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Abstract: Existing works on the construction of correct compilers have at least one
of the following drawbacks: (i) correct compilers do not compile into machine code of
existing processors. Instead they compile into programs of an abstract machine which
ignores limitations and properties of real-life processors. (ii) the code generated by
correct compilers is orders of magnitudes slower than the code generated by unveri�ed
compilers. (iii) the considered source language is much less complex than real-life pro-
gramming languages. This paper focuses on the construction of correct compiler back-
ends which generate machine-code for real-life processors from realistic intermediate
languages. Our main results are the following: (i) We present a proof approach based
on abstract state machines for bottom-up rewriting system speci�cations (BURS) for
back-end generators. A signi�cant part of this proof can be parametrized with the in-
termediate and machine language. (ii) The performance of the code constructed by our
approach is in the same order of magnitude as the code generated by non-optimizing
unveri�ed C-compilers.

Key Words: Compiler, Operational Semantics, Veri�cation, Abstract State Machine,
Back-End Generator
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1 Introduction

Usually, correctness proofs of programs assume that programs are written in
higher-level languages. However, any program is compiled into binary code and
it is this code that is executed. Therefore, the correctness of programs depends
also on the correctness of the compiler, and on the correctness of the processor.
This paper discusses aspects for the construction of realistic correct compilers.
Realistic correct compilers should produce machine code for real-life processors.
The performance of the generated code should be comparable to machine code
produced by usual compilers.
Any work on the construction of correct compilers must formalize the informal
speci�cation of the source and target languages, and assume that the implemen-
tation of the target language is correct. The correctness of compilers is then
de�ned w.r.t. these formalizations. In our framework, we assume that the ma-
chine language of concrete processors and basic operating system routines (such
as I/O, virtual address management) are implemented correctly. We consider
imperative languages and concrete processors (here: the DEC-Alpha family).
The semantics of imperative languages as well as machine languages of concrete
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processors is naturally described by state transformations. The formalization is
based on Abstract State Machines (formerly: evolving algebras), because these
are a well-suited device for formalizing state transformations. The correctness
de�nition is based on simulations of abstract state machines. Our goal is to
construct correct compilers that produce e�cient code.

1.1 Related Work

In this subsection we analyze reasons why other methods to construct cor-
rect compilers fail to produce e�cient machine code for real-life processors.
The �rst work on correct compilers is [McCarthy and Painter 1967]. Most of
the following work on correct compilation is based on denotational semantics
(e.g. [Paulson 1981, Mosses 1982, Wand 1984, Brown et al. 1992, Mosses 1992,
Palsberg 1992]), structural operational semantics (e.g. [Diehl 1996]), or on re�ne-
ment e.g. [Buth et al. 1992], [Buth and M�uller-Olm 1993], [Hoare et al. 1993],
[M�uller-Olm 1995], [M�uller-Olm 1996], [B�orger and Rosenzweig 1992],
[B�orger et al. 1994], [B�orger and Durdanovic 1996]). Most of these works do not
compile high-level programming languages into assembler languages. Instead,
they design abstract machines, interpreters for these machines, and compile
into code of these abstract machines. To our knowledge, only [M�uller-Olm 1995,
M�uller-Olm 1996, B�orger et al. 1994, B�orger and Durdanovic 1996, Moore 1989]
and ProCos [Hoare et al. 1993] discuss transformations into machine code.
[B�orger et al. 1994, B�orger and Durdanovic 1996] use also abstract state ma-
chines for the formalization of the source and target language.
The semantics-based approaches lead to monolithical compilers [Espinosa 1995,
Tofte 1990]. Compilers constructed by these approaches translate into programs
of machine-independent high-level abstract machines. These programs are inter-
preted. Consequently, the performance of the code generated by these compilers
is poor and by three to four orders of magnitude slower than the code gener-
ated by compilers used in practice [Palsberg 1992]. From traditional compiler
construction it is well-known that the introduction of intermediate languages is
necessary for compiling programs of high-level languages into e�cient machine
code. Hence, our approach uses the concept of intermediate languages for the
construction of the correct compilers. Additionally, this decomposition of the
compilation simpli�es our correctness proofs.
The re�nement-based approaches preserve the program structure. Especially,
the approaches re�ne expressions to a post�x form. Consequently, the code gen-
erated by these compilers is machine code for stack machines. Therefore, it is
no surprise that all the works which consider compilation into machine code
chose the transputer as the target machine [M�uller-Olm 1995, M�uller-Olm 1996,
B�orger et al. 1994, B�orger and Durdanovic 1996]. However, it is well-known that
the execution of a purely stack-based code is slow on register-based processors.
In order to construct correct compilers which produce e�cient machine code, it is
necessary to reorganize the program structure. For the �rst time, this article con-
siders correct compilation into machine-code of a register-based RISC-processor
(the DEC-Alpha processor family).

505Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...



1.2 Our Approach

There are two main issues that distinguish our approach for the construction of
correct compilers from others: (i) we introduce intermediate languages, and (ii)
the program structure is reorganized.
A compiler which compiles a higher level language SL into a machine language
TL uses a sequence of intermediate languages SL = IL0 ; : : : ; ILn = TL, if the lev-
els of languages di�er too much. Instead of compiling SL-programs directly into
TL-programs, SL-programs are compiled into IL1 -programs which are then com-
piled into IL2 -programs etc. The levels of the intermediate languages ILi ; ILi+1
do not di�er too much. In this article, we will give a precise de�nition of this ter-
minology. The concrete choice of intermediate languages is an engineering task.
We therefore choose intermediate languages as used in the classical compiler
architecture (see Figure 1). The intermediate languages di�er from the source
language that they are usually data structures representing the programs instead
of being de�ned by a context-free grammar. Since our aim is to deal with com-
piler correctness, we formalize the notion of languages and their semantics such
that source languages, intermediate languages and target languages are covered
by this formalization.
The basic idea of a semantics de�nition is to de�ne a family of abstract state
machines, i.e. one abstract state machine per program. The reason for this de-
cision is that it is convenient to distinguish the transformation of a program
from mapping the state space. The state space may depend on the particular
program.
We suggest the following method for proving correctness of compilations from
an intermediate language ILi to ILi+1 :

1. Merge the two languages
2. Prove the correctness of compilation by means of simulation of abstract state

machines.

The former is based on homomorphisms between ASMs. The latter is similar to
simulation proofs in complexity and computability theory.
One of the sources of ine�ciencies in the generated code is the compilation
of expressions. Therefore, we focus on this part of the compilation in order to
demonstrate (ii). The compilation of expressions is a typical compiler back-end
task. Compiler back-ends transform low-level intermediate language programs
into machine programs. In this article we consider a typical class of intermediate
languages which have the following characteristics: The program is represented as
a set of basic block graphs. A basic block is a sequence of instructions where only
the last instruction is a jump. Jump targets are restricted to the �rst instruction
of basic blocks, i.e., each basic block has a unique label and these labels are used
as operands of jumps.
Target machines usually have a di�erent instruction set, a memory and some
registers. The program is stored in the memory of the target machine. A program
counter contains the address of the next instruction to be executed. Some or all
of the arithmetic operations may use only other operands than registers or small
integer or address values, i.e. expressions contained in intermediate language
instructions must be implemented by a sequence of machine instructions.
Today, the components of compilers can be generated from a speci�cation S
of the transformation rules. One of the generation approaches for back-ends
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assumes that S is given as a bottom-up term rewrite system [Emmelmann 1992,
Proebsting 1995, Nymeyer et al. 1996, Nymeyer and Katoen 1996]. If we would
have a correct generator applying the transformation rules, then it would be
su�cient to prove the correctness of the compiling relation speci�ed by S. We
show that under general conditions, the correctness of S can be reduced to some
local correctness conditions on single transformation rules, which can be proven
independently. There are two simple proof strategies which check these local
correctness conditions. These strategies are implemented in PVS. We proved a
complete speci�cation of a DEC-Alpha Back-End with these strategies using
PVS. Therefore, the approach allows easy extensions of speci�cations.
In section 2, we introduce our basic terminology,

analysis

transformation

code generation

character sequence

abstract syntax tree

intermediate code

machine code

Figure 1: Architecture of
Correct Compilers

de�ne abstract state machines and homomorphisms
on abstract state machines. Section 3 introduce our
formalization of languages. In particular, it describes
the framework for de�ning the data structures rep-
resenting languages and the operational semantics.
The latter is a template for de�ning a family of ab-
stract state machines. Based on these de�nitions,
the correctness of compilers and the notion of closely
related languages is de�ned. Section 4 introduces
our architecture for correct compilers, introduces
term-rewriting system based construction of com-
piler back-ends and concludes with a precise def-
inition of the problem solved in this article. The
following sections show how correctness of com-
piler back-ends can be proven. Section 5 shows the
decomposition of the problem into correctness re-
quirements on the single term-rewrite rules. Sec-
tion 6 shows how these requirements can be proven.
Section 7 concludes our work. Appendix A de�nes
the part of the abstract state machines for the ex-
ample languagesBB , BB�, and L�. We recommend
to consult this appendix for the de�nition of re-
quirements on languages. Appendix B shows how
errors in the speci�cations of compiler back-ends can be found. It demonstrates
this by an error which was detected during the application of our method. It
would be hard to detect this error after an implementation of a compiler. Ap-
pendix C summarizes notations commonly used in this article.

2 Foundations

Our languages are de�ned operationally by abstract state machines (formerly
evolving algebras) [Gurevich 1995]. Subsection 2.1 recalls the basic de�nitions
and properties of signatures, algebras and term-rewrite systems used in this arti-
cle. Subsection 2.2 de�nes the notation and properties of abstract state machine.
The notation is taken from [Gurevich 1995].
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2.1 Signatures, Algebras and Term Rewriting Systems

A signature � is a family of sets (�n)n2N. f 2 �n is an n-ary function symbol.
A term over the signature � (short:�-term) is de�ned as usual. T (�) denotes
the set of terms over the signature �. A �-algebra A consists of a carrier set
U and of a total function [[f ]]A : Un ! U for each f 2 �n, n 2 N. [[f ]]A is
the interpretation of f in algebra A. [[�]]A can be extended to T (�) by de�ning
[[f(t1; : : : ; tn)]]A = [[f ]]A([[t1]]A; : : : ; [[tn]]A) for each n-ary function f 2 �n, ti 2
T (�), i = 1; : : : ; n. We omit the index A if it is clear from the context.
Throughout the article, we assume that there is an element ? 2 �0 representing
unde�ned values. A universe V is a predicate such that [[V ]]A is identi�ed with
the set fx : [[V ]]A(x)g for any �-algebra A. The set of universes S � � is called
the sorts of �. The universe BOOL is de�ned by [[BOOL]] = ftrue; falseg. A n-
ary function f : U1�� � �Un ! V 2 �n from universe U1�� � ��Un to an universe
V is an n-ary operation on the carrier set U such that [[f ]](a1; : : : ; an) 2 V for
all a1 2 U1; : : : an 2 Un and [[f ]](a) = ? otherwise. A term t 2 T (�) is a U -term
i� [[t]] 2 [[U ]], denoted by t 2 U . An algebra with carrier set T (�),

[[f ]](t1; : : : ; tn) =

�
f(t1; : : : ; tn) if t1 2 U1; : : : ; tn 2 Un
? otherwise

for each f : U1 � � � � � Un ! V 2 �n n S, and [[V ]] = ff(t1; : : : ; tn) : f :
U1� � � ��Un ! V ^ t1 2 U1 � � � tn 2 Ung is the �-term algebra. We assume that
each f 2 � is strict in ?, i.e.[[f ]](� � � ? � � �) = ?. U v V denotes the fact that
[[U ]]T (�) � [[V ]]T (�) for sorts U , V . Since T (�) is initial among the �-algebras,

[[U ]]A � [[V ]]A for all �-algebras A.
In the following, we use the data-types in table 1 without further explanation.
x:l is an abbreviation for cons(x ; l) and � denotes the concatenation of lists.
snoc(l ; x ) adds element x to the end of list l. li denotes the i-th element of a list
l, and lhi : ji denotes the sublist hli; li+1; : : : ; lji. The type N denotes the universe
of natural numbers. We use the usual arithmetic operations. The concrete use

Type Meaning Operations

A�B pairs consisting of type A and B (�; �), fst , snd
T � list of elements of type T cons , hi, tail , front , li

BOOL truth values the logical operators

Table 1: Standard Data-Types

becomes clear from the context.
Let � and �0 be two signatures with sorts S and S0, respectively. A signature
morphism maps the sorts and function symbols of the one signature on the sorts
and function symbols of the other signature, i.e. it is a mapping � : � ! �0such
that �(f) : �(U1)�� � ���(Un)! �(V ) 2 �0 for every f : U1�� � ��Un ! V 2 �.
Mappings � : T (�)! T (�0) may be de�ned by a basis, i.e. a mapping �� : � !
�0 [ T (�0) such that for every f 2 �i, i > 0, ��(f) 2 �0. The mapping � :
T (�)! T (�0) de�ned by �(f(t1; : : : ; tn)) = ��(f)(�(t1; : : : ; tn)) is the canonical
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extension of ��. Any mapping � : S ! T (�0) where S is a �nite set of �-terms
can be extended canonically in a similar way. In this case we use also � to denote
this canonical extension.
Let A be a �-algebra and A0 be a �0-algebra with carrier sets U and U 0, re-
spectively. A mapping  from A into A0 must map operators of A to operators
of A0 and the universe U to the universe U 0. Suppose � : T (�) ! T (�0) is
a canonical extension of a mapping �� : � ! �0 [ T (�0). It is useful if  is
compatible to �, i.e.  ([[?]]A) = [[?]]A0 ,  ([[f ]]A) = [[ ��(f)]]A0 for all f 2 �0

and  ([[f ]]A(a1; : : : ; an)) = [[ ��(f)]]A0( (a1); : : : ;  (an)) for all a1; : : : ; an 2 U ,
f 2 � n�0. Observe that � maps terms to terms while  maps interpretations
of terms to interpretations of terms. Such a mapping  : A ! A0 is called a
��-algebra homomorphism. It is not hard to prove that  ([[t]]A) = [[�(t)]]A0 for all
t 2 T (�). A ��-homomorphism  : A ! A0 is a mono-morphism (epi-morphism,
isomorphism) i�  0 is injective (surjective, bijective).
Let � be a signature with sorts S. A �-algebra homomorphism � : A ! A0

is a mapping �0 : U ! U 0 such that �0(?) = ? and �0([[f ]]A(a1; : : : ; an)) =
[[f ]]A0(�0(a1); : : : ; �

0(an)) for each n 2 N, f 2 �n and each ai 2 U . Observe that
a 2 [[V ]]A implies �0(a) 2 [[V ]]A0 for every universe V 2 �.
Let � and �0 be two signatures such that � � �0 and A0 be a �0-algebra
with carrier set U 0. We can restrict A0 to the interpretation of f 2 � and �-
terms. The �-restriction A0j� is the algebra with the carrier set U 0 and the the
operations [[f ]]A0 for each f 2 �.
Throughout the article we use the following:
Assumption: Any mapping �� : � ! T (�0),and ��-algebra homomorphism �
preserve BOOL, the logical constants true and false , and the logical operators.
�

Let � be a signature and V be a set of symbols disjoint from �. T (�; V )
denotes the set of terms over signature � and variables V . A substitution � :
T (�; V ) ! T (�; V ) is the canonical extension of a mapping �� : V ! T (�; V )
where ��(v) 6= v for only a �nite number of variables. We denote substitutions by
� = [x1=t1] : : : [xn=tn] where �(xi) = t1 and �(v) = v for v 6= xi. Subterms of a
term a denoted by occurences. An occurence is a �nite list of natural numbers.
The subterm of term t at occurence o, denoted by t[o] is recursively de�ned as
follows: t[hi] = t and t[snoc(o; i)] = ti if t[o] = f(t0; : : : ; tn�1) for a f 2 �n.
In this case t[snoc(o; i)] is unde�ned if i � n. t[o=u] denotes the term t where
the subterm at o is replaced by term u. A term t 2 T (�; V ) matches a term
t0 2 T (�; V ) i� there is a substitution such that �(t) = t0.
A term-rewrite rule over signature � and variables V is a pair t=̂t0 of terms
t; t0 2 T (�; V ) where each variable occurring in t0 also occurs in t. A term-
rewrite system (TRS) is a set of term-rewrite rules. Let R be a TRS. A term
t 2 T (�) rewrites into a term t0 2 T (�), denoted by t ,!R t0, i� there is a rule
lhs=̂rhs 2 R and an occurence o such that �(lhs) = t[o] and t0 = t[o=�(rhs)].

As usual,
+
,!R denotes the transitive closure and

�
,!R the re
exive, transitive

closure of ,!R. The notion of normal forms, noetherian and con
uent TRS is
de�ned as usual. NFR(t) denotes the (unique) normal form of term t for noethe-
rian and con
uent TRS.
A conditional term-rewrite rule is a quadruple of terms with variables, denoted
by if t1 = t2 mathbfthen t3=̂t4. A conditional TRS is a set of conditional or
unconditional term-rewrite rules. Let A be a �-algebra. A term t 2 T (�) A-
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rewrites into a term t0 2 T (�), i� either there is an unconditional rule lhs=̂rhs
such that there is an occurence o such that �(lhs) = t[o] and t0 = t[o=�(rhs)],
or there is a conditional rule if t1 = t2 then lhs=̂rhs such that �(lhs) = t[o]
and t0 = t[o=�(rhs)], and [[�(t1)]]A = [[�(t2)]]A. The above de�nitions can be
extended straightforwardly to BURS and conditional TRS.
��-homomorphisms carry over to TRS:

Theorem1. Let � and �0 be two signatures, R be a noetherian and con
uent
TRS, �� : � ! �0 [ T (�0) be a mapping, and � : T (�; V ) ! T (�0; V ) be its
canonical extension. Then, the following properties hold:

(a) Let � : V ! T (�) be a substitution and �0 : V ! T (�0) be the substitution
such that �0(v) = �(�(v)) for all v 2 V . Then, �0(�(t)) = �(�(t)) for all
t 2 T (�).

(b) Let �(R) = f�(lhs)=̂�(rhs) : lhs=̂rhs 2 Rg. Then t
�
,!R t0 implies �(t)

�
,!R

�(t0). If �(t) is a normal form, then t is a normal form. If �(R) is con
uent
then R is con
uent. If �(R) is noetherian, then R is noetherian. These impli-
cations are equivalences, if � is injective. If �(R) is noetherian and con
uent,
then NF�(R)(�(t)) = �(NFR(t)) for all t 2 T (�). �.

