers

The proof map to the model of the previous section will be de�ned by ex-
tending the proof map of [B�or95a] at this abstraction level, turning out that the
current model is correct and complete wrt to that of 9.

599Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

10.1 Compilation of clause structure

As in [B�or95a], a function to produce code for a clause is assumed. But PDP
requires also instructions corresponding to the management of the parallel call:

compile : CLAUSE ! INSTR�

compile(H : �G1; � � � ; Gn) � [allocate; unify(H);
call(G1); � � � ; call(Gn);
allocate pcall(n); pcall(G1); � � � ; pcall(Gn); wait;
popgoal; deallocate; proceed]

where the universe INSTR is extended to contain the new instructions allo-
cate pcall (which creates a frame to control the execution of a parallel call), pcall
(which prepares a goal for parallel execution), wait (which waits for the answer
to goals executed by other tasks) and popgoal (which executes a local goal) for
the exploitation of AND parallelism.

The state component of the proof map F proposed in [B�or95a] at this level
is extended here (see [Ara96] for details) yielding correctness and completeness
of the model of 10.1 wrt that of 10.

11 Completing the model

The next step in the process is to take into account the representation of terms
and substitutions. This leads to introduce new universes that are submachines
of DATAAREA. These new universes lead to the appearance of the Heap and
the Trail, as well as the putting and getting instructions. Since the remaining re-
�nement steps consist in the direct application of the transformation of [B�or95a]
to the PDP model, I refer to this work for those steps.

12 Conclusions

This work provides a speci�cation and proof of correctness for the system PDP
(Prolog Distributed Processor), as well as for the abstract machine designed
for it, by means of ASMs. The proof takes advantage of the WAM proof of
correctness, in spite that the starting point for the process cannot be the same
because the sequential execution model is not complete wrt the parallel one.
Thus, the �rst step of this process consists in de�ning parallel SLD subtrees,
which are a kind of partition of the SLD tree for programs whose clauses are
annotated with parallelism. In a second step the parallel execution approach of
PDP is modeled by means of an OR TASK ASM. In this machine each task is
associated with the execution of a parallel SLD subtree, and the model is proved
to be correct wrt the previous one. Completeness is restricted to the special
case in which each branch of the SLD tree corresponds to a di�erent parallel
SLD subtree. The execution of the parallel SLD subtree corresponding to each
task is modeled by a NODE submachine which extends the one proposed by
B�orger and Rosenzweig [B�or95a] to model the sequential execution of Prolog.
In this way the result of this work allows to avoid the veri�cation of common
points. Several of the following steps reproduce the scheme developed in [B�or95a],
though introducing at each level the objects required to manage parallelism.

600 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

Thus, the appearance of AND parallelism leads to introduce another kind of
task, the AND task which, instead of solving the initial goal, solves a goal in the
body of a clause. OR parallelism explicitly appears when the predicate structure
is considered, which results in the introduction of elements to model the success
path corresponding to the execution of a new solution, as well as the OR parallel
instructions. Similarly, the explicit expression of AND parallelism appears in the
analysis of the clause structure. This process leads to the WAM extension which
underlies the architecture of PDP. Communication and scheduling are modeled
as external functions.

The scheme we have followed to verify PDP can also be applied to other
parallel systems. Thus, the RAP model [Her86], whose extension for distributed
memory systems, has been adopted to exploit AND parallelism in PDP, can be
veri�ed as a particular case of PDP when OR parallelism does not appear. Like-
wise, veri�cation of other OR parallel systems can make pro�t out of the �rst
steps of the veri�cation of PDP, since they share the relation between OR parallel
computations and the SLD tree. Furthermore, OR parallel systems using inde-
pendent working environments, such as MUSE [Ali90], can be veri�ed in a way
similar to PDP, by simply replacing the recomputation rule by a copying rule,
since copying is the mechanism used in this system to reconstruct a working
environment. Finally, systems which combine both kinds of parallelism, such as
ACE [Gup93], can also take advantage of a number of steps in the veri�cation
of PDP.

Acknowledgement

I would like to thank the anonymous referees for making many useful comments
and suggestions which have helped to improve the paper. I would also like to
thank Jose Cuesta for many valuable comments regarding the writing of this
paper and for his support. This work has been supported by the project TIC95-
0433.

References

[Ali90] Ali, K. A. M., Karlsson, R.: \The Muse Approach to Or-Parallel Prolog"; Int.
Journal of Parallel Programming 19, 2 (1990), 129-162.