2.2 Abstract State Machines

In this subsection we introduce the notion of ASMs and ASM-homomorphisms.
An abstract state machine (short: ASM) is a tuple A = (�;Q; S;!; I), where �
is a signature, Q is a set of �-algebras (the states) with the same carrier set, S
is a set of sorts (the super-universe), !� Q� Q is the transition relation, and
I � Q is the set of initial states. The relation ! is de�ned by a �nite collection
of transition rules of the form

if Cond then Updates endif.

where Cond 2 BOOL and Update is a �nite set of updates, i.e. of pairs lhs := rhs ,
lhs ; rhs 2 T (�). A rule is applicable in state q0 i� [[Cond ]]q0 = true. Let q0 be
a state before and q be a state after applying an applicable rule. Then, for any
update f(t1; : : : ; tn) := t, we have

[[f ]]q(x1; : : : ; xn) =

�
[[t]]q0 if for all i, 1 � i � n, [[ti]]q0 = xi
[[f ]]q0(x1; : : : ; xn) otherwise

If [[f(t1; : : : ; tn)]]q0 6= [[t]]q0 , we also say that q
0 ! q executes the update f(t1; : : : ; tn)

:= t. If several rules are applicable, then one applicable rule is chosen nondeter-

ministically. As usual,
n
! denotes the composition of n state transitions, where

the composition of relations is de�ned as usual, i.e. �1 � �2 = f(u;w) : 9v :

(u; v) 2 �1 ^ (v; w) 2 �2g.
�
! denotes the re
exive, transitive closure and

+
! de-

notes the transitive closure of!. A state q 2 Q is reachable i� there is an initial

state i 2 I such that i
�
! q. W.l.o.g. we assume that each q 2 A is reachable.

The set F = ff 2 Q : 8q0 2 Q : f 6! q0g is the set of �nal states. An ASM is
deterministic i� for each q 2 Q there is at most one q0 2 Q such that q ! q0.
Notations: Let rule1 and rule2 be transition rules or sets of updates.
if Cond then rule1 else rule2 is an abbreviation for the two transition rules
if Cond then rule1 and if :Cond then rule2 .
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if cond1 then
if cond2 then rule1
else rule2

is an abbreviation for the two transition rules if cond1 ^ cond2 then rule1 and
if cond1 ^ :cond2 then rule2 . If the else-branch is omitted then the latter
transition rule is omitted. �

We distinguish the following classes of functions: Dynamic functions: the inter-
pretation of a dynamic function is changed by transition rules, i.e. f is called a
dynamic function if an assignment of the form f(t1; : : : ; tn) := tn+1 appears in
a transition rule. Static functions: the interpretation of a static function is never
changed.
Let � � � be the set of static functions of an ASM A = (�;Q; S;!; I). The
restrictions qj� to � and q0j� to � are identical for all q; q0 2 Q. The �-algebra
qj� is the static algebra of A. Universes, true, false and ? are always static
functions. We assume that the elements of each sort are representable by static
functions, i.e. for each sort V 2 S, x 2 [[V ]]X , there is a �-term t such that
[[t]]X = x. This implies that for each state q and �-term t, there is a �-term t0

such that [[t]]q = [[t0]]q0 . However, the term t0 may be di�erent for di�erent states.
This property allows to discuss state changes on the basis of �-terms.
External functions allow interaction with the outside world. They need not to
be speci�ed, only some requirements may be speci�ed. Any interpretation of
this function satis�es at least these requirements. External functions are never
changed explicitly by a transition rule. However an external function may have
di�erent interpretations in di�erent states.
Let A1 = (�1; Q1; S1;!1; I1), A2 = (�1; Q2; S2;!2; I2) be two ASMs with
static parts X1 and X2, respectively. An ASM-homomorphism � : A1 ! A2

recovers the ASM A1 within A2. Formally, � is a triple (��;  ; 
) consisting of a
mapping �� : �1 ! �2[T (�2), a ��-homomorphism  : X1 ! X2, and a mapping

 : Q1 ! Q2 such that the following conditions are satis�ed for all q; q0 2 Q1:

(H1) For all t 2 T (�1) is  ([[t]]q) = [[�(t)]]
(q), where � is the canonical

extension of ��.
(H2) 
(I1) � I2
(H3) q !1 q

0 implies 
(q)!2 
(q
0).

An ASM-homomorphism � is a monomorphism (epimorphism, isomorphism), i�
� is injective (surjective,bijective),  is a monomorphism (epimorphism, isomor-
phism) and 
 is injective (surjective bijective). The updates and transition rules
can be mapped by � in the straighforward way, i.e. �(lhs := rhs) = �(lhs) :=
�(rhs) and

�(if cond then Updates) = if �(cond ) then �(Updates):

We generalize the notion of a canonical extension by these de�nitions.

Lemma 1 Let � = (��;  ; 
) : A1 ! A2 be an ASM-homomorphism and � be the
canonical extension of ��. If 
(q0) !2 
(q) executes the update �(lhs) := �(rhs)
then q0 !1 q executes the update lhs := rhs . If � is a mono-morphism, then the
converse is also true.
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Proof: Suppose the contrary, i.e. 
(q0) !2 
(q) executes the update �(lhs) :=
�(rhs) but q0 !1 q does not execute the update lhs := rhs . Suppose lhs =
f (t1 ; : : : ; tn ). Then there are t

0
i 2 T (�1) such that [[lhs ]]q0 = [[f (t 01 ; : : : ; t

0
n)]]q0 . Let

lhs
0 denote this term. Thus (1) [[lhs 0]]q = [[lhs 0]]q0 , (2) [[�(lhs

0)]]
(q) = [[�(rhs)]]
(q0),

and (3) [[�(lhs 0)]]
(q0) 6= [[�(rhs)]]
(q0). Obviously, (1) and (H1) imply that

[[�(lhs 0)]]
(q0) = [[�(lhs 0)]]
(q). This implies together with (2) that [[�(lhs 0)]]
(q0) =
[[�(rhs)]]
(q0) in contradiction to (3). If � is a mono-morphism, the assumption

that the converse is violated leads to a similar contradiction using (H1) and the
fact that  is a mono-morphism. �

Lemma 1 can be used to de�ne 
 inductively, based on an injective mapping

 : I1 ! I2 satisfying (H1) for all i 2 I1.

Lemma 2 (De�ning 
) Let A1 = (�1; Q1; S1;!1; I1), A2 = (�1; Q2; S2;!2

; I2) be two ASMs with static parts X1 and X2, respectively. Furthermore, let
�� : �1 ! �2 [ T (�2) be an injective mapping,  : X1 ! X2 be a ��-mono-
morphism, and 
 : I1 ! I2 be an injective mapping satisfying (H1) for all
i 2 I1. Then 
 can be extended to an injective mapping 
 : Q1 ! Q2 such that
� = (��;  ; 
) : A1 ! A2 is an ASM-homomorphism.

Proof: Let q 2 Q1, we extend 
 such that i
n
!1 q implies i

n
!2 
(q). 
 is de�ned

by induction on n. The base case n = 0 is obvious. If n > 0, then there is a state

q0 such that i
n�1
! 1 q

0 !1 q. By induction, we have 
 already extended such that


(i)
n�1
! 2 
(q

0). Let if cond then Updates the transition rule applied on q0 such
that q0 !1 q. By the induction hypothesis, [[�(cond )]]
(q0) =  ([[cond ]]q ) = true.

Thus, there is a state �q 2 Q2 obtained from 
(q0) by the updates �(Updates),
i.e. 
(q0)! �q. De�ning 
(q) = �q will do the job: (H3) is obviously satis�ed. (H1)
can be shown by an easy structural induction on t. �

Thus, it is su�cient to de�ne 
 on the initial states.

3 Languages

In this section, we formalize programming languages by ASMs. Our formalization
captures the structure of programs (Subsection 3.1) as well as their operational
semantics (Subsection 3.2). Since the formalization is used for proving the cor-
rectness of compilers or constructing correct compilers, it is convenient to de�ne
all languages used in a compiler (source language, target language, intermediate
languages) within the same framework. The natural view on target machines
and imperative programming languages is an operational view, i.e. instructions
are executed which transform states. Consequently, it is natural to de�ne the
semantics operational by ASMs. The concrete examples of languages considered
in this article are discussed in appendix A. The reader may consult this appendix
to understand our motivations.
Every program interacts with its environment (e.g. I/O). Thus, parts of a state
can be observed by an environment (e.g. read from an input stream or write
into an output stream). The observable behavior are the state changes of these
parts. Informally, a correct compiler needs only to ensure the preservation of
the observable behavior. Subsection 3.3 shows this formalization of the notion
of correct compilers. It is based on a notion of simulation of ASMs similar to
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complexity and computability. We show decomposition theorems which allow
the introduction of intermediate languages (vertical decomposition) and inter-
mediate states in computations (horizontal decomposition).
The basic idea of constructing a correct compiler is to design a sequence of
intermediate languages IL1 ; : : : ; ILn such that the languages ILi and ILi+1 are
closely related. This relation is formalized in subsection 3.4.

3.1 Structure of Programming Languages

The formalization of the notion of a language should capture all languages used
by a compiler. After syntax analysis, source programs are usually trees; inter-
mediate programs are some data structures which may contain control 
ow in-
formation (e.g. basic block graphs), and target programs are sequences of words
stored in the memory of the target machine. As discussed above, we assume that
any language has the notion of an instruction. For the operational semantics, it
is convenient to assume that programs de�ne a control 
ow, i.e. an execution
order on instructions.
A language is a tuple L = (�L; SL; �L; INSTR;PROG;well de�nedL; IL) where
�L is a signature (the program structure), SL is a set of sorts, �L is a signature
(the control 
ow), INSTR 2 SL is the sort of instructions,PROG 2 SL is the
sort of programs, well de�nedL : PROG ! BOOL is a predicate (the static
semantics), and IL is a (�L [ �L [ fwell de�nedLg)-algebra where ILj�L

=

T (�L), i.e. the restriction of IL to �L is equal to �L-term algebra. The signature
of instructions is the largest set �L � �L satisfying (i) INSTR 2 �L for every
f : T1 � � � � � Tk ! INSTR 2 �L or (ii) for every f : T1 � � � � � Tk ! T 2 �,
f : T1 � � � � � Tk ! T 2 �L and T1; : : : ; Tk 2 �L, if T 2 �L, i.e., �L contains the
constructor for building instructions.
INSTR-terms correspond to instructions and PROG-terms correspond to pro-
grams. Obviously, T (� ) contains all INSTR-terms. The functions in �L de�ne
the abstract syntax tree of programming languages. The sorts in SL represent
syntactic constructs. well de�nedL de�nes some (static) semantic conditions on
programs (e.g. correct typings etc.). � 2 L denotes that � is a well-de�ned
PROG-term, i.e. [[well de�ned(�)]]IL = true. A language L1 is a sublanguage of
L2, denoted by L1 � L2 i� � 2 L1 implies � 2 L2.
Remark: We do not consider the styles how languages can be de�ned. For
higher imperative programming languages, e.g. it is possible to de�ne �L by
context-free grammars. The tree representation of a structure tree corresponds
then uniquely to an abstract syntax tree. The whole language may be de�ned
by Montages[Pierantonio and Kutter 1997] since they also de�ne control 
ow,
static semantics and instructions. �

Example 1 (Basic Block Graphs) Figure 2 shows an example program of
the language BB of basic block graphs, de�ned in (cf. Appendix A.1). The blocks
are given by boxes, labels are numbers. �

Notation: Let L be a language and U 2 SL. U� denotes the set of U -terms
which are sub-terms of �. In particular INSTR� denotes the set of instructions
of program �. E.g. consider the program in Figure 2. Then we have LABEL� =
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0:
readint(local(intconst1 ))
condjump(intequal(cont (local(intconst1 )); intconst0 ); 0 ; 1 )

1: stop

Figure 2: A Basic Block Program

f0 ; 1g,

EXPR� =

�
intconst0 ; intconst1 ; local(intconst1 )

intequal(local(intconst1 ); intconst0 ); 0 ; 1 )

�
;

INSTR� =

(
readint(local(intconst1 )

condjump(intequal(local(intconst1 ); intconst0 ); 0 ; 1 )
stop

)
;

and BLOCK � is the set of the two blocks depicted in Figure 2. �

Appendix A contains the parts of the de�nitions of the example languages used
in this article.

3.2 Operational Semantics of Programming Languages

In our approach, each program � 2 L has its own ASM A�. The basic idea is
that A� has an instruction pointer IP referring to an instruction of �, and the
transition rule for the instruction referred by IP de�nes the updates. However,
the signature of the dynamic functions and static functions of these ASMs are
identical, the transition rules for particular instructions f(t1; : : : ; tn) for the same
functor f have the same shape, and the initial states are closely related. The
components where the ASMs di�er are the universes and the state space. E.g.,
the interpretation of IP is always an INSTR�-term. At the end of this section
we formalize the notion of observable behavior of programs, i.e. the behavior
which can be observed by the environment on which the programs interact. The
basic idea for de�ning an operational semantics is that an operational semantics
serves as a template such that A� can be derived from this template.
In the following let L be a language. A static part of an operational semantics L
is a triple StatL = (�;U ;X ) where � is a signature satisfying �L[�L � �, U is
a set of sorts satisfying SL � U , and X is a �-algebra such that Xj�L[�L

= IL.
The static part of a language L is used to model the static algebra of the ASMs
for � 2 L. 	L = �L(�L [ �L) denotes the static functions not used for de�ning
programs.
A StatL-signature of the dynamic part of an operational semantics of L is a
pair DynL = (�; IP ; 
) where � is a signature (dynamic functions) satisfying
� \ � = ;, IP 2 T (� [ �) is an INSTR-term (the instruction pointer), and

 � � is the set of observable functions.
Notation:We use the constant prog which is substituted by the program � 2 L
for the de�nition of the ASM A� for �. �.
� are the dynamic functions of the ASMs for � 2 L. The observable functions are
those dynamic functions (constants) which can be observed by the environment.
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Example 2 (Basic Block Graphs, continued) (cf. Appendix A.1) The static
part of the operational semantics of BB contains the operations on the data types
of BB . These data types and operations are the same as on the DEC-Alpha. The
instruction pointer is implicitly given by the block pointer BP and the program
counter PC referring to the instructions within a block. Other dynamic func-
tions model the memory (function content), pointers to the local and global
environment, and I/O-streams. The latter are observable. �

An operational semantics must contain information to de�ne the initial states
and the transition relation of the ASMs for � 2 L. The idea is to de�ne initial
states by updates and transition rules by instantiating some rules with variables
and expanding macros.
In the following de�nitions let StatL be a static part of an operational semantics
L, DynL a StatL-signature of a dynamic part of an operational semantics of L,
� be a signature satisfying � \ (� [ �) = ;, and V a set of variables where
V \ (� [� [�) = ;. � is used later for the signature of macros.
A (StatL;DynL; �;V )-macro is a term-rewrite rule lhs=̂rhs where lhs ; rhs 2
T (� [ � [ �;V ). A (StatL;DynL; �;V )-update is a pair lhs := rhs where
lhs = f (t1 ; : : : ; tn) for a f 2 �, t1; : : : ; tn 2 T (� [ � [�;V ) and rhs 2 T (� [
� [ �;V ). Updates are re�ned into updates performed by the ASMs for the
programs � 2 L. A (StatL;DynL; �;V )-rule is pair IP = f (x1 ; : : : ; xk ) ; rhs
where x1; : : : ; xk 2 V ,

(O1) f : T1 � � � � � TK ! INSTR for T1; : : : ; Tk 2 �L, and
(O2) there is an m � 0 such that1

rhs = if cond1 then Updates1
elsif cond2 then Updates2
...
elsif condm then Updatesm
else Updates0 ,

cond1 ; : : : ; condm 2 T (� [� [�;V ), and Updates0 ; : : : ;Updatesm
are sets of (StatL;DynL; �;V )-updates.

f(x1; : : : ; xk); rhs is closed if rhs contains at most the variables fx1; : : : ; xk; �g.
Closed (StatL;DynL; �;V )-rules are re�ned into transition rules of the ASMs
for the programs � 2 L by substituting the variables. A substitution � can be
extended to updates and rules straightforwardly.
Notation: We use the following conventions to denote (StatL;DynL; �;V )-
rules. A rule f(x1; : : : ; xk); rhs is denoted by

if IP = f (x1 ; : : : ; xk ) then Updates

If Updates0 = ; then the else-branch is omitted.

if IP = f (x1 ; : : : ; xi�1 ; t ; xi+1 ; : : : ; xk)
then if cond1 then Updates1

elsif cond2 then Updates2
...
elsif condm then Updatesm
else Updates0

1 m = 0 means rhs = Updates0 .
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for a term t 2 T (�L) is an abbreviation for

if IP = f (x1 ; : : : ; xi�1 ; xi ; xi+1 ; : : : ; xk )
then if xi = t ^ cond1 then Updates1

elsif xi = t ^ cond2 then Updates2
...
elsif xi = t ^ condm then Updatesm
elsif xi = t then Updates0 �

An operational semantics of L is a tuple

A L = (StatL;DynL;M ;V ;Macros ; Init ;Trans)

where StatL is the static part of A L , DynL is the StatL-signature of the dynamic
part of A L , � is a signature satisfying �\(�[�) = ; (the signature of macros),
V a set of variables satisfying V \ (� [ � [�) = ;,

(O3) Macros is a set (StatL;DynL; �;V )-macros de�ning a noetherian
and con
uent TRS such that NF (t) 2 T (� [�) for every t 2 T (�[
� [M),

(O4) Init is a set of (StatL;DynL; �;V )-updates (initializations) contain-
ing at most the variable �, NF (lhs) = f (t1 ; : : : ; tn) for an f 2 � and
�-terms t1; : : : ; tn, and NF (rhs) 2 T (�) for each lhs := rhs 2 Init ,
and

(O5) Trans is a set of closed (StatL;DynL; �;V )-rules (the transitions).

The ASM for � de�ned by A L is the ASM A� = (��; Q�; S�;!�; I�) de�ned by
the following properties (P1){(P5):

(P1) S� = U .
(P2) �� = �� [�.
(P3) Any q 2 Q� is an algebra with qj� = X and [[t]]q 2 [[B�]]X for any

B 2 S�.
(P4) i 2 I i� [[NF (lhs)]]i = [[NF (rhs)]]i for all lhs := rhs 2 Init .
(P5) !� is de�ned by a set of transition rules obtained from trans in the

following way: For any instruction f(t1; : : : ; tn) 2 INSTR� and any
rule
IP = f (x1 ; : : : ; xk ); if cond1 then Updates1

elsif cond2 then Updates2
...
elsif condm then Updatesm
else Updates0

in Trans , the ASM A� has the transition rule
if IP = f (t1 ; : : : ; tk) then

if NF (�(cond1 )) then NF (�(Updates1 ))
elsif NF (�(cond2 )) then NF (�(Updates2 ))
...
elsif NF (�(condm)) then NF (�(Updatesm))
else NF (�(Updates0 ))
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where � = [x1=t1] : : : [xm=tm]. Here, � and NF are extended to sets of
updates, i.e. �(Updates) = f�(lhs) := �(rhs) : lhs := rhs 2 Updatesg
and NF (Updates) = fNF (lhs) := NF (rhs) : lhs := rhs 2 Updatesg.

Thus, the operational semantics for a language L de�nes a family (A�)�2L of
abstract state machines.
Notation: A L also denotes this family of ASMs. �

Example 3 (Basic Block Graphs, continued) Figure 3 shows the initial
states and the transitions of the ASM of the program � de�ned by the opera-
tional semantics of BB (cf. Appendix A.1). The de�nition of eval is applied in
constructing the transition rules.

Each initial state i 2 I satis�es:

[[inp]]i = [[standard input ]]X

[[out ]]i = [[hi]]X

[[BP ]]i = 0

[[IP ]]i = readint(local(intconst1 ))

[[loc]]i = [[bot of stack ]]X

[[glob]]i = [[bot of stack ]]X

The transition rules are

if IP = readint(local(intconst1 ))
then content8 (loc �A 8 ) := hd(inp)

inp := tl(inp)
PC := next(PC )

and

if IP = condjump(intequal(local(intconst1 ); intconst0 ); 0 ; 1 )
then if content8 (loc �A 8 ) =I 0

then BP := 0
PC := 0

else BP := 1
PC := 0

Figure 3: Initial States and Transition Rules of the ASM for the Program in Figure 2

Computation sequences denote sequences of state transitions of A�. Formally, a
computation sequence of program � 2 L is a �nite or in�nite sequence qq over
Q� satisfying the following conditions:

(B1) qq = hqi : i 2 Ni i� q0 2 I� and qi !� qi+1 for all i 2 N and
(B2) qq = hqi : 0 � i � ni (n 2 N) i� q0 2 I� , qi !� qi+1 for all 0 � i < n

and qn is a �nal state.
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A computation sequence is terminating i� it is �nite. We denote computation
sequences by

q0 !� q1 !� q2 � � �

The behavior B� of program � 2 L is the set of computation sequences of � 2 L.
� is terminating i� every sequence in B� is �nite. B�(i) = fqq 2 B� : hd (qq) = ig
is the behavior of � on initial state i 2 I�. � is deterministic in the strong sense
i� jB�(i)j = 1 for all i 2 I . � is terminating on i 2 I� i� any computation
sequence in B�(i) is terminating. A language L is deterministic in the strong
sense i� each � 2 L is deterministic in the strong sense.

Example 4 (Basic Block Graphs, continued) Consider the BB -program in
Figure 2 and its ASM in Figure 3. For any state i 2 I�, where [[inputstream]]i =
[[h0 ; : : :i]]X is the in�nite sequence of 0, it is

B�(i) = fi! q1 ! q01 ! q2 ! q02 � � �g:

Table 2 shows the interpretation of the dynamic functions in the states of the
computation sequence. If [[inpstream ]]X is a in�nite sequence containing a value

[[PC ]] [[BP ]] [[inp]] [[out ]] [[loc]] [[glob]]

qj , j � 1 0 0 [[tl j�1 (inp)]]X [[hi]]X [[bot of stack ]]X [[bot of stack ]]X
q0j , j � 1 1 0 [[tl j (inp)]]X [[hi]]X [[bot of stack ]]X [[bot of stack ]]X

[[content 8 (a)]]qj =

�
[[0I ]]X if [[a]]X = [[bot of stack �A 8 ]]X
[[content 8 (a)]]i otherwise

[[content 8 (a)]]q0
j
= [[content 8 (a)]]qj

Table 2: Interpretation of the States in B�(i)

di�erent from 0, i.e.

[[inpstream ]]X = [[h0; : : : ; 0| {z }
n

; x ; : : :i]]X for a n � 0;

then

B0
�(i) = fi! q1 ! q01 ! � � � ! qn ! qn ! qn+1g:

Table 3 shows the interpretation of the dynamic functions in the states of the
computation sequence of B0

�(i).
The state qn+1 is �nal. � does not terminate, but it terminates on initial states
where [[inp]]i is di�erent from the in�nite sequence of zeros. � is not deterministic
in the strong sense. �
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[[PC ]] [[BP ]] [[inp]] [[out ]] [[loc]] [[glob]]

qj 0 0 [[tl j�1 (inp)]]X [[hi]]X [[bot of stack ]]X [[bot of stack ]]X
q0j 1 0 [[tl j (inp)]]X [[hi]]X [[bot of stack ]]X [[bot of stack ]]X
qn+1 0 1 [[tln(inp)]]X [[hi]]X [[bot of stack ]]X [[bot of stack ]]X

[[content 8 (a)]]qj =

�
[[0I ]]X if [[a]]X = [[bot of stack �A 1I ]]X
[[content 8 (a)]]i otherwise

[[content 8 (a)]]q0
j
=

(
[[0I ]]X if j 6= n and [[a]]X = [[bot of stack �A 1I ]]X
[[xI ]]X if j = n and [[a]]X = [[bot of stack �A 1I ]]X
[[content 8 (a)]]i otherwise

Table 3: Interpretation of the States in B0
�(i)

Two states q; q0 2 Q� are 
-equivalent, denoted by q �
 q0 i� [[f ]]q = [[f ]]q0 for
all f 2 
. It is not hard to see that �
 is an equivalence relation on Q�. [q]

denotes the 
-equivalence class of state q. [Q]
 is the set of all 
-equivalence

classes. q
�
q
0

q �
 q0 means that no interaction with the environment took place,
e.g. there is no input/output operation during the state transitions from q to q0.
Let qq be a computation sequence for � 2 L. The observable part obqq of qq is a
�nite or in�nite sequence of 
-equivalence classes satisfying the following three
conditions:

(B3) If qq = hqi : i 2 Ni and there is an increasing in�nite sequence hrj :
j 2 Ni such that r0 = 0 and qh �
 qk for all j 2 N, rj � h; k < rj+1

then obqq = h[qrj ] : j 2 Ni.
(B4) If qq = hqi : i 2 Ni and there is an increasing �nite sequence

hr1; : : : rni such that r0 = 0, qh �
 qk for all 0 � j < n, rj � h; k <
rj+1, and qh �
 qk for all h; k � rn then obqq = h[qr1 ]; : : : ; [qrn ]i.

(B5) If qq = hq1 ; : : : ; qmi and there is an increasing �nite sequence hr1; : : : rni
such that r0 = 0, rn � m, qh �
 qk for all 0 � j < n, rj �
h; k < rj+1, and qh �
 qk for all rn � h; k � m then obqq =
h[qr1 ]; : : : ; [qrn ]i.

Figure 4 visualizes the ideas of observable parts of a computation sequence. The

i q q q q q q
21 3 4 5 6I/O I/O I/O

Figure 4: Observable Behavior
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observable behavior of � is the set OB� = fobqq : qq 2 B�g. The observable
behavior on an 
-equivalence class [i]
 for an i 2 I is the set OB�([i ]
) =
fqq 2 OB� : hd(qq) = [i ]
g. A program � is deterministic in the weak sense if
jOB�([i ]
)j = 1 for all i 2 I . A language L is deterministic in the weak sense
i� each � 2 L is deterministic in the weak sense. Two consequetive states in
a computation sequence are either in the same 
-equivalence class or in dif-
ferent 
-equivalence classes. Hence, behaviours can be decomposed in maximal
subsequences of 
-equivalent states:

Lemma 3 Let qq 2 B� be a computation sequence for a program � 2 L. Then
the following conditions hold:

(B6) If qq = hqi : i 2 Ni and f[qi]
 : i 2 Ng is in�nite, then there exists
an increasing in�nite sequence hji : i 2 Ni 2 N� such that

(B6-a) qji 6�
 qji+1 for all i 2 N,
(B6-b) qh �
 qj0 for all 0 � h � j0, and
(B6-c) qh �
 qji _ qh �
 qji+1 for all i 2 N, ji � h � ji+1.

(B7) If qq = hqi : i 2 Ni and f[qi]
 : i 2 Ng is �nite, then there exists a
�nite increasing sequence hj0; : : : ; jni 2 N� such that (B6-b),

(B7-a) qji 6�
 qji+1 for all 0 � i < n,
(B7-b) qh �
 qjn for all h � jn, and
(B7-c) qh �
 qji _ qh �
 qji+1 for all 0 � i < n, ji � h � ji+1.

(B8) If qq = hq0 ; : : : ; qmi then there exist a �nite increasing sequence
hj0; : : : ; jni 2 N� such that (B7-a), (B6-b),(B7-c) and

(B8-a) qh �
 qjn for all jn � h � m.

Proof: The claim follows by induction from the fact that qi �
 qi+1_qi 6�
 qi+1

for all qi ! qi+1. �

The sequences hji : i 2 Ni and hj0; : : : jni in (B6){(B8) are called witnesses of
the observable behavior of qq . Lemma 3 immediately implies the

Corollary 4 Let qq 2 B� be a computation sequence for � 2 L and jj be a
witness of of the observable behavior of qq . Then: jj = hji : i 2 Ni i� obqq =
h[qji ]
 : i 2 Ni and jj = hj0 ; : : : ; jmi i� obqq = h[qj1 ]
 ; : : : ; [qjm ]
i. �

Example 5 (Observable Behavior) Consider the operational semantics for
BB in Example 3, the programs in Figure 5, and suppose 
 = finp; outg. The
writeint instruction writes an integer to the output stream. The programs consist
of a single basic block.
Let � and �0 denote the left and right program, respectively. For any initial state
i 2 I� , B� contains the computation sequence

qq = i !� q1 !� q2 !� q3 !� q4

where [[inp]]qj = [[inp]]i for all 1 � j � 4, [[IP ]]q4 = stop,

[[out ]]i = [[out ]]q1 = [[hi]]X

[[out ]]q2 = [[out ]]q3 = [[h0I i]]X

[[out ]]q4 = [[h0I ; 1Ii]]X
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0: intassign(local(intconst0 ); intconst0 )
intassign(local(intconst1 ); intconst1 )
writeint(cont(local(intconst0 )))
writeint(cont(local(intconst1 )))
stop

0: intassign(local(intconst0 ); intconst0 )
writeint(cont(local(intconst0 )))
intassign(local(intconst0 ); intconst1 )
writeint(cont(local(intconst0 )))
stop

Figure 5: Two Equivalent BB -programs

The de�nition of the remaining interpretations is left to the reader. It is easy to
see that OB� = f[i ]
 ! [q3 ]
 ! [q4 ]
g where

[[out ]]q = [[hi]]X for all q 2 [i]


[[out ]]q = [[h0Ii]]X for all q 2 [q2]


[[out ]]q = [[h0I ; 1Ii]]X for all q 2 [q4]


At [i]
 there is no output, at [q3]
 0 is written, and at [q4]
 1 is written. h0; 2; 4i
is a witness for the observable behavior of qq . This is not the only witness:
h1; 3; 4i is also a witness for the observable behavior of qq .
For any initial state i0 2 I�0 , B�0 contains the computation sequence

qq 0 = i !�0 q
0
1 !�0 q

0
2 !�0 q

0
3 !�0 q

0
4

where [[inp]]q0
j
= [[inp ]]i for all 1 � j � 4, [[IP ]]q04 = stop,

[[out ]]i = [[out ]]q0
1
= [[out ]]q0

2
= [[hi]]X

[[out ]]q0
3
= [[h0Ii]]X

[[out ]]q04 = [[h0I ; 1Ii]]X

The de�nition of the remaining interpretations is left to the reader. It is easy to
see that OB�0 = f[i 0]
 ! [q 03 ]
 ! [q 04 ]
g where

[[out ]]q = [[hi]]X for all q 2 [i0]


[[out ]]q = [[h0Ii]]X for all q 2 [q03]


[[out ]]q = [[h0I ; 1Ii]]X for all q 2 [q04]


At [i0]
 there is no output, at [q03]
 0 is written, and at [q04]
 1 is written. h0; 3; 4i
is a witness of the observable behavior of qq 0 but h0; 2; 4i is not a witness of the
observable behavior of qq 0. The two observable behaviors are equivalent. If the
two programs are executed, then they produce the same output. In general,
with the above choice of 
, the observable behavior of BB -programs is their
I/O-behavior. �
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We �nish this subsection by de�ning semantics monomorphisms2. Let L be a
language, and A L , A

0
L be two operational semantics for L. A semantics mono-

morphism means that A L is contained in A 0L in some sense. An L-semantics
monomorphism � : A L ! A 0L is a pair (��;  ), where �� : � [ � [ � ! �0 [ � 0 [
�0 [ T (� 0 [�0 [ �0) is a injective mapping which can be canonically extended
to an injective mapping � on T (� [ � [ �), macros, updates, and transition
rules,  : X ! X 0 is a ��-monomorphism, and each of the following properties
are satis�ed:

(SH1) ��(f) = f for all f 2 �L [ �L, i.e., programs are preserved by �.
(SH2) If f 2 
 has positive arity, then ��(f) 2 
0. If f 2 
 is a constant,

then there is an n-ary g 2 
0 and terms t1; : : : ; tn 2 T (�
0 [�0 [�0)

such that ��(f) = g(t1; : : : ; tn).
(SH3) If f 2 � has positive arity, then ��(f) 2 �0. If f 2 � is a constant,

then there is an n-ary g 2 �0 and terms t1; : : : ; tn 2 T (�
0 [�0 [�0)

such that ��(f) = g(t1; : : : ; tn).
(SH4) If f 2 � has positive arity, then ��(f) 2 �0. If f 2 � is a constant,

then there is an n-ary g 2 �0 and terms t1; : : : ; tn 2 T (�
0 [�0 [�0)

such that ��(f) = g(t1; : : : ; tn).
(SH5) �(MacrosL) � Macros 0L,�(InitsL) � Inits 0L, and �(TransL) � Trans 0L.

The following theorem shows that semantics monomorphisms A L ! A 0L induce
monomorphisms on the ASM for � 2 L de�ned by A L into the ASM for � de�ned
by A 0L :

Theorem2 Semantics Homomorphisms and ASM-Homomorphisms.
Let L be language, A L , A

0
L be two operational semantics for L, and � = (��;  ) :

A L ! A 0L an L-semantics monomorphism. Then for every � 2 L there exists a


 : I ! I 0 such that (��;  ; 
) : A� ! A0
� is an ASM-monomorphism.

Proof: Let be � 2 L. By Theorem 1, (SH5), (O3), (O5), and (P5), �(rule) is
a transition rule of A0

� for every transition rule rule of A� . By Lemma 2, it is
su�cient to prove that there is an injective mapping 
 : I ! I 0 satisfying (H1)
for all i 2 I1. For each state i 2 I and term t 2 T (� [ �), there is a term
t0 2 T (�) such that [[t]]i = [[t0]]X . Since  is a ��-monomorphism  ([[t0]]X ) =
[[�(t0)]]X 0 . It remains to show that there is an initial state i0 2 I 0 such that
[[�(t)]]i0 = [[�(t0)]]X 0 . By (P4) i is initial i� [[NF (lhs)]]i = [[NF (rhs)]]i for all
lhs := rhs 2 Inits. Since � is an L-semantics monomorphism, Init 0 and � is
injective, �(NF (lhs)) := �(NF (rhs)) 2 Inits 0 by Theorem 1. Thus any initial
state i0 2 I 0 satis�es [[�(NF (lhs))]]i0 = [[NF (rhs)]]i0 . Structural induction on
the structure of terms t shows that there is an initial state i0 2 I 0 such that
[[�(t)]]i0 = [[�(t0)]]X 0 . �

Semantics monomorphisms are used to embed a language L into a superlanguage
L0 � L such that their behaviour is the same. The consequence is that the ASMs
A� 2 A L and A0

� 2 A L0 are isomorphic. The motivation for requirement (SH3)
is that some dynamic constants can be stored in registers. E.g. the dynamic
constants loc and glob of the language BB de�ned in Appendix A.1 are stored
in registers 1 and 2. Thus, ��(loc) = reg(1 ) and ��(glob) = reg(2 ). This is an
arbitrary decision by the compiler writer.

2 Homomorphisms are not needed and would complicate the de�nitions.
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3.3 Correct Compilations

A compiler which compiles programs �1 2 L1 into a program �2 2 L2 imple-
ments a relation C : L1 ! L2. Intuitively, C is correct if �1 and �2 have the same
observable behavior if �1 and �2 are deterministic in the weak sense. For exam-
ple the two programs in Figure 4 can be considered as a correct compilation of
each other. This example shows that a correctness de�nition based on semantics
monomorphisms would be too strong. Instead, we base the correctness de�nition
on simulations, i.e. A�2 simulates A�1 in a sense similar to the notion of simu-
lations used in complexity and computability theory. This subsection discusses
an adequate formalization of these ideas (including the case of non-determinism
in the weak sense), lifts the correctness de�nition from the observable behavior
to the behavior, and discusses some general proof techniques.
In this subsection L1 and L2 are languages with operational semantics A L1 and
A L2 , respectively. To distinguish their components we index them with 1 and 2,
respectively. A�;k is the ASM for � 2 Lk de�ned by A Lk , k = 1; 2.

De�nition 5 (�-Simulation of Computation Sequences) Let qq1 and qq2
be computation sequences of �1 and �2 respectively, and � : [Q�;2]
2

! [Q�;1]
1

an injective mapping. qq2 �-simulates qq1 i� either both computation sequences
are terminating or both sequences are non-terminating, the observable parts of
qq1 and qq2 have the same length, and the following conditions are satis�ed:

(S1) If obqq1 = h[qi]
1
: i 2 Ni and obqq2 = h[q0i]
2

: i 2 Ni then
�([q0i]
2

) = [qi]
1
for all i 2 N.

(S2) If obqq1 = h[q1]
1
; : : : ; [qn]
1

i and obqq2 = h[q01]
2
; : : : ; [q0n]
2

i then
�([q0i]
2

) = [qi]
1
for all 1 � i � n. �

If � is bijective, then qq2 and qq1 are �-observable equivalent.

Since � is not necessarily surjective, the fact that qq2 �-simulates qq1, does not
imply that qq1 �

�1-simulates qq2. However, if � is bijective this implication holds.
Figure 6 illustrates De�nition 5. The notion of �-simulations is transitive.

ρ ρ ρ ρ

i q q q q q q
21 3 4 5 6I/O I/O I/O

I/O I/O I/O

i’ 1q’ 2q’ 3
q’ 4q’

5q’
6q’

Figure 6: �-Simulation of Computation Sequences
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Lemma 6 Let be qq1, qq2, and qq3 be computation sequences of �1, �2, and �3,
respectively. Furthermore let �0 : [Q�3 ]
3

! [Q�2 ]
2
and � : [Q�2 ]
2

! [Q�1 ]
1

be injective mappings. If qq3 �
0-simulates qq2 and qq2 �-simulates qq1, then qq3

(� � �0)-simulates qq1.