[Apt90] Apt, C.: \Logic Programming"; Handbook of Theoretical Computer Science
(J. van Leeuwen ed.), Elsevier (1990).

[Ara93] Araujo, L. Ruz, J.J.: \OR-Parallel Execution of Prolog on a Transputer-based
System"; Transputers and Occam Research: New Directions. IOS Press (1993),
167-181.

[Ara94] Araujo, L., Ruz, J.J.: \PDP: Prolog Distributed Processor for Indepen-
dent AND=OR Parallel Execution of Prolog"; Proc. Int. Conf. of Logic Pro-
gramming, MIT Press (1994), 142-156.

[Ara96] Araujo, L.: \Correctness proof of a Parallel Implementation of Prolog by means
of Evolving Algebras"; Technical Report DIA 21-96, Dpto. Inform'atica y Au-
tom'atica, Universidad Complutense de Madrid, (1996).

[Ara97] Araujo, L., Ruz, J.J.: \A Parallel Prolog System for Distributed Memory";
The Journal of Logic Programming, 33, 1 (1997), 49-79.

[Bei96] Beierle, C., B�orger, E.: \Speci�cation and correctness proof of a WAM ex-
tension with abstract type constraints"; Formal Aspects of Computing, 8, 4
(1996), 428-462.

601Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

[B�or93] B�orger, E., Riccobene, E.: \A Formal Speci�cation of Parlog"; Semantics of
Programming Languages and Model Theory (M. Droste, Y. Gurevich, Eds.),
Gordon and Breach (1993), 1-42.

[B�or94a] B�orger, E.,Durdanovic, I., Rosenzweig, D.: \Occam: Speci�cation and Com-
piler Correctness" (E.-R. Olderog, Ed.), Proc. PROCOMET'94 (IFIPWorking
Conference on Programming Concepts, Methods and Calculi), North-Holland
(1994), 489-508.

[B�or94b] B�orger, E., Lopez-Fraguas, F.J., Rodriguez-Artalejo, M.: \A model for math-
ematical analysis of functional logic programs and their implementations";
Proc. World Computer Congress, North-Holland (1994), 410-415.

[B�or94c] B�orger, E., Gl�asser, U.: \A formal Speci�cation of the PVM Architecture";
Proc. IFIP 13th World Computer Congress, Volume I, Elsevier, (1994), 402-
409.

[B�or95a] B�orger, E., Rosenzweig, D.: \The WAM { De�nition and compiler cor-
rectness"; Logic Programming: Formal methods and Practical Applications.
Beierle, C., y Pl�umer, L. eds. North-Holland Series in Computer Science and
Arti�cial Intelligence (1995), 21-90.

[B�or95b] B�orger, E., Salomone, R.: \CLAM speci�cation for provably correct compi-
lation of CLP(R) programs"; Speci�cation and Validation Methods (B�orger,
E. eds.), Oxford Univ. Press (1995), 97-130.

[B�or96] B�orger, E., Durdanovic, I.: \Correctness of Compiling Occam to Transputer
Code"; The Computer Journal, 39, 1 (1996), 52-92.

[B�or97] Boerger, E., Mazzanti, S.: \A Practical Method for Rigorously Controllable
Hardware Design"; (Bowen, J.P., Hinchey, M.G., Till, D., Eds.), ZUM'97: The
Z Formal Speci�cation Notation, Springer LNCS 1212 (1997), 151-187.

[Gup93] Gupta, G., Hermenegildo, M., Costa, V.S.: \And-Or parallel Prolog: A recom-
putation based approach"; New Generation Computing, 11, 3 (1993), 297-322.

[Gur88] Gurevich, Y.: \Logic and the challenge of computer science"; Currents trains
in theoretical computer science, (B�orger, E. eds.), Computer Science Press
(1988), 1-57.

[Gur89] Gurevich, Y., Moss, L.S.: \Algebraic Operational Semantics and Occam";
CSL'89, Lecture Notes in Computer Science 440, Springer-Verlag (1990), 176-
192.

[Gur91] Gurevich, Y.: \Evolving Algebras. A tutorial introduction"; Bulletin of the
European Association for Theoretical Computer Science, 43, (1991).

[Her86] Hermenegildo, M.: \An abstract Machine Based Execution Model for Com-
puter Architecture Design and E�cient Implementation of Logic Program in
Parallel"; PhD thesis, U. of Texas at Austin (1986).

[Warr83] Warren, D.H.D.: \An Abstract Prolog Instruction Set"; Tech. Note 309, SRI
International (1983).

602 Araujo L.: Correctness Proof of a Distributed Implementation of Prolog ...