Proof: The proof is straightforward and left to the reader. �

Example 6 (Example 5, continued) The computation sequences of the pro-
grams �1 and �2 are observable equivalent. The relation � is the identity. �

Correct compilers preserve the termination properties of the program to be com-
piled. For simplicity we do not consider abnormal termination due to resource
limitations of the target machine in this article. However, it is not di�cult to
extend our notion of correctness taking into account limited resources. The ob-
servable behavior of the compiled program can be mapped injectivly into the
observable behavior of the corresponding uncompiled program.

De�nition 7 (Compiler Correctness) �2 2 L2 is a correct compilation of
�1 2 L1 i� there is an injective mapping � : [Q�2 ]
2

! [Q�1 ]
1
such that the

following conditions are satis�ed:

(CC1) For each i2 2 I�2 and qq2 2 B�2(i2)), there is an i1 2 �([i2]
2
) and

a qq1 2 B�1(i1) such that qq2 �-simulates qq1.
(CC2) �([I�2 ]
2

) = [I�1 ]
1
.

A compiler C : L1 ! L2 is correct w.r.t. A L1 and A L2 , i� for all �1 2 L1 every
�2 2 C(�1) is a correct compilation of �1. �

Lemma 6 implies immediately the

Theorem3 Vertical Decomposition. Let L1, L2 and L3 be languages and
C1 : L1 ! L2 and C2 : L2 ! L3 be correct w.r.t. A L1 and A L2 , and A L2 and
A L3 , respectively. Then C2 � C1 : L1 ! L3 is correct w.r.t. A L1 and A L3 .

Theorem 3 allows the use of traditional compiler architectures for the construc-
tion of correct compilers using ASMs. Any intermediate language used in a
compiler can be introduced by proving just the correctness of the compilation
of one intermediate language to another.
De�nition 7 implies several properties.

Lemma 8 Let �2 be a correct compilation of �1. Then there is an injective
mapping � : [Q�2 ]
2

! [Q�1 ]
1
such that (CC2) and the following properties

are satis�ed:

(CC3) For each h[q0i]
2
: i 2 Ni 2 qq 2 OB�2 : h�([q

0
i]
2

) : i 2 Ni 2 OB�2 .
(CC4) For each h[q01]
2

; : : : ; [q0n]
2
i 2 qq 2 OB�2 : h�([q

0
1]
2

); : : : ; �([q0n]
2
)i 2

OB�2

(CC5) If �1 terminates on every i1 2 I�1 , then �2 terminates on every
i2 2 I�2 .
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Proof: Let �2 be a correct compilation of �1. By De�nition 7, there is an injective
mapping � : [Q�2 ]
2

! [Q�1 ]
1
satisfying (CC1) and (CC2). We show that � also

satis�es (CC3){(CC5). (CC3) follows directly from (CC1) and (S1). It also easy
to see that (CC1) and (S2) imply (CC4). Suppose there is an in�nite computation
sequence qq 0 2 B�2 (i.e. �2 does not terminate on every i2 2 I�2). By (CC1),
there is a computation sequence qq 2 B�1 such that qq 0 �-simulates qq . Then,
by De�nition 5, qq is non-terminating, i.e. �1 does not terminate on an i1 2 I1.
�

Remark: The converse of Lemma 8 is not true. E.g. suppose that �2 does not
terminate on a state i2 2 I�2 . Then there is an in�nite computation sequence
qq 0 = hq0i : i 2 Ni. Suppose further, that obqq0 is terminating (cf. (B4)). Lemma 8
only ensures that there is a mapping � and a computation sequence qq 2 B�1

such that (S2) is satis�ed. Obviously, obqq is �nite (cf. (CC4)). However, (CC2){
(CC5) do not exclude that qq is non-terminating. If the latter happens for all
relations � satisfying (CC2){(CC5), then �2 cannot be a correct compilation of
�1. �

A compiler de�nes a relation � on states not on its equivalence classes. This
relation � must induce a function � on 
-equivalence classes satisfying De�nition
7.

Theorem4 Necessary and Su�cient Condition for �-Simulation. �2 is
a correct compilation of �1 i� there is a relation � � Q�1 �Q�2 satisfying

(CC6) 8(q1; q
0
1); (q2; q

0
2) 2 � : q1 �
1

q2 , q01 �
2
q02,

(CC7) 8[q2] 2 [Q�2 ]
2
9q0 2 [q2]; q 2 Q�1 : (q; q

0) 2 �, and
(CC8) 8i 2 I�19q 2 [i]
1

; q0 2 Q�2 : (q; q
0) 2 � ^ 9i0 2 I�2 : q

0 �
2
i0,

such that for any qq 0 2 B�2 there exist qq 2 B�1 and witnesses jj and ll for the
observable behavior of qq and qq 0, respectively, satisfying the following condi-
tions:

(CC9) If ll = hli : i 2 Ni, then jj = hji : i 2 Ni and (qji ; qli) 2 � for all
i 2 N.

(CC10) If ll = hl0; : : : ; lmi, then jj = hj0; : : : ; jmi and (qji ; qli) 2 � for all
i = 0; : : : ;m.

(CC11) qq 0 is terminating i� qq is terminating.

Proof: \(":De�ne �� � [Q�1 ]
1
� [Q�2 ]
2

by ([q]
1
; [q0]
2

) 2 �� i� (q1; q2) 2 �.
It is easy to see that (CC6) and (CC7) imply that �� is an injective mapping
[Q�2 ]
2

! [Q�1 ]
1
. Furthermore, (CC8) implies that �� satis�es (CC2). Let be

qq 0 2 B�2 . Then there exist qq 2 B�1 and witnesses jj and ll for the observable
behavior of qq and qq 0, respectively, such that (CC9){(CC11) are satis�ed. It
remains to show that qq 0 ��-simulates qq . By (CC11) qq is terminating i� qq 0

is terminating. Suppose qq 0 = hq0i : i 2 Ni. Then qq = hqi : i 2 Ni is non-
terminating. Suppose further that ll is in�nite. By the de�nition of witnesses
obqq0 = h[q 0li ]
2

: i 2 Ni. By (CC9), jj is also in�nite, implying obqq = h[qji ]
2
:

i 2 Ni. (CC9) implies that ��([q0li ]
2
) = [qji ]
2

for all i 2 N. The cases that qq is

non-terminating and ll is �nite, and the case that qq is �nite imply (CC10) by
a similar reasoning.
\)": Let be qq 0 2 B�2 . Then there is a qq 2 B�1 such that qq 0 ��-simulates qq
(by (CC1)). Thus, (CC11) is satis�ed. Consider the case obqq0 = h[�q 0i ]
2

: i 2 Ni.
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Then (S1) implies that obqq = h��([�q 0i ]
2
) : i 2 Ni. Let ll and jj be witnesses

of the observable behavior of qq 0 and qq , respectively. Then q0li 2 [�qi]
2
and

qji 2 ��([�q0i]
2
) for all i 2 N. � must be de�ned such that (qji ; qli) 2 � for all

i 2 N. Obviously, this de�nition satis�es (CC9). The case obqq0 = h[�q0 ]; : : : [�qm ]i
proves analogously (CC10). It remains to show that � satis�es (CC6){(CC8).
Obviously (q; q0) 2 � implies ([q]
1

; [q0]
2
) 2 �. Thus, the fact that �� is an

injective mapping immediately implies (CC6) and (CC7). It is also easy to see
that (CC1) implies (CC8). �

Figure 7 illustrates Theorem 4.

ρ ρ ρ

i q q q q q q
21 3 4 5 6I/O I/O I/O

I/O I/O I/O

i’ 1q’ 2q’ 3
q’ 4q’

5q’
6q’

ρ

ρ ρ ρ ρ

ρ

Figure 7: Theorem 4

Remark: � has to be implemented by a compiler. By properties (CC6){(CC10),
� ensures that at least the observable behavior of the ASM A� is preserved by the
ASM A�0 . The relation � used in compilers is usually more speci�c: it contains
memory mapping, the relation between instructions of � and �0 etc. However
it is hard to de�ne � for real programming languages and machine languages
explicitly. We de�ne � as a composition of several explicitly de�ned relations (cf.
De�nition 21 in section 5). For the following discussions (until De�nition 21),
the precise de�nition of � is not important. �

We say that qq0 �-simulates qq if � is a relation satisfying (CC6)|(CC10).

Theorem5 Horizontal Decomposition. Let �1 2 L1 and �2 2 L2, and � �
Q�1 �Q�2 be a relation satisfying (CC6){(CC8), ��1(I�2 ) � I�1 , and �(F�2)

3 �
F�1 . Suppose that for all (q1; q

0
1) 2 � and states q02 2 �(Q�2) satisfying

(HD1) q01
+
!�2 q02 and q0 �
2

q01 _ q
0 �
2

q02 for all states q0 such that

q01
�

!�1 q
0 �
!�1 q2,

there is a state q2 2 Q�1 such that (q2; q
0
2) 2 �, q

0
1 �
2

q02 implies q1 �
1
q2,

(HD2) q1
+
!�1 q2, and q �
1

q1 _ q �
1
q2 for all states q such that

q1
�

!�1 q
�

!�1 q2.

3 Remind that F� are the �nal states of �
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Then �2 is a correct compilation of �1.

Proof: We �rst show that

(HD3) for any pre�x qq 0 = hq 00 ; : : : ; q
0
ni of a computation sequence of A�2

satisfying q0n 2 �(Q�1) there is a pre�x qq = hq0 ; : : : ; qmi of a com-
putation sequence of A�1 satisfying (qm; q

0
n) 2 � and (CC10).

We prove (HD3) by induction on the length of qq 0. If qq 0 = hi 0i then there is
an i 2 I�1 such that (i; i0) 2 �, because ��1(I�2) � I�1 . De�ning qq = hii will
do the job. Suppose now that qq 0 = hq 00 ; : : : ; q

0
ni for a q

0
n 2 �(Q�1). Let q

0
m the

last state before n with q0m 2 �(Q�1). By (HD1), q0i �
2
q0m or q0i �
2

q0n for
all i = m; : : : ; n. By induction hypothesis there is a pre�x cqq = hq0; : : : ; qli of
a computation sequence of A�1 satisfying (CC10) and (ql; qm) 2 �. By (HD2),
there are states ql+1; : : : ; qr such that ql ! ql+1 ! � � � ! qr, (qr; q

0
n) 2 �,

and qj �
1
ql _ qj �
1

qr. qr is chosen such that qr �
1
ql if q

0
n �
2

q0m.
The sequence qq = hq0 ; : : : ; ql ; ql+1 ; : : : ; qr i is pre�x of a computation sequence
of A�2 . We �nally have to show that (CC10) is satis�ed for qq 0 and qq . Let
ll = hl0 ; : : : ; lsi and jj = hj0 ; : : : ; jsi be witnesses for the sequences hq

0
0; : : : ; qmi

andcqq satisfying (CC10). If q0n �
2
q0m, the same witnesses prove that (CC10) is

satis�ed. Otherwise, ll = hl0 ; : : : ; ls ;ni and jj = hj0 ; : : : ; js ; ri prove that (CC10)
is satis�ed.
Suppose qq 0 is non-terminating and obqq0 is in�nite. Then any pre�x of qq 0

satis�es (HD3). The in�nity of obqq0 implies (CC9). Suppose qq
0 is terminating.

Then the last state of qq is �nal which implies that the last state of qq is also
�nal, i.e. qq is terminating. Finally, assume that qq 0 is non-terminating. By
taking a pre�x qq 00 of qq which is large enough, it is easy to prove that for
every n 2 N , there is a pre�x cqq satisfying (HD3) of a computation sequence qq
satisfying (CC9) and (CC10) such that the length of cqq is larger than n, i.e. q1
is non-terminating. Thus (CC11) also holds. �

Figure 8 illustrates the idea behind Theorem 5.

* * * *

* * * *

ρ ρ ρ ρ

q q q q

q’ q’ q’ q’

0

0

1

1

2

2

3

3

Figure 8: Horizontal Decomposition

Remark: In a compiler sequences s of L1 instructions are transformed locally
(using global information) into sequences s0 of L2-instructions. The basic idea
to prove the correctness of compilation by proving (HD1){(HD3) for the state
transitions induced by s and s0. However, we will see that (HD1){(HD3) cannot
always be ensured without some additional assumptions. �
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3.4 Closely Related Languages

The basic idea in practical compilers is to introduce a sequence of intermediate
languages IL0 ; : : : ; ILn and to compile correctly ILi -programs to ILi+1 -programs
i = 0; : : : ; n � 1. This approach leads to a correct compiler by Theorem 3. The
reason for the decomposition into intermediate languages is that the correctness
of Ci : ILi ! ILi+1 is easier to prove and to implement, if the languages ILi
and ILi+1 are closely related. This subsection formalizes the notion of closely
related languages.
Informally, two languages L1 and L2 are closely related, if they either there
is a one-to-one relation between their control structures (control 
ow related),
or there is a one-to-one relation between their instruction set (instruction set
related). A compiler C : L1 ! L2 can then focus on either mapping the instruc-
tions set while preserving the control 
ow or mapping the control 
ow while
preserving the instruction set. In this sense, the pair of languages BB and BB�

is an example of the former and the pair of languages BB� and L� of the latter
(cf. appendix A). Since our goal is to prove correctness of compilers, we cannot
ignore the operational semantics in this de�nition.
We �rst de�ne control 
ow related languages. Informally, a language L1 is control

ow related to a language L2 i� additionally to the above properties, it is possible
to de�ne an operational semantics of L1 using the state space of L2. This new
operational semantics is de�ned such that it is an image of a L1-operational
semantics monomorphism. The consequence is that it is possible to run L1-
programs on the state space of L2. This approach allows to extend L1 by L2-
instruction and to describe the compilation C : L1 ! L2 as source-to-source
compilation.
The state space is usually divided into two parts: Dynamic functions occurring
in the instruction pointer IP are related to the control 
ow (CR1). The other
dynamic functions represent the state of the memory. Since the control 
ow of L1

corresponds to a subset of the control 
ow of L2, the dynamic functions occur-
ring in IPL1 have to correspond uniquely to the dynamic functions occurring in
IPL2 (CR2). The observable functions of L1 must correspond to the observable
functions of L2 (CR3).

De�nition 9 (Control Flow Related Languages) Let L1 and L2 be two
languages with an operational semantics A L1 and A L2 , respectively, � = (�2 n
�2)[�1, and U = (U2nSL2)[SL1 . L1 is control 
ow related to L2 i� �2\� = ;,
�L1 = �L2 , there is an injective mapping �� : �1 [�1 ! �2 [�2 [ T (�2 [�), a
�-algebra X , and a ��-monomorphism  : X1 ! X such that (SH2), (SH3), and
the following conditions are satis�ed:

(CR1) For every f : T1 � � � � � Tk ! Tk+1 2 �L1 [ �L1 , it is
��(f) = f and

��(Ti) = Ti for i = 1; : : : ; k + 1.
(CR2) For every f : T1�� � ��Tk ! T 2 �L1 occurring in IP1 , it is ��(f) = f

and ��(Ti) = Ti for i = 1; : : : ; k + 1. Furthermore �(IP1 ) = IP1 =
IP2 .

(CR3) Xj�L1
[�L1

= IL1 , and [[f ]]X = [[f ]]X2
for every f 2 � n (�1 [ �L1).

�.

The condition (CR1) states that the interpretation of all static functions in �1

except those for de�ning the structure and control-
ow of L1-programs can be
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mapped by a ��-monomorphism to the interpretation of the static functions of L2

which are not used for de�ning the structure and control-
ow of L2-programs.
The following lemma states that L1-programs can be \executed on the state
space of L2".

Lemma 10 (Interpretation of L1 by L2) Let L1 and L2 be two languages
with operational semantics A L1 and A L2 , respectively, such that L1 is control-

ow related to L2. Let �, U , ��,  , and X be de�ned as in De�nition 9, and
� be the canonical extension of �� (together with ��(f) = f for all f 2 M . Let
A 0L1

= (Stat 0;Dyn 0;M1 ;V1 ; �(Macros1 ); �(Inits1 ); �(Trans1 )) where Stat 0 =

(�;U ;X ) and Dyn 0 = (�L2 ; IP1 ; ��(
1 )). Then A L1 is an operational semantics
for L1 and � = (��;  ) : A L1 ! A L2 is an L1-semantics monomorphism.

Proof: We �rst show that A 0L1 is an operational semantics for L1. Since �L1 [

�L1 � �, SL1 � U 0, and (CR3), Stat 0 is a static part of A 0L . (CR2), (SH2)

and �2 \ � = ; show that Dyn 0 is a Stat 0-signature of the dynamic part of
A 0L . Obviously, each �(lhs)=̂�(rhs) is a (Stat 0;Dyn 0;M ;V )-macro. Theorem 1
together with the fact that Macros1 satis�es (O3) implies that �(Macros1 )
also satis�es (O3). The fact that �(Inits1 ) satis�es (O4) is proven analogously.
Let f(x1; : : : ; xn) ; rhs a (Stat1 ;Dyn1 ;M1 ;V1 )-rule. Since �(f(x1; : : : ; xn) ;
rhs) = f (x1 ; : : : ; xn); �(rhs), this pair satis�es (O1) and (O2) using Stat 0 and
Dyn 0 instead of Stat1 and Dyn1 . Thus, f(x1; : : : ; xn); �(rhs) is a
(Stat 0;Dyn 0;M ;V )-rule which is closed i� f(x1; : : : ; xn); rhs is closed. There-
fore (O5) holds for �(Trans1 ).
It remains to show that � is an L1-semantics monomorphism. �� is injective
and  is an algebra monomorphism. (SH2) and (SH3) are satis�ed by De�ni-
tion 9.(CR1) implies (SH1). (SH4) is satis�ed since ��(f) = f for all f 2 M1.
�

Informally, if L1 is instruction-set related to L2 i� additionally to the one-to-
one correspondence of the instruction set (CR5), the state space except those
dynamic functions used for the instruction pointer is the same (CR4), the inter-
pretation of all static functions of L2 except those used for building programs
from instructions is the same (CR6), and for any program � 2 L1, there exists
a program �0 2 L2 such that the program �0 executes the same sequences of
instructions as � performing the same updates except those a�ecting the in-
struction pointer (CR7).

De�nition 11 (Instruction-Set Related Languages) Let L1 and L2 be two
languages with an operational semantics A L1 and A L2 , respectively, �1 be the
signature of L1-instructions, and �2 the signature of L2-instructions, 	1 be the
static functions not used by L1 and 	2 be de�ned analogously. L1 is instruction
set related to L2 i�

(CR4) f 2 �1 \�2 for all f not occurring in IP1 and IP2 , 
2 = 
1,
(CR5) There is a bijective mapping � : T (�2) ! T (�1) and an injective

signature morphism � : 	2 ! 	1,
(CR6) an algebra monomorphism  : X2j	2[�2 ! X1j	1[�1 such that

 ([[t]]X2
) = [[�(�(t))]]X1

for every t 2 T (	2 [ �2), and
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(CR7) there is a mapping 
 : T (�L2 [ �L2) ! 2T (�L1
[�L1 ) such that[

�2L2


(�) = f� : � 2 L1g and for all �0 2 L2, � 2 
(�
0), there is an

injective mapping � : Q�0 ! Q� satisfying the following conditions:
(a) For all q 2 Q�0 and terms t 2 T (	2 [ �2 [ �2),  ([[t]]q) =

[[�(t)]]�(q) . Especially,  ([[IP2 ]]q) = [[�(IP1 )]]�(q).

(b) �(I�0 ) � I�.
(c) For all q; q0 2 Q�0 , q !2 q

0 implies �(q)!1 �(q
0). �

The next lemma shows that it is possible to compile correctly L1-programs into
L2 programs using the mapping � de�ned by (CR7).

Lemma 12 Let L1 and L2 be two languages with operational semantics A L1
and A L2 , respectively, such that L1 is instruction-set related to L2. Then, for any
� 2 L1, there is a �

0 2 L2 such that �0 is a correct compilation of �. Moreover,
for any computation sequence qq = hqi : i 2 Ni of �0, �(qq) = h�(qi ) : i 2 Ni is a
computation sequence of �0 and for any computation sequence qq = hq0 ; : : : ; qn i
of �0, �(qq) = h�(q0 ); : : : ; �(qn )i is a computation sequence of �.

Proof: The second claim on computation sequences implies that �0 is a correct
compilation of � using Theorem 4. To prove the second claim choose a �0 2 L2

such that � 2 
(�0). The claim follows easily by induction on the length of the
computation using (CR7). �

We �nish this subsection with summarizing the two de�nitions:

De�nition 13 (Closely Related Languages) Let L1 and L2 be two langua-
ges with an operational semantics A L1 and A L2 , respectively. L2 is closely related
to L1 i� L2 is control-
ow related to L1 or L2 is instruction-set related to L1. �

4 Constructing Correct Compiler Back-Ends

In this section we derive an architecture for correct compiler back-ends.
We assume that a back-end compiles basic block graphs into machine programs
where the target machine is a register machine with a limited number of regis-
ters, eventually of di�erent type (e.g. the DEC-Alpha processor, appendix A.2).
However, the concrete instruction set is not important for our considerations.
Subsection 4.1 de�nes the class of intermediate languages and machine languages
for which our approach works. This classes contain commonly used intermediate
languages and machine languages for most of the commercial processors.
It turns out that machine languages are usually not closely related to interme-
diate languages. In subsection 4.2 we show how to construct a language BML
such that the target language is instruction-set related to BML, and BML is
control-
ow related to the intermediate language, provided that the target lan-
guage and intermediate language belongs to the above classes. The basic idea to
construct BML is that BML-programs are basic block graphs, but contain al-
ready target machine instructions instead of intermediate language instructions.
Thus a back-end is divided into two components: code selection for compiling the
intermediate language to BML and the code linearization for compiling BML
into the machine language TL.
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Subsection 4.3 introduces a speci�cation technique for specifying the transforma-
tions of intermediate language instructions to target machine instructions. This
speci�cation technique is based on BURS. However, it assigns registers when
applying a term-rewrite rule. We show that the correctness of applying term-
rewrite rules may depend on the register assignment. Therefore, a planning and
normalization is added which annotate the intermediate language program with
additional information (e.g. register assignment) and normalize the intermediate
language program by source-to-source transformation (cf. Subsection 4.4). The
term-rewrite rules are then applied conditionally based on the annotations of
the intermediate language program.

4.1 Basic Block Languages and Typical Machine Languages

The de�nition of a basic block language captures the basic block structure,
classi�es the instruction set into jump and non-jump instructions, but leaves
open the concrete instruction set. Thus, it captures a wide range of intermediate
languages used in traditional compilers. The languages BB and BB� described
in Appendices A.1 and A.3 are examples of basic block languages.

De�nition 14 (Basic Block Language) A language IL with the operational
semantics A IL is a basic block language i� the following conditions are satis�ed:

(BB1) There are sorts BLOCK ;LABEL; JUMP ;EXPR 2 SL, representing
basic blocks, labels, jump instructions, and expressions, respectively.
It holds JUMP v INSTR.

(BB2) There are functions newblock : LABEL � INSTR� ! BLOCK ,
makeprog : LABEL� BLOCK � ! PROG 2 �L. These are the only
functions in �L with result sort BLOCK and PROG , respectively.

(BB3) For each f : T1 � � � � � Tk ! INSTR 2 �L, it is Ti 6= INSTR for all
i = 1; : : : ; k. If there are functions g : S1 � � � � � Sl ! Ti such that
there is a 1 � j � l with Sj = Ti, then Ti v EXPR.

(BB4) If jump : T1 � � � � � Tk ! JUMP 2 �L, then for all i = 1; : : : ; k
either Ti v EXPR or Ti = LABEL.

(BB5) There are functions start : PROG ! LABEL, next : N ! N,
block label : BLOCK ! LABEL, get block : LABEL � PROG !
BLOCK , get instr : N � BLOCK ! INSTR 2 �IL. The interpreta-
tion IIL satis�es the equalities shown in Figure 9.

(BB6) If wd IL(prog) is true, then each basic block ends with a sequence
of jump instructions. Any other instruction of a basic block must
not be a jump instruction. Furthermore, for any label used in an
instruction, there is exactly one basic block in the program with this
label.

(BB7) There are sorts ADDR, VALUE 2 UIL. Their elements are called
addresses and values, respectively.

(BB8) There are constants BP : LABEL, PC : N 2 �IL (the block pointer
and program counter) and a function content : ADDR ! VALUE 2
� (the memory). Furthermore IP = get instr(PC ; block (BP ; prog)).
For any f : T1�� � ��Tn ! T 2 �IL n fPC ;BPg it is Ti 2 UIL nSIL.
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(BB9) There is a function eval : EXPR ! VALUE 2 �IL. For any f :
T1 � � � � � Tk ! T 2 � with T � EXPR, there is a macro

eval (f (x1 ; : : : ; xk))=̂F (g1 (x1 ); : : : ; gk (xk ))
where F : U1 � � � � � Uk ! VALUE 2 �IL [ �IL such that for all
i = 1; : : : ; k Ti v EXPR implies Ui v VALUE and gi = eval .

(BB10) Init IL contains at least the updates BP := start(prog) and PC := 0 .
(BB11) For any instruction jump : T1 � � � � � Tk ! JUMP , if there is a

transition rule jump(x1 ; : : : ; xk) ; rhs 2 TransIL, then for every
i = 1; : : : ; k rhs contains the updates BP := xi and PC := 0 i�
Ti = LABEL.

block (BP ; prog) is the current block. IP IL is the current instruction. �

For all l; l0 : LABEL, i 2 N, blcks : BLOCK �, instrs : INSTRS�:

start(makeprog(l ; blcks)) = l

next(i) = i+ 1

block label(newblock(l ; instrs)) = l

get block(l ;makeprog(l 0; hi)) = ?

get instr(i ; newblock(l ; instrs)) = instrs i

get block(l ;makeprog(l 0; blcks)) =�
hd(blcks) if [[block label(hd(blcks))]]IIL = [[l ]]IIL
get block(l ;makeprog(l 0; tl(blcks))) otherwise

Figure 9: Interpretation of the Control Flow de�ned by (BB5)

Remark: For most intermediate language used in compilers, it is possible to
de�ne a basic block structure according to De�nition 14. (BB1) introduces the
notion of basic blocks, labels and jumps and de�nes that jumps are special in-
structions. The interpretation of labels is left open. The intermediate language
designer is free to chose any interpretation. The function newblock states that
each basic block has a label and consists of a �nite sequence of instructions. A
program consists of a label and a list of basic blocks, formalized by makeprog .
Informally, the label de�nes the block where the execution of the program starts.
(BB3) states that instructions are de�ned non-recursively. However, their com-
ponents may de�ned recursively. Any such recursively de�ned component is an
expression. E.g. this allows that the right hand side of integer assignments are
integer expressions. (BB4) states that a jump instruction can have only expres-
sions or labels as arguments. This allows for example to de�ne conditional jumps
and jumps corresponding to case instructions. The meaning of a jump instruc-
tion is that under certain conditions (depending on the expressions), the control
jumps to the �rst instruction of the block with a label which is an argument of
the jump instruction (cf. also (BB11)).
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start computes the label of the block to start the execution. (cf. also (BB10)).
get block (l ; prog) de�nes the block with label l. This function is partial. If it
is de�ned, get block is unique (cf. (BB6)). get instr(i ; block ) selects the i-th
instruction of block . These de�nitions are only used for de�ning initializations
and transitions. Requirement (BB4) ensures that there is no jump instruction
jumping to the interior of a basic block.
Addresses may also be values. It might be even reasonable that labels and nat-
ural numbers are values. If the instruction set contains procedure calls, it is a
reasonable way to store the label and natural number in the memory (cf. (BB8))
to continue after the return with the command following the call. Often the
memory is the same as on the target machine. In this case, we use the same
macros as the target machine (cf. Fig. 11). If the intermediate language allows
indirect addresses, then the memory must be able to store addresses. However,
these are requirements due to particular assumptions on the instruction set. The
block pointer points to the block where the current instruction is executed and
PC gives the index in the basic block of this instruction. (BB8) states that there
are no other dynamic functions referring to the program. (BB9) states the there
is an expression evaluation macro which is inductively de�ned over the structure
of expressions. �

The requirements to machine languages are similarly general. We just assume
that there are registers, the program is stored somewhere in the memory of the
machine, and the values which can be stored in the memory are �xed-length
Bit-sequences. However, we allow that the machine instructions are able to deal
with values represented by Bit-sequences of di�erent lengths. The registers may
be able to store values represented by longer Bit-Sequences. We require that the
length is a multiple of the values which can be stored at the memory. This is a
typical situation in assembler languages. In the machine language of the DEC-
Alpha Processor Family described in Appendix A.2 for example, the memory
stores bytes which are 8-Bit sequences while registers may store quads which
are 64-Bit sequences. However, there are machine instructions which operate on
32-Bit sequences and 64-Bit sequences as well.

De�nition 15 (Typical Machine Language) A languageTL is a typical ma-
chine language if TL and its operational semantics A TL satisfy the following
conditions:

(ML1) There are sorts ADDR;CELL 2 STL. Their interpretation is iso-

morphic to BIT l and BIT s , respectively, for a s 2 N, l 2 N. l is
the address size, s is the cell size. We assume that l is an integral
multiple of s.

(ML2) �TL =

�
makeinstr : BIT k ! INSTR

makeprog : ADDR � INSTR� ! PROG

�
for a k 2 N

where k is an integral multiple of s. k is the instruction size.
(ML3) There are functions start : PROG ! ADDR, next : ADDR !

ADDR, addr instr : N � PROG ! ADDR, get instr : ADDR �
PROG ! INSTR 2 �TL. The interpretation ITL satis�es the equal-
ities shown in Figure 10.

(ML4) well de�nedTL(makeprog(a; instrs)) i� a is aligned and each instruc-
tion of instrs is valid.
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(ML5) There is a sort VALUE 2 UTL where [[VALUE ]]XTL
=

r]
i=1

[[BIT ji s ]]

for a r > 0, 1 � j1 < j2 < � � � < jr.
(ML6) �TL contains at least the functions PC : ADDR, content : ADDR !

CELL, and reg : BITm ! BIT h , where m > 0 and h is an inte-
gral multiple of the cell size s. h is the register size. Furthermore
IP = get instr(PC ; prog). IP is called the current instruction. �TL

contains at least the functions �A : ADDR � BIT k ! ADDR and
�R : BITm � BITm ! BITm .

(ML7) �TL contains at least the functions content i : ADDR ! BIT i�s ,

content i : ADDR ! BIT i�s , �rst cell i : BIT
is ! BIT s ,last cells i :

BITS is ! BITS (i�1 )s 1 � i � jr where jr is de�ned by (ML5), reg i :

BITm ! BIT i�h , reg i : BIT
m ! BIT i�h , �rst word i : BIT ih !

BIT h , and last words i : BITS
ih ! BITS (i�1 )h for 1 � i � djrs.

Figure 11 shows the de�ning macros.
(ML8) InitML contains at least the update PC := start(prog)
(ML9) For every � 2 TL the ASM A� de�ned by AML is deterministic.

A TL-instruction instr is a jump-instruction i� its transition rule contains an
update PC := t di�erent from PC := next(PC ). �

For all a; a0 : ADDR, instrs : INSTR�:

start (makeprog(a; instrs)) = a

[[next (a)]]ITL = [[a�A k=s]]ITL

addr instr(i ;makeprog(a; instrs)) = a0

get instr(a;makeprog(a 0; instrs)) =�
instrs i if addr instr(i ;makeprog(a; instrs))
? if for all j 2 N : addr instr(i ;makeprog(a; instrs)) 6= a

;

where [[a0]]ITL = [[a�A (i� 1) � s]]ITL and (i� 1) � s is identi�ed with the
bit sequence of length k representing (i� 1)s.

Figure 10: Interpretation of the Functions required by (ML3)

Remark: The sorts ADDR;CELL are required, since the program is stored
in the memory. CELL represents the Bit sequences which can be stored in one
memory cell. Usually, CELL is isomorphic to bytes. However for being 
exible, we
cannot require that the size of a memory cell is one byte. The only requirement
is that processors operate on sequences of bits. Often, the address size is an
integral multiple of the cell size. makeinstr ensures that instructions are k-Bit
sequences. Since these sequences must be stored in the memory, it is a reasonable

534 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...



content i(a) =̂ content(a) � content i�1 (a �A 1 ); i = 2 ; : : : ; jr

content1 (a) =̂ (a)

reg i(a) =̂ reg(a) � reg i�1 (a �R 1 ); i = 2 ; : : : ; djrs=he

reg1 (a) =̂ reg(a)

content i(a) := x =̂ content(a) := �rst cell i(x)

content i�1(a� 1) := last cells i(x); i = 2 ; : : : ; jr

content1(a) := x =̂ content(a) := x

reg i(a) := x =̂ reg(a) := �rst word i(x)

reg i�1(a� 1) := last words i(x); i = 2 ; : : : ; djrs=he

reg1(a) := x =̂ reg(a) := x

Figure 11: Macros required by (ML7)

assumption that k is a multiple of s. The �rst argument in makeprog is the lowest
address where the program is stored in the memory. W.l.o.g. we assume that the
instruction at this address is also the address where the execution starts (cf.
(ML3) and (ML8)). The formalization of (ML4) is left to the reader. Alignment
means that in order to store k Bits in memory cells of size s-Bits, the last r-Bits
must be 0 for a r > 0. In some processors, not every Bit-sequence represents
an instruction. Since we do not want to exclude this possibility, the second
requirement is needed.
The function start computes the address where the execution starts. addr instr
is being de�ned such that a program makeprog(a; instrs) is stored consecutively
in the memory, starting with the address a. get instr(a; prog) computes the
instruction stored at address a. Many processors operate on values represented
by bit sequences of di�erent length. E.g. the DEC-Alpha processor family can
operate on bit sequences of length 32, 64, and 128. However, these bit sequences
are stored consecutively in the memory. Therefore it is reasonable to require that
their length is a multiple of the cell size s (cf. (ML5)).
PC is the program counter. It contains the address of the instruction to be exe-
cuted. content models the memory of the processor. reg models the registers of a
processor. There are 2m such registers. This requirement does not exclude that
some of these registers are special (e.g. address registers, status registers). We
assume that reg contains all the registers which can be addressed directly by the
programmer. In general, it is not necessary to require that registers are addressed
with m Bits. The instruction may determine which kind of register is chosen (e.g.
accumulators or address registers). In this case, less than m Bits are su�cient to
address the registers. E.g. the language L� described in Appendix A.2 contains
registers for storing QUADs and 
oating point registers. The instructions deter-
mine which registers are used. For example, the instruction for adding 
oating
point numbers use always the 
oating point registers. �A is used to add relative
addresses onto base addresses. �R has the same meaning for register addresses.
These functions are used to specify the macros required by (ML7).
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The macro content i (a) is used to read i consecutive cells of the memory starting
from a. The result is the concatenation of the bit sequences of these cells, i.e. a bit
sequence of length is. Similarly, reg i reads i consecutive registers. In both cases
there may requirements that addresses and register addresses are aligned. How-
ever, these restrictions may exclude some instructions (cf.(ML4)). If a program
is well-de�ned, no unaligned addresses are used. content i(a) is used to store se-
quences of length is at i consecutive memory cells starting from a. The functions
�rst cell i and last cells i select and delete the �rst s Bits from bit sequences of
length is, respectively. These functions are auxiliary functions useful to de�ne
the above memory accesses. Similarly, �rst word i and last word i are auxiliary
functions used to de�ne the access to the registers. Their precise de�nition is
straightforward and left to the reader. It is useful to have some other macros
de�ning functions to shorten and extend Bit-sequences (cf. Appendix A.2). The
latter may be signed and unsigned extensions. �

Typical machine languages are usually not closely related to basic block lan-
guages. They cannot be control-
ow related since (CR1) contradicts (BB5) and
(ML5), and (CR2) contradicts (BB8) and (ML6). If the instruction set of a basic
block language contains recursively de�ned expressions, then a typical machine
language cannot be instruction-set related to the basic block language, since
(ML2) implies that (CR5) is violated.

4.2 The Architecture

Since typical machine languages are usually not closely related to basic block
languages, we introduce a further language BML (called basic block machine
language) such that the machine language is closely related to BML and BML
is closely related to the basic block language. Typical machine languages di�er
in their instruction set as well as in their control structures. Hence, BML must
either keep the control structure of the intermediate using the instruction set of
the machine language or keep the instruction set of the intermediate language
using the control structures of the machine language. We decide to choose the
former approach because this is commonly chosen in compilers.
Assumption: Let IL be a basic block language and TL be a typical machine
language. For simplicity, we assume the following properties:

(A1) 	IL = �IL n (�IL [ �IL) = (�TL n (�TL [ �TL)) [ fADDR;CELL),
i.e. the signature is equal except the signature of programs.

(A2) [[T ]]XIL
= [[T ]]XTL

for every universe T 2 UIL\	IL and [[t]]XIL
= [[t]]XTL

for every t 2 T (	IL), i.e. the interpretation of the sorts and 	IL-terms
is equal in both static algebras.

(A3) [[LABEL]]XIL
= [[ADDR]]XTL

and ADDR v VALUE , i.e. labels are
addresses and addresses are values.

(A4) 
IL = 
TL, content : ADDR ! CELL 2 �IL, any f 2 �IL n (�TL[
fPC ;BPg is a constant f : VALUE . �TL n freg i ; reg i : BIT

m !

BIT ihg � �IL, and Macros IL contains the corresponding de�nitions
shown in Figure 11.

(A5) Any target machine jump instruction contains exactly one jump tar-
get. �

These assumptions are satis�ed by the languages BB and L� (cf. Appendices A.1
and (A.2). We now de�ne .0the de�nition of basic block machine language BML
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obtained from a basic block language IL and a typical machine language TL
satisfying the above assumptions. Informally, BML builds basic blocks using
TL-instructions instead of IL-instructions. Every static function f 2 �IL except
those in the signature �IL of instructions are interpreted equally by XIL and
XBML if BML has the same instruction set as IL. If we would \replace" the sub-
algebra Xj�IL by the trivial algebra and \replace" the sub-algebra Xj�BML

, then
two resulting algebras would be the same. Before we de�ne basic block machine
languages, we formalize this \replacement": Let L be a basic block language
with the signature �L of instructions, the static signature �L and the static
algebra XL. The instruction set ignoring algebra of XL is the algebra XL;� with
the properties shown in Figure 12. The replacement can then be formalized by
requiring that XIL;� = XBML;�.

[[T ]]XL;� =

8><>:
f�T g if T 2 �L
[[T ]]XL if T 2 	L
blocks if T = BLOCK
progs if T = PROGL

where blocks = fnewblock(l ; h�; : : : ; �| {z }
n

i) : l 2 [[LABELS ]]XL;�
; n 2 Ng and

progs = fmakeprog(l ; bb) : l 2 [[LABELS ]]XL;�
^ 9n 2 N; b1 ; : : : ; bn 2 blocks :

bb = hb1 ; : : : ; bnig. For every f : T1 � � � � � Tn ! T 2 �L:

[[f ]]XL;� (a1; : : : ; an) =8>>>>>><>>>>>>:

�T if T 2 �L and ai = �Ti , i = 1; : : : ; n
[[f ]]XL (a1; : : : ; an) if f 2 	L
newblock (l ; x) if f = newblock , l 2 [[LABELS ]]XL;�

;
and x is a list of �INSTRL

makeprog(l ; x) if f = makeprog , l 2 [[LABELS ]]XL;�
;

and x is a list of elements of blocks
? otherwise

List operations are interpreted as usual

Figure 12: Instruction Set Ignoring Algebras of XL

De�nition 16 (Basic Block Machine Language) Let IL be a basic block
language with operational semantics A IL and TL be a typical machine language
with operational semantics A TL . A basic block language BML with operational
semantics A BML is the basic block machine language obtained from IL and TL
i� the following conditions are satis�ed:

(BM1) �BML = fmakeinstr : BIT k ! INSTRg[fjump : BIT k�LABEL!
JUMPg. well de�ned is being de�ned such that makeinstr(b) is an
instruction i� b is a non-jump instruction and makeinstr(b;L) is an
instruction i� b is a jump instruction.

(BM2) �BML = �ILn�IL[�BML, �BML = �IL, SBML = (SIL[STL)\�BML,
and IBML;� = IIL;�.
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(BM3) �BML = 	IL [ �BML [ �BML, UBML = �BML \ (UIL [ UBML), and
XBML;� = XIL;�.

(BM4) �BML = fPC : N;BP : LABELg [ (�TL n fPCg) and for any
constant f : VALUE 2 �IL n �BML, there is a macro f=̂t and
�f := x=̂t0 := x for terms t; t0 2 T (	BML [ �BML) and variables
x 2 VBML

(BM5) The set MacrosBML contains all macros of MacrosTL, the macros of
IL used for the initializations of the functions corresponding to the
macros de�ned by (BM4), and the macros de�ned by (BM4).

(BM6) The set InitBML contains all initialization of InitTL except those with
left hand side PC , it contains the initializations de�ned in (BB10),
and it contains the initialization �f := m i� f := m 2 InitIL for all
constants f de�ned as in (BM4).

(BM7) The set TransBML consists of all transition rules of TransTL for
non-jump instructions, and a transition rule jump(b; l) ; rhs 0 for
each jump instruction of TL where b ; rhs 2 TransTL and rhs 0

is obtained from rhs by replacing the updates PC := t where t 6=
next(PC ) with BP := l ; PC := 0 . �

(BM1) makes jump instructions explicit such that there is a one-to-one corre-
spondence between TL-instructions and BML-instructions. (BM2) states that
the instruction set of IL is replaced by the instruction set of TL, and that the
interpretation of the control 
ow is the same as in IL except for instructions.
(BM3) states the same for the rest of the static functions. (BM4) states that
except for the dynamic functions used to refer to the program, the state space
is the same as the state space of TL. (BM6) states that the same initializations
as by IL are executed. (BM7) states that the transition rules are the same as
in TL except for jump instructions where the jumps are based on changing the
block pointer.
Such a basic block machine language will do the job:

Theorem6. Let IL be a basic block language with operational semantics A IL ,
TL be a typical machine language with operational semantics A TL and BML
be the basic block machine language obtained from IL and TL with operational
semantics A BML . Then BML is control-
ow related to IL and TL is instruction-
set related to BML.

Proof: We prove the �rst claim and leave the second to the reader. The key to
the proof is the algebra X required by De�nition 9. For our purpose the choice
X = XIL will do the job. This is possible due to assumption (A1){(A4).  is
simply the identity. Furthermore, we de�ne ��(f) = f for all f 2 �BML and
��(f) = t for all macros f=̂t introduced by (BM4). It is not hard to see that
the properties (SH2), (SH3), (CR1), (CR2) and (CR3) are satis�ed with these
de�nitions. �

The compilation of IL-programs to BML-programs is called code selection and
the compilation of BML-programs to TL-programs is called the code lineariza-
tion. We focus here on the former. The language BB� is the merge of the
languages BB and L�. In particular, it uses the macros loc=̂regquad(1 ) and

glob=̂regquad(2 ). The transition rules mentioned explicitly in Appendix A.3 are

the jump instructions obtained by (BM7) from the instructions B , BR, and JMP
of the DEC-Alpha assembly language.
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4.3 Generation of Code-selection by Term-Rewriting

Term rewriting is commonly used in compiler back-end generators for the speci-
�cation of the transformation to be performed by the code selection. Throughout
the whole subsection we assume that IL is a basic block language with opera-
tional semantics A IL , TL is a target language with operational semantics A TL ,
and BML is the basic block machine language obtained from IL and TL. Addi-
tionally to assumptions (A1){(A5), we assume that

(A6) the target language contains macros f(x1; : : : ; xn)=̂makeinstr(f �x1 �
� � ��xn) for each operation code f which is not a jump instruction and
macros f(x1; : : : ; xn; l)=̂jump(f �x1�� � ��xn; l), where xi 2 V [BIT

�

and l 2 V [ LABEL. IM � MTL denotes the signature of these
instruction macros.

This assumption allows to describe patterns of the machine instructions. In Ap-
pendix A.2 we used this technique to describe the machine instructions of the
DEC-Alpha Assembly Language.
This subsection introduces a speci�cation method based on term-rewriting for
the compiling relation CS : IL ! BML for the code selection. Since transfor-
mation rules are applied locally, a BML-program is obtained by successively
applying these rules until the program contains only BML-instructions. Hence,
during this transformation process, programs may contain target machine as
well as intermediate language instructions. Therefore, we extend BML with in-
termediate language instructions. Just adding the transition rules from IL will
do the job. We extend expressions by registers such that intermediate language
instructions can read and write registers. During this transformations, registers
must be assigned to store values resulting from expression evaluations. Figure 13
shows the whole transformational process with the participating languages.

IL 3 �0 2 ML� �1 � � � �� �n�1| {z }
2ML

�ML 3 �n 2 BML�
� �0 2 TL

� �� �0 is the linearization. � is the application of one transformation rule.

Figure 13: Transformations and Languages Used in Compiler Back-Ends

De�nition 17 (Merged Language) A language ML = merge(IL;BML) with
operational semantics AML is a merge of BML and IL i�

(M1) �ML = �BML[�IL[fReg : BIT
m ! EXPR, �ML = �IL, IMLj�IL[�IL

=

IIL, IMLj�BML[�BML
= IBML, and wdBML is extended such that also

intermediate language instructions and expressions Reg(n) are al-
lowed.

(M2) �ML = �BML [ �IL,XMLj�IL[�IL
= XIL, XMLj�BML[�BML

= XBML,
and UML = UIL [ UBML.

(M3) �ML = �BML, 
ML = 
BML, and IPML = IPBML.
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(M4) �ML = �IL [ �BML, VML = VIL [ VBML, MacrosML = Macros IL [
MacrosBML [feval (Reg(x ))=̂reg(x )g, InitsML = InitsIL [ InitsBML,
and TransML = TransIL [ TransBML. �

(M1) states that the instruction set contains instructions from IL as well as
from BML, that the control 
ow is the same as in IL, and that the access to a
register is an expression. (M2) states that the interpretation of static functions
and universes extends the interpretations of the universes of IL and BML. We
can embed IL and BML into the merged language ML:

Theorem7. Let ML = merge(IL;BML) be the merged language with opera-
tional semantics AML . Then IL � ML, BML � ML, there is an IL-semantics
monomorphism �1 : A IL ! AML , and a BML-language monomorphism �2 :
AML ! AML .

Proof: The property of sublanguages follows directly from (M1). We de�ne the
monomorphism �1 by de�ning ��(f) = f for all f 2 �ML [ �ML [ �ML and
��(f) = NFML(f ) for f 2 �IL n �ML. By (M3), ��(f) = NFML(f ) is the only
possibility of f 62 �ML [ �ML [ �ML, by (BM4) this f must be a constant and
a macro f=̂t exists. Using (M4), it is easy to prove that this de�nition satis�es
(SH1){(SH5). The ��-monomorphism  : XIL ! XBML is the identity (using
(M2)). The existence of �2 can be proven analogously. �

De�nition 18 (Term-Rewrite-Systems for Back-Ends) Let ML =
merge(IL;BML) be the merged language. A back-end term-rewrite rule is a triple
rule = (t ! X ; fm1 ; : : : ;mng) where t 2 T (�IL; V ), mi 2 T (�BML; V ) where
each mi has the form mi = f(t1; : : : ; tk) for an f 2 IM , ti 2 V [ BITS �,
and X 2 VML [ f�g. The variables are called the non-terminals of the rule. A
term-rewrite system for back-ends (TRSBE) is a set of back-end term rewrite
rules.
Let � 2 ML be a program. rule is applicable to an instruction instr 2 INSTR� i�
there is an occurence o and a matching � : V ! T (�ML; V ) with �(instr [o]) = t 0

and for every v with �(v) 6= v there is an a 2 BITSm such that �(v) = Reg(a)
for an a 2 BITSm . If X = �, then rule is only applicable if o = ".
A register assignment for the application of rule on instr at occurence o is a
substitution ��;instr ;o such that for v = X and every v occurring in m1; : : : ;mn

which does not occur in t there is an a 2 BITSm such that ��;instr ;o(v) = Reg(a).
The application of rule to an instruction instr 2 INSTR� at occurence o yields
a program �0 2 ML (denoted � � �0), where instr is replaced by the sequence
of instructions �0(m1); : : : ;�

0(mn); instr [o=�
0(t)] where instr [o] matches t with

substitution �, �0 = � [ ��;instr ;o , and ��;instr ;o is a register assignment for
the application of rule on instr at o. A TRSBE is correct i� �0 is a correct
compilation for every �; �0 2 BML such that � �� �0. �

Remark: We allowed only bit sequences as arguments of machine instructions.
If �0 is applied to a machine instruction, then a is substituted instead of Reg(a).
The precise formalization is left to the reader. As usual, �� is the re
exive,
transitive closure of �. The code selection must �nd for any program � of the
intermediate language IL a program �0 2 IL0 such that � �� �0, and �0 is a
correct compilation of �. �
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Example 7 The following rules specify a small part of the compilation from
BB into BB� (cf. appendix A):

intassign(L;R)! �; fSTQ(R; 0 ;L)g (1)

intassign(local(intconst i16 );R)! �; fSTQ(R; i16 ; 1 )g (2)

intadd(X ;Y )! Z; fADD(X ;Y ;Z ;Q)g (3)

local(intconst i16 )! X; fLDQ(1 ; i16 ;X )g (4)

intadd (X ; intconst(intconst i16 ))! Y ; fADDI (X ; i16 ;Y ;Q)g (5)

intconst i32 ! X;

(
LDA(T1 ; i32 :L; 31)
ZBI (T1 ;#111111002 ;T1 )
LDAH (X ; i32 :H;T1)

)
(6)

cont(X )! Y ; fLDQ(X ; 0 ;Y )g (7)

content (local(intconst i16 ))! X; fLDQ(1 ; i16 ;X )g (8)

If ik occurs in a rule, this is an abbreviation for 2k rules: ik stands for any integer
i 2 f�2k; : : : ; 2k � 1g. Register R31 is always zero. Rule (6) is necessary, since
32-bit integers cannot occur as operands of DEC-Alpha machine instructions.
i32 denotes a 32-bit integer, i32:L denotes the lower two bytes of i32, and i32:H
denotes the upper two bytes of i32. Table 4 shows the sequence of applications of
rules and the register assignments for producing code of the statement V := V +1

intassign(local (intconst8 ); intadd (cont(local (intconst8 )); intconst1 )):

Observe, that register R1 is preassigned and stores the current address de�ned
by local . Observe, that instead of applying rule (8) we could also apply rules

Step Program and Registers Rule

0 intassign(local(intconst8 ); intadd (cont(local(intconst8 )); intconst1 ))
1 LDQ(1 ; 8 ; 3 ); intassign(local(intconst8 ); intadd(Reg(3 ); intconst1 )) (8)

�(X) = Reg(3 )
2 LDQ(1 ; 8 ; 3 ); ADDI (3 ; 1 ; 3 ;Q); intassign(local(intconst8 );Reg(3 )) (5)

�(X) = Reg(3 ); �(Y ) = Reg(3 )
3 LDQ(1 ; 8 ; 3 ); ADDI (3 ; 1 ; 3 ;Q); STQ(3 ; 8 ; 1 ) (2)

�(R) = Reg(3 )

Table 4: Term-Rewrite Based Compilation

(4) and (7) to load the address in a separate step. Also we could apply rules
(6) and (3), instead of rule (5). It is easy to see that the code produced by the
application of these more simple rules is worse than the code in Table 4. �

Remark: In practice, it is possible to assign costs to each term-rewrite rule
and to determine the cost optimal application of rules [Emmelmann 1992]. This
requires a planning phase which covers the subterm with the rules to be applied.
Figure 14 shows the result of the planning phase for the term and the sequence
of rules of example 7. The term is visualized as a tree. In the second phase these
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intplus

intconst

local

R2

intassign

cont

local
rule(2)

R2

rule (8)

intconst
8

intconst 8

1

rule (5)

Figure 14: Planning of Code Selection by Term-Rewriting

rules are actually applied by the mechanism described above. We did not yet
say anything about the concrete choice of registers.
[Emmelmann 1992] assumes that there are in�nitely many registers available.
After generation of code, these registers are assigned to the available registers.
In contrast, we integrate register assignment with the planning phase. Further
details are discussed in Subsection 4.4. �

Since code selection can be viewed as a rewriting system �
� de�ned by a

TRSBE, it is possible to de�ne properties such as con
uence of a TRSBE and
a Noetherian TRSBE. Our TRSBE are always Noetherian if term-rewrite rules
X ! Y fm1; : : : ;mkg, where X and Y are non-terminals, are excluded or or-
dered, respectively. Example 7 shows that �� is usually not con
uent.
It is not hard to see that the correctness of TRSBE depends on the register
assignment:

Example 8 Consider the instruction

intassign(local(intconst8 ); intadd(cont(local(intconst8 )); cont (local(intconst16 ))))

Table 5 shows a code-generation for the term-rewriting in example 7. We as-
sume that the register R1 contains the base address of the local environment.
It is easy to see, that this compilation is incorrect, if [[content(local �A 8 )]]q 6=
[[content(local �A 16 )]]q in the state q before the execution of the statement.
However, if we would replace in step (2) the assignment �(X) = R2 with the
assignment �(X) = R3, then the produced code would be correct. Therefore,
the rules are correct in a sense to be explained later.

The reason, why the compilation of the instruction in example 8 fails is that
we wrote a value in register R2 although the old value would be needed. The
problem for determining an adequate � is called the register assignment problem.
The basic idea is now to add a planning and normalization which preassigns
registers and rules to the programs such that it can be decided during application,
whether the value contained in the register is needed later in the execution or
not. Furthermore, if there are not su�ciently many registers, then a source-to-
source transformation is applied for storing the values of expressions into an
unused memory cell. Again, the compiler must provide enough information to
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Step Program and Registers Rule

(0) intassign(local(intconst8 );
intadd(cont(local(intconst8 )); cont (local(intconst16 ))))

(1) LDQ(1 ; 8 ; 3 );
intassign(local(intconst8 ); intadd(Reg(3 ); cont(local(intconst16 )))) (8)
�(X) = Reg(3 )

(2) LDQ(1 ; 8 ; 3 ); LDQ(1 ; 16 ; 3 );
intassign(local(intconst8 ); intadd(Reg(3 );Reg(3 ))) (8)
�(X) = Reg(3 )

(3) LDQ(1 ; 8 ; 3 ); LDQ(1 ; 16 ; 3 ); ADD(3 ; 3 ; 3 ;Q);
intassign(local(intconst8 );Reg(3 )) (3)
�(X) = �(Y ) = �(Z) = Reg(3 )

(4) mathitLDQ(1; 8; 3); LDQ(1 ; 16 ; 3 ); ADD(3 ; 3 ; 3 ;Q); STQ(3 ; 8 ; 1 ) (2)
�(X) = R2

Table 5: Generation of code with erroneous register assignment

ensure that this memory cell is really unused. For simplicity, we assume that
�TL has enough registers.

4.4 Planning Term-Rewriting

The planning annotates programs with register assignments and term-rewrite
rules such that it can be decided whether the application of a term-rewrite rule
is legal under the register assignment. The basic idea is then to apply a term-
rewrite rule conditionally using the annotations, i.e. at each sub-term which
is annotated with a term-rewrite rule, this rule is applied using the register
assignment annotations, provided it is legal. For simplicity, we assume that each
register used for the evaluation of expressions is read just once, after it is written
(i.e. common subexpressions are not eliminated). At the end of this subsection,
we sketch a more general register assignment.
For the rest of this subsection, we assume that IL is a basic block language with
operational semantics A IL , TL is a typical machine language with operational
semantics A TL , BML is the basic block machine language obtained from IL and
TL, ML is the merge of the languages IL and BML (cf. Figure 13), and R is a
TRSBE.
Notation: In this subsection, the index ML is omitted for the components of
language ML (e.g. � is the signature of ML-programs.

De�nition 19 (Annotations) A rule annotation is a partial mapping rule :
PROG�LABEL�N�N� ! R. A rule annotation rule for program � is correct
i� for all (i; l; o) with rule(�; i ; l ; o) = t 0 ! X ; fm1 ; : : : ;mng, the following
conditions are satis�ed:

(RA1) instr = get instr(�; i ; l) is de�ned and instr [o] is well-de�ned.
(RA2) o = hi i� X = �.
(RA3) There is a substitution � such that t0 = �(instr [o]), rule(�; i ; l ; o �

o0) 6= ? for all o0 2 N� satisfying �(v) 6= v;Reg(a), and for every
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v 2 V satisfying �(v) 6= v an every o00 2 N� , o00 6= hi, which is a
proper pre�x of o0, it holds rule(�; i ; l ; o � o00) 6= ?.

(RA4) For every i 2 N, l 2 LABEL�, get instr(�; i ; l) = instr 2 INSTR�

implies that rule(�; i ; l ; hi) 6= ?.

A register annotation w.r.t. a rule annotation is a mapping regassign : PROG �
LABEL � N � N� ! SET (BITm). regassign is correct for program � i� for all
(i; l; t) the following conditions are satis�ed:

(RA5) rule(�; i ; l ; o) 6= ? implies regassign(�; i ; l ; o) 6= ?.
(RA6) jregassign(�; i ; l ; o)j is the number of non-terminals occurring in

rule(�; i ; l ; o) which do not occur in the left hand side of this rule.
(RA7) If t0 is the left hand side of rule(�; i ; l ; o) and �(t0) = instr [o], then

for all o0 2 N� satisfying �(v) = instr [o � o0] 6= Reg(a), there is a
k 2 regassign(�; i ; l ; o).

(RA8) Let RR be the set of registers used in the macro de�nitions speci�ed
by (BM4). Then regassign(�; i ; l ; o) \ RR = ;. �.

Remark: (RA3) and (RA4) states that each instruction is covered by the pat-
terns corresponding to the left hand side of the rules, i.e. each leaf of a pattern
corresponds to the root of another pattern. Register assignments are associated
with rule (cf. (RA5)). (RA6) states that there are enough registers to assign in
order to apply the corresponding rule. The conditions in (RA7) states that the
register assignments corresponding to the leaves of a pattern ensure that there
enough registers to store the value for each leaf. The requirement (RA8) states
that registers used for storing global information (e.g. the dynamic constants loc
and glob in the basic block language BB , cf. Appendix A.1). �

There are algorithms which compute correct rule annotations [Emmelmann 1992]
and register allocation algorithms which compute correct register annotations
[Waite and Goos 1984, Section 10.2.1]. For this article, it is su�cient to know
that there are such algorithms. During the application of rules of R, annotations
are consumed.
A rule t ! X ; fm1; : : : ;mng is applicable i� the following two conditions are
satis�ed:

(AP1) rule(�; i ; l ; o) = t ! X ; fm1 ; : : : ;mng, and
(AP2) Let instr = get instr(�; i ; l). For all k 2 regassign(�; i ; l ; o) it is

k 62 RR, and for all o0 2 N� instr [o0] = Reg(k) implies that o is a
pre�x of o0.

(AP1) states that only those rules are applied which are annotated. The con-
sequence of (AP2) is that every register k 2 regassign must not occur in instr
outside of t = instr [o]. This is due to the following Lemma, which can easily be
proven by induction using (AP1) and (AP2):

Lemma 20 (Invariant on Registers) Let � 2 IL be an annotated program.
Then for any program �0 2 ML such that � � �0, the following condition holds:

(AP3) For any instruction instr 2 INSTR�0 which is not a BML-instruction,
there is no k 2 BITm such that Reg(k) occurs more than once in
instr . Furthermore there is no k 2 RR such that Reg(k) occurs in
instr .
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Proof: Initially � contains no registers at all. (AP3) is therefore satis�ed triv-
ially. Suppose � satis�es (AP3) and � � �0. By De�nition 18 no term-rewrite
rule can be applied onto machine instructions. Therefore there is a rule ap-
plied at occurence o of a non-machine instruction instr = get instr(�; i ; l). Then
instr 0 = instr [o=Reg(k)] for a k 2 regassign(�; i ; l ; o). (AP2) and (AP3) together
imply that there is no other subterm of instr 0 equal to Reg(k). �.
Consequently, each value written into a register is just read once. Conditions
(AP1) and (AP2) can be checked obviously at compile time. We therefore spe-
cialize � such that a rule is applied only if (AP1) and (AP2) is satis�ed. If we
would know that for every �; �0 2 ML, ����0, that �0 is a correct compilation of
�, then a compiler must just �nd a derivation from a � 2 IL to a �0 2 BML. Ob-
viously, there is an algorithm �nding such a derivation just using the annotated
program. Therefore, the code selection has the architecture shown in Figure 15.
Thus, for construction of correct code selection it remains to show that �re every
� 2 IL; �0 2 BML such � �� �0, �0 is a correct compilation of �.

�0 2 BB�

?

Generator for
Code Selection

?

normalized annotated � 2 BB
?

NormalizationPlanning -
annotated
� 2 BB

-TRSBE

?

Registers

?

� 2 BB

?

Figure 15: Architecture of Code Selection

Remark: If values of common subexpressions are stored in registers which are
used later, then a new annotation is introduced referring to the register con-
taining the value. In this case the requirement (AP2) is strengthen to assign
no register whose value is still needed. Using the new annotation this can be
computed again at compile time. �
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5 Correctness of Code Selection by Term Rewriting

In this section we show that it is su�cient to prove independently the local prop-
erties for each term-rewrite rule in a TRSBE in order to ensure the correctness of
a TRSBE. Throughout this section we assume that IL is a basic block language
with operational semantics A IL , TL is a typical machine language with opera-
tional semantics A TL , BML is the basic block machine language obtained from
IL and TL, ML is the merge of the languages IL and BML (cf. Figure 13), and
R is a TRSBE with the same assumptions as in subsection 4.4. In particular, we
assume that any program � 2 ML is correctly annotated and � is de�ned by
the conditional application on conditions (AP1) and (AP2).
The approach is the following: First, we show that R is correct, if �0 is a correct
compilation of � for all �; �0 2 ML such that � � �0 by using Theorem 3. Then,
we de�ne a relation � and properties on the applied rule such that we can apply
Theorem 5 to prove that �0 is a correct compilation of � for all �; �0 2 ML such
that � � �0. Finally, we give su�cient conditions for proving these properties
of applied transformation rules. In particular, we show that these properties of
single term-rewrite rules can be proven just using the macros and transition rules
of BML and IL.

Theorem8 Vertical Decomposition. If for all �1; �2 2 ML such that �1��2,
�2 is a correct compilation of �1, then �

0 is a correct compilation of � for every
� 2 IL; �0 2 BML satisfying � �� �0.

Proof: Let � 2 IL. Then also � 2 ML. Let A�;IL the ASM of � de�ned by A IL ,
andA�;ML the ASM of � de�ned by AML . Applying Theorem 3 inductively shows
that �0 2 ML is a correct compilation of � 2 ML, if ����0. Thus, there is a rela-
tion � � Q�;ML�Q�0;ML such that for every computation sequence qq 0 2 A�0;ML

there is a computation sequence qq 2 A�;ML such that qq 0 �-simulates qq . Since
there is an BML-semantics monomorphism �2 : A BML ! AML (cf. Theorem 7),
there is an ASM-monomorphism �2 = (��2;  2; 
2) : A�0;BML ! A�0;ML. From
property (H3) follows immediately that for any computation sequence qq of

A BML , there is a computation sequence qq 0 of AML such that qq 
�1
2 -simulates

qq . Hence, for any computation sequence qq of A BML , there is a computation
sequence qq 2 A�;ML such that qq 0 (
�1

2 � �)-simulates qq .
Theorem 7 implies that there is also an IL-semantics monomorphism �1 : AML !
A IL . Thus, there is an ASM-monomorphism �1 = (��1;  1; 
1) : A�;ML ! A�;IL.
(M4) ensures that 
1(I�;IL) = I�;ML and for any state q 2 
(Q�;IL), q !�;ML q

0

implies q0 2 
(Q�;IL), i.e. 
1 is bijective. Then we can argue as above to show
that for any computation sequence qq of A BML there is a computation sequence
qq 2 A�;IL such that qq 
�1

2 � � � 
1-simulates qq . �

Thus, it is su�cient to show that �0 is a correct compilation of � for all �; �0 2 ML
such that �� �0. Observe that these compilations are source-to-source transfor-
mations. The basic idea is to de�ne � adequately such that each single instruc-
tions which remains unchanged has the same e�ect in � and �0.
For the de�nition of � we have to know for each instruction in the program the
registers containing a value which is required later. These informations can be
computed easily when the register annotations are computed. Therefore, we as-
sume an annotation used : PROG�LABEL�N ! SET (BITm). r 2 used(�; i; l)
i� r contains a value that must not be destroyed. This annotation is updated
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when applying term-rewrite rules. In our case, initially used(�; i; l) is the set
of registers used to represent f 2 �IL n �ML. When applying a term-rewrite
rule t ! Xfm1; : : : ;mng at an instruction instr , then the annotations of any
unchanged instructions remain unchanged and the annotations for the new in-
structions is a simple live analysis for basic blocks (cf. [Waite and Goos 1984,
Chapter 13.3]) starting from the set used of the instruction after instr .
Since we have now formalized the notion whether a register contains at a certain
instruction a value which is needed later, we can de�ne �.

De�nition 21 (�) Let �; �0 2 ML where �0 is obtained from � by applying
t ! X ; fm1; : : : ;mng at instr = get instr(�; i; l) for a i 2 N, l 2 LABELS .
Furthermore, let A� and A�0 be the ASMs de�ned by AML . Then we de�ne
� � Q� �Q�0 i� the following conditions are satis�ed:

(�1) For all q such that [[BP ]]q = l0 6= l: [[f ]]q = [[f ]]q0 for all f 2 �MLnfregg
and [[reg(k)]]q = [[reg(k)]]q0 for all k 2 used(�; i; l).

(�2) The same properties de�ned by (�1) are also satis�ed for all q with
[[BP ]]q = l and [[PC ]]q � i.

(�3) For all q such that [[BP ]]q = l and [[PC ]] > i: [[f ]]q = [[f ]]q0 for all
f 2 �ML n fPC ; regg,

[[PC ]]q0 =

�
[[PC ]]q + n if X 6= �
[[PC ]]q + n� 1 if X = �

;

and [[reg(k)]]q = [[reg(k)]]q0 for all k 2 used(�; i; l). �

We now prove the precondition of Theorem 8:

Theorem9 Horizontal Decomposition. Let �; �0 2 ML where �0 is obtained
from � by applying t! X ; fm1; : : : ;mng at instr = get instr(�; i; l) for a i 2 N,
l 2 LABELS . Furthermore, let A� and A�0 be the ASMs de�ned by AML . Sup-
pose that the following two conditions are satis�ed:

(LC1) If X 6= �, then for all (q; q0) 2 � such that [[BP ]]q = l and [[PC ]]q = i,
and any sequence q01; : : : ; q

0
n; q

0
n+1 2 Q�2 satisfying q0 !�0 q

0
1 and

q0i !�0 q
0
i+1 for all i = 1; : : : ; n, then there is a state q̂ 2 Q� such

that q !� q̂ and (q; q̂) 2 �.
(LC2) If X 6= �, then for all (q; q0) 2 � such that [[BP ]]q = l and [[PC ]]q =

i, and any sequence q01; : : : ; q
0
n; q

0
n 2 Q�2 satisfying q0 !�0 q

0
1 and

q0i !�0 q
0
i+1 for all i = 1; : : : ; n� 1, then there is a state q̂ 2 Q� such

that q !� q̂ and (q; q̂) 2 �.

Then, �0 is a correct compilation of �.

Proof: We show that for any (q; q0) 2 � where [[BP ]]q 6= l or [[PC ]]q 6= i and all
states q00 2 Q�0 such that q0 !�2 q

00, there is a state q̂ 2 Q� satisfying q !�1 q̂
and (q̂; q00) 2 �. If this is satis�ed, we can use Theorem 5 to conclude together
with (LC1), (LC2) that �0 is a correct compilation of �. Let instr = [[IP ]]q .
Using (�1){(�3) it is easy to see that also [[IP ]]q0 = instr . Let trans be the
transition rule used to obtain q00. Then, trans can also be applied at q to obtain
q̂. Obviously, q0 !�2 q

00 executes an update f(t1; : : : ; tn) := tn+1 i� q !�1 q̂
executes the update f(t1; : : : ; tn) := tn+1. The executed updates are equal i�

547Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...



[[ti]]q = [[ti]]q0 for i = 1; : : : ; n (except the update pc := pc + 1 for the case
described by (�3)). The latter can be proven by a simple structural induction
on the terms ti 2 T (� [ �) using the fact that if ti contains a subterm reg(k)
then k 2 used(�; l; i� 1). �

Figure 16 visualizes (LC1), (LC2) and the case described in the proof of Theo-
rem 9.
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Figure 16: Visualization of (LC1), (LC2) and the Proof of Theorem 9

It follows immediately the

Corollary 22 Suppose that for all �; �0 2 ML where �0 is obtained from �
by applying t ! X ; fm1; : : : ;mng at instr = get instr(�; i; l) for a i 2 N, l 2
LABELS , (LC1) and (LC2) is satis�ed. Then for all �1 2 IL, �2 2 BML such
that �1 �

� �2, �2 is a correct compilation of �1.

It is obvious that De�nition 21 contains the minimal requirements such that
Theorem 5 can be proven. It is natural to ask why it is not required that (q; q0) 2
� implies [[reg(k)]]q = [[reg(k)]]q0 for every k 2 BITSm? The reason is that (LC1)
and (LC2) need not to be satis�ed. The machine instructions �(mi) may write a
value into register k not used by instr but just by instr 0 (e.g. the register used for
X). Then [[reg(k)]]q̂ 6= [[reg(k)]]qn+1 is possible. These are precisely such registers
where De�nition 21 does not require equality.
We �nish the section by showing how to prove (LC1) and (LC2). First, we reduce
(LC1) to expression evaluation.

Lemma 23 Let �; �0 2 ML where �0 is obtained from � by applying t !
X ; fm1; : : : ;mng on instr = get instr(�; i; l) at occurence o for a i 2 N, l 2
LABELS . Furthermore, let A� and A�0 be the ASMs de�ned by AML . Suppose
X 6= � and let the states q; q0; q01; : : : ; q

0
n+1 be de�ned as by (LC1). Let o �

be the substitution used in the application of that rule. Furthermore, assume
�(X) = Reg(k). If [[NF (eval (instr [o]))]]q = [[reg(k)]]qn , then (LC1) is satis�ed.

Proof: It is su�cient to show that for every o 6= hi where e = instr [o] is an
expression, the following two properties hold.
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(i) [[NF (eval (e))]]q0
n
= [[NF (eval (e)]]q if Reg(k) does not occur in e, and

(ii) [[NF (eval (e[o=Reg(k)]))]]q0
n
= [[NF (eval (e)]]q if Reg(k) occurs e.

Then we can argue as in the proof of Theorem 5 that there is a q̂ 2 Q� such
that q !� q̂ performs the same updates as q

0
n ! q0n+1. Since m1; : : : ;mn con-

tains no registers r 62 used(�; i; l), and every �(mi) only changes contents of
registers and pc, it follows [[f ]]q0

n
= [[f ]]q for every f 2 � n freg ;PC g and

[[reg(r)]]q0
n
= [[reg(r)]]q for all r 2 used(�0; i + n; l) n fkg. Using these properties

and [[NF (eval (instr [o]))]]q = [[reg(k)]]qn , it is now a simple structural induction
to prove every subterm of instr 0 is evaluated to the same value. �

From this Lemma and Corollary 22 follows immediately the

Corollary 24 Suppose that for all �; �0 2 ML where �0 is obtained from �
by applying t ! X ; fm1; : : : ;mng at instr = get instr(�; i; l) for a i 2 N, l 2
LABELS , (LC2) and the following condition holds:

(LC3) If X 6= �, then for all states (q; q0) 2 � such that [[BP ]]q = l
and [[PC ]]q = i, and any sequence q01; : : : ; q

0
n; q

0
n+1 2 Q�2 satisfying

q0 !�0 q
0
1 and q

0
i !�0 q

0
i+1 for all i = 1; : : : ; n, it is [[NF (eval (t0))]]q =

[[reg(k)]]q0
n
, where �(X) = Reg(k) is the register assigned to X when

applying the term-rewrite rule

Then �2 is a correct compilation of �1 for all programs �1 2 IL; �2 2 BML such
that �1 �

� �2. �

Conditions (LC2) and (LC3) are called the local correctness conditions of rule
t ! X ; fm1; : : : ;mng. The next section shows how these local correctness con-
ditions can be proven.
It is remarkable that Corollary 24 is just based on the general requirements
de�ned by basic block languages and typical machine languages. The other as-
sumptions (A1){(A6), the property of assigning exclusively registers, and that
expressions have no side e�ects can be removed, but would complicate consider-
ably the proofs. Removing (A1){(A6) would lead to a more complex monomor-
phism �1 : A IL ! AML is more complicated. Adding memory locations is not
di�cult: it is just an extension of the annotation (although the normalization
could be de�ned such that the approach described in this section is always ap-
plicable). If expressions can also have side-e�ects then a combination of (LC2)
and (LC3) is necessary.

6 Correctness of Term Rewrite Rules

In Section 5 we reduced the correctness of a TRSBE T to proving the local
correctness of T (cf. Corollary 24). However (LC2) and (LC3) quantify over all
states. This suggests to execute the state transitions symbolically using the rules
in AML . In particular:

1. If the rule is t! X fm1; : : : ;mng, the proof proceeds by the following steps:
First, evaluate e symbolically, i.e. compute NF (eval (t)). Then the updates
by the transition rules mi ; rhs are executed symbolically and normalized
for i = 1; : : : ; n in that order. Finally reg(k) and NF (eval (t)) are compared.
If they are equal then (LC3) is satis�ed.
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2. If the rule is t! � fm1; : : : ;mng the proof proceeds by the following steps:
First, the updates of the rule t ; rhs are performed symbolically. Then
the updates by the transition rules mi ; rhs are executed symbolically and
normalized for i = 1; : : : ; n in that order. Then, we have to compare all
dynamic functions updated by one of the rules.

These two proof strategies are mechanized using the proof checker PVS
[Dold and Gaul 1996]. They are justi�ed by the way how ASMs are obtained
from the operational semantics: The transition rules for the instructions of the
concrete program is obtained by substituting the variables in the corresponding
rules in Trans and simplifying them using Macros :
Consider for example a program � 2 ML and a instruction instr =
get instr(�; i; l), i 2 N; l 2 LABELS . Suppose f(x1; : : : ; xn) ; rhs 2 Trans
such that there is a substitution � with �(f(x1; : : : ; xn)) = instr . The, a sym-
bolic update lhs := rhs is executed by the above approach i� the transition
rule for instr executes the update NF (�(lhs := rhs)). Similarly, we have for any
subexpression e0 of t NF (eval (e0)) = s i� [[NF (eval (�(e)))]]q = [[NF (�(s))]]q for
all q 2 Q�.
We show now three typical local correctness proofs according to the above strate-
gies for the languages de�ned in Appendix A. ML denotes the mnerge of the
languages BB and BB�. For other proofs, we refer to [Dold and Gaul 1996].

Lemma 25 (Local Correctness of Rule 3) Let �; �0 2 ML be arbitrary pro-
grams with � � �0, A� and A�0 their ASMs in AML , q 2 Q� a state with
[[IP ]]q = instr where the rule

intadd (X;Y )! Z fADD(X;Y; Z;Q)g

is applied onto instr to obtain � from �0, � the corresponding substitution,
q0 2 Q�0 be a state such [[IP ]]q0 = ADD(�(X); �(Y ); �(Z); Q), and q00 2 Q�0 be
the state such that q0 !�0 q

00. Then, for any � � Q��Q�0 satisfying De�nition 21
(q; q0) 2 � implies [[eval (intadd (�(X); �(Y )))]]q = [[Regquad(�(Z))]]q00 .

Proof: By the de�nition of eval (cf. Appendix A.1) we obtain

[[eval (intadd (�(X); �(Y )))]]q = [[Regquad(�(X))]]q �I [[Regquad(�(Y ))]]q : (9)

The execution of ADD(�(X); �(Y ); �(Z); Q) performs the update
Regquad(�(Z)) := Regquad(�(X)) �I Regquad(�(Y )) (cf. the rule ADD in Ap-

pendix A.2). Thus

[[Regquad(�(Z))]]q00 = [[Regquad(�(X))]]q0 �I [[Regquad(�(Y ))]]q0 : (10)

Since (q; q0) 2 �, [[Regquad(�(X))]]q = [[Regquad(�(X))]]q0 and [[Regquad(�(Y ))]]q =

[[Regquad(�(Y ))]]q0 . Thus, the right hand sides of (9) and (10) are equal and there-
fore

[[eval (intadd (�(X); �(Y )))]]q = [[Regquad(�(Z))]]q00 :

�

Rule 6 for loading 32-bit integer constants generates more than one machine
instructions.
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Lemma 26 (Local Correctness of Rule 6) Let �; � 2 ML be arbitrary pro-
grams with ���0, A� and A�0 their ASMs in AML , q 2 Q� a state with [[IP ]]q =
instr where rule 6 is applied onto instr to obtain � from �0, � be the correspond-
ing substitution, q0 2 Q�0 be a state such [[IP ]]q0 = LDA(�(T1); i32h0 : 15i; 31),
and q00 2 Q�0 be the state such that q0 !�0 q1 !�0 q2 !�0 q

00. Then, for any
� � Q� �Q�0 satisfying De�nition 21 (q; q0) 2 � implies

[[eval (intconst i32)]]q = [[Regquad ]]q00 (�(X))

.

Proof: The transition rules for machine instructions LDA (load address) and
ZBI (zero-bytes-immediate) are de�ned in Appendix A.2. The proof uses the
following de�nitions: sl = (i32 )h15 i and sh = (i32 )h31 i
With these de�nitions, we obtain the following equalities using the macros in
Appendix A.2:

Sext16 (i32h0 : 15i) = s48l � (i32 )h0 : 15 i (11)

Sext16 (i32h16 : 31i) = s48h � (i32 )h16 : 31 i (12)

and ByteZap(x; o) = extract(x; 7; (o)h7 i) � � � � � extract(x; 0; (o)h0 i), where

extract(x; i; b) =

�
00000000 if b = 1
(x )hi � 8 : i � 8 + 7 i if b = 0

E:g: ByteZap(x; 11111100) = 048 � (x )h0 : 15 i: (13)

Similarly, LogShiftL(x; n) = (x )h0 : 63 � ni � 0n, e.g.

LogShiftL(Sext16 (i32h16 : 31i); 16) = s32h � (i32 )h16 : 31 i � 016: (14)

By the de�nition of eval (cf. Appendix A.1), it is

[[eval (intconstx)]]q = x (15)

The transition rule for LDA (cf. Appendix A.2) implies that the following update
is performed to obtain q1: Regquad(�(T1)) := Regquad(31)�I Sext16 (i32h0 : 15i).

With the above de�nitions, (11), and the fact that on the DEC-Alpha
[[Regquad ]]q̂(31) = 0 for all states q̂, we obtain:

[[Regquad(�(T1))]]q1 = s48l � (i32 )h0 : 15 i (16)

Then the instruction ZBI (�(T1);#11111100; �(T1)) is executed. The transition
rule for ZBI shows, that the update Regquad(�(T1)) :=

ByteZap(Regquad(�(T1)); 11111100) is performed. Thus, we obtain from (13)

and (16)

[[Regquad(�(T1))]]q2 = 048 � (i32 )h0 : 15 i: (17)
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q00 is then reached by executing LDAH (X; i32h16 : 31i; T1). Hence, on q2 the
update Regquad (�(X)) := Regquad(�(T1))�I LogShiftL(Sext16 (i32h16 : 31i); 16)

is performed. With (17) and (14) we obtain:

[[Regquad(�(X))]]q00 = (048 � (i32 )h0 : 15 i)�I (s
32
h � (i32 )h16 : 31 i � 016)

= (s32h � (i32 )h16 : 31 i � (i32 )h0 : 15 i) (18)

(De�nition of �I)

= i32 (19)

�

Remark: In our �rst attempt rule 6 was designed erroneously. We forgot that
the instruction LDA applies a sign extension onto the 16-bit integer operand.
Appendix B shows the e�ect when we try to prove the faulty version of rule 6.
�

The above lemmas are proven according to the �rst strategy. We �nish this
section with proving the local correctness of rule 2 by the second strategy.

Lemma 27 (Local Correctness of Rule 2) Let �; �0 2 L be arbitrary pro-
grams with � � �0, A� and A�0 their ASMs in AML , q 2 Q� a state with
[[IP ]]q = intassign(local (intconst i16);Reg(i)), q̂ be the state such that q !� q̂,
q0 2 Q�0 be a state such [[IP ]]q0 = STQ (i; i16; 1), and q00 2 Q�0 be the state such
that q0 !�0 q

00. Then, for any � � Q� � Q�0 satisfying De�nition 21 (q; q0) 2 �
implies [[content ]]q̂ = [[content ]]q00 .

Proof: The rule for intassign (cf. Appendix A.1) shows, that the transition to
q̂ performs the update content(eval (local (intconst i16)) := eval(Reg(i)). By the
de�nition of BB� (cf. Subsection A.3), eval (Reg(i)) = regquad(Reg(i)) and by

the de�nition of eval , eval(local (intconst i16)) = loc �A i16. Since on BB�, we
have chosen loc=̂regquad(1), we have

[[content ]]q̂(a) =

�
[[regquad(i)]]q if a = [[regquad(1)]]q �A i16
[[content(a)]]q otherwise

(20)

By the rule for STQ (cf. Appendix A.2), the following update is performed on
q0:

content(regquad(1)�I Sext16 (i16 )) := regquad(i)

Since �I = �A and Sext16 (i16) = i16 algebraically, it holds

[[content ]]q00 (a) =

�
[[regquad(i)]]q0 if a = [[regquad(1)]]q0 �A i16
[[content(a)]]q0 otherwise

(21)

If (q; q0) 2 �, then [[regquad(1)]]q = [[regquad(1)]]q0 , [[regquad(i)]]q =

[[regquad(i)]]q0 , and [[content ]]q = [[content ]]q0 . Hence, the right hand sides of (20)

and (21) are equal. Thus, [[content ]]q̂ = [[content ]]q00 . �
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7 Conclusions

In this article we showed how to construct correct compiler back-ends which
transform intermediate languages (basic block graphs) into binary machine code
with BURS. First, the problem was decomposed by introducing intermediate
languages based on Theorem 3. The code generation works in two phases: First
the basic block structure is kept while intermediate language instructions are
transformed into machine instructions (code selection). Second, the basic block
graphs with machine instructions are mapped into the memory of the target
machine (code linearization). The focus of this article was on the construction of
a correct code selection. The approach is based on a well-known code generation
technology used in practice, the term-rewrite systems. The latter are speci�ca-
tions for code selections. A correct generator which performs term-rewriting can
be used for obtaining a correct code selection, provided the speci�cation used
for generation was correct.
We reduced the correctness of term-rewriting systems T to proving indepen-
dently for each rule of T a local correctness condition (Corollary 24) by condition-
ally applying the rules. The condition is a requirement on register assignment.
In section 6 we showed two simple, mechanizable proof strategies for proving the
local correctness.
Except of the local correctness of term-rewrite rules, none of the proofs in this
article made speci�c assumptions on the instruction set of the intermediate lan-
guage and target machine. Hence, these proofs need not be redone if a new
back-end is designed. We showed that a generator can be parametrized with a
term-rewrite system, the intermediate language, the target language, and the
register assignment algorithms. Therefore, if such correct generators and reg-
ister assignments are available, only the local correctness of the term-rewrite
rules is required for construction of correct code selection. Since the correctness
of register assignments is checked when term-rewrite-rules are applied, register
assignment algorithms can be used without proving their correctness. Therefore,
we can apply di�erent register assignment algorithms until the correctness con-
dition is satis�ed. For completeness it is just necessary to apply one veri�ed
register assignment algorithm. This idea is similar to the idea of program check-
ing [Blum and Kannan 1995]. In summary, for the construction of a correct code
selection, it is su�cient to prove the local correctness of the term-rewriting sys-
tem specifying the code selection.
First experiments show that the quality of the binary machine code generated
by our correct compiler back-ends is orders of magnitudes faster than code gen-
erated by correct compilers constructed by other approaches [Palsberg 1992,
Diehl 1996]. [Diehl 1996] has the best results so far. Table 6 shows the compari-
son between our approach, the approach in [Diehl 1996] (SIMP), and a standard
unveri�ed C-compiler. Loop is a program that initializes a variable with a posi-
tive integer and decrements this integer by one until the content of this variable
is zero, Sieve implements the sieve of Eratosthenes.
Our correct compiler back-end is the �rst work on the construction of correct
compilers which produces binary machine code whose performance is on the same
order of magnitude as unveri�ed standard C-compilers. For improving the code
performance, new term-rewrite rules may be added. For keeping the correctness
of code selection it is su�cient to prove the local correctness of the new rules.
Thus, our approach allows incremental improvement of the code selection.
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DEC-Alpha Intel-Pentium SIMP
Veri�x C-Compiler C-Compiler AM in C

Iterations non-opt opt non-opt opt non-opt opt min

Loop 10000 0.57ms 0.57ms 0.35ms 0.31ms 0.62ms 0.50ms 5.0s
100M 5.72s 5.70s 3.49s 3.05s 6.12s 5.04s 13h53m�

Sieve 1 1.63ms 1.23ms 0.82ms 0.56ms 1.02ms 0.89ms 4.00s
10000 16.35s 12.26s 8.25s 5.65s 10.23s 8.94s 11h6m�

DEC-Alpha: DEC-AXP(233MHz), OSF1, CC: DEC(V4.2)

Intel-Pentium: Pentium(133MHz), Linux, CC: GNU(V2.7.0)

SIMP: Pentium, execution times from [Diehl 1996], abstract machine implemented in C

Iterations: Loop: loop iterations, Sieve: searching the primes less than thousand, n times repeated

SIMP: line 1 from [Diehl 1996], line 2 extrapolation(� ) on repeated iterations

Optimization (opt):Verifix: Peephole, C: Option -O4, SIMP: minimal execution times

Table 6: Comparison of the Performance of the Machine Code generated by Correct
Compilers

Our vision is that correct compilers can be constructed by well-known compi-
lation techniques, and if a library of correct data structures, algorithms, and
generators is provided, then for the correctness of any transformation of one
intermediate language to another, it is su�cient to prove local correctness prop-
erties of transformation rules similar to those of term-rewrite rules. The above
performance results show that this approach seems feasible to construct realistic
correct compilers compiling programs of real-life programming languages into
binary machine code of real processors, and produce e�cient code.
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A Abstract Machines for the Languages

Subsection A.1 introduce abstract state machines for basic block graphs. Sub-
section A.2 introduces the abstract state machines for the DEC-Alpha processor
family. It is not our purpose to show how these descriptions can be obtained
from informal language de�nitions. We refer to [Gurevich and Huggins 1993,
Wallace 1995]. Subsection A.3 describes the DEC-Alpha basic block graphs ob-
tained after code selection.

A.1 Basic Block Graphs BB

A BB -program is given by a set of basic blocks where each block consists of a
sequence of instructions where the last one in a block is a jump or stop. INSTR
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denotes the universe of instructions. The data types are the type of 64-bit integers
INT , the double precision 
oating point numbers FLT , the booleans BOOL, and
the addresses ADDR on the target machine.
VALUE denotes the union of all those uni-

T
ar

ge
t M

ac
hi

ne

loc

glob

PC

BP

Figure 17: Basic block graphs

verses. Expressions are de�ned on these ty-
pes and include integer and 
oating point
expressions, boolean and address expressions
(INTEXPR, FLTEXPR, ADDREXPR,
BOOLEXPR), EXPR is the sort which is
a union of these expressions (EXPR =
INTEXPR[FLTEXPR [ : : :). Expressions
are evaluated by eval : EXPR ! VALUE
which is de�ned recursively over its struc-
ture. The semantics is parameterized with
the data types and the basic operations of
the target machine. The ASMs have the
following dynamic functions: an program
counter (PC : INSTR), a basic block pointer
(BP ), a pointer to the local environment
(loc : ADDR), a pointer to the global envi-
ronment (glob : ADDR), a history hist=̂LABEL� N

� which contains the stack
of procedure calls not yet completed, and the memory which is accessed with
dynamic content : ADDR ! CELL. The access to the memory is relative to loc
or glob. In the program this is denoted by local (i) and global (i), respectively. For
accessing larger values, we use the macros contenti, contenti shown in Figure
11.

A.1.1 The language speci�cation

The sorts of BB are

SBB = f LABEL; INTEXPR;FLTEXPR;BOOLEXPR;ADDREXPR;

INSTR; JUMP ;BLOCK ;PROG g

The signature of programs is

�BB = f intadd : INTEXPR � INTEXPR ! INTEXPR


tadd : FLTEXPR � FLTEXPR ! FLTEXPR

intsub : INTEXPR � INTEXPR! INTEXPR

: : :

int2
t : INTEXPR! FLTEXPR

intequal : INTEXPR � INTEXPR ! BOOLEXPR

intgreater : INTEXPR � INTEXPR ! BOOLEXPR

: : :


tequal : INTEXPR � INTEXPR! BOOLEXPR

: : :
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booland : BOOLEXPR � BOOLEXPR ! BOOLEXPR

: : :

readint : INTEXPR ! INSTR

writeint : INTEXPR � INTEXPR! INSTR

intassign : ADDREXPR � INTEXPR ! INSTR


tassign : ADDREXPR � FLTEXPR ! INSTR

: : :

condjump : BOOLEXPR � LABEL� LABEL! JUMP

jump : LABEL! JUMP

call : LABEL � N ! INSTR

return : N ! INSTR

stop : JUMP

local : INTEXPR! ADDREXPR

global : INTEXPR! ADDREXPR

cont : ADDREXPR ! EXPR

intconst i : INTEXPR(�2
31 � i < 2

31
)

boolconst b : BOOLEXPR(b 2 ftrue; falseg)

: : :

newblock : LABEL� INSTR� ! BLOCK

makeprog : LABEL�BLOCK� ! PROG g

The control 
ow is de�ned by

�BB = f start : PROG ! LABEL

get instr : N �BLOCK ! INSTR

get block : LABEL� PROG ! BLOCK

next : N ! N g

The interpretation is de�ned in Figure 9.
The instruction pointer is de�ned by IP = get instr(PC; block(BP; prog))

A.1.2 Operational semantics

�A is the add operation on addresses of the machine, which is in our case equiv-
alent to �I . Instructions consist of assignment instructions for di�erent kind of
expressions, jumps and procedure calls.
The universes not de�ned in the language are

U = f ADDR; INT ;FLT ;BOOL;CELL g

The interpretation of these universes are 64-bit sequences, except CELL, which
is an 8-bit sequence.

� = f 0A; 1A; : : : : ADDR

: : : ;�1I ; 0I ; 1I ; : : : : INT

�I : INT � INT ! INT
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�F : INT � INT ! FLT

�A : ADDR � INT ! ADDR

	I : INT � INT ! INT

: : :

=I : INT � INT ! BOOL

=F : FLT � FLT ! BOOL

: : :

^B : BOOL� BOOL! BOOL

true : BOOL

false : BOOL g

The operations on the universes are de�ned as by the DEC-Alpha machine lan-
guage. The constants represent bit sequences.
Dynamic functions:

�BB = f PC : N (instruction counter )

BP : LABEL (basic block pointer)

content : ADDR ! CELL (the memory)

loc : ADDR (current address of local procedure variables)

glob : ADDR (address of global variables)

inp : VALUE
�

(input stream)

out : VALUE
�

(output stream)

hist : (LABEL� N)
� g

The macros needed for the evaluation of expressions (macros de�ning content
are shown in Figure 11)

�BB :

eval(intadd(e1; e2)) =̂ eval(e1)�I eval(e2)

eval(
tadd(e1; e2)) =̂ eval(e1)�F eval(e2)

eval(intsub(e1; e2)) =̂ eval(e1)	I eval(e2)

: : :

eval(booland(e1; e2)) =̂ eval(e1) ^B eval(e2)

: : :

eval(intconst c) =̂ cI

eval(intequal(e1; e2)) =̂ eval(e1) =I eval(e2)

: : :

eval(local(e) =̂ loc �A eval(e)

eval(global(e) =̂ glob �A eval(e)

eval(cont(i)) =̂ content8(eval(i))

We �nish the de�nition with some transition rules:
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ASM1if IP = intassign(a; e) then
content8(eval(a)) := eval(e);
PC := next(PC )

endif

ASM2
if IP = jump(b) then
BP := b;
PC := 0

endif

if IP = condjump(e; b1; b2) then
if eval(e) then BP := b1;

PC := 0;
else BP := b2;

PC := 0
endif

endif

ASM3
if IP = call(P; k) then
loc := loc �A k;
hist := (BP ;PC ):hist ;
BP := P ;
PC := 0

endif

if IP = return(k) then
loc := loc 	A k;
hist := tail(hist);
BP := fst(head(hist));
PC := next(snd(head(hist)))

endif

The initializations are:

BP := start

PC := 0

loc := bot of stack

glob := bot of stack

where bot of stack is an external constant de�ned by the operating system.

A.2 The Dec-Alpha Processor Family L�

In this section we sketch the formal representation of the DEC-Alpha based on
the informal speci�cation in the manufacturer manual [Sites 1992]. The formal-
ization shows parts of the derived language speci�cation and the operational
semantics. It includes the instruction set, addressing modes, register �les and
the memory, i.e. it models the programmer's view. We do not describe the com-
plete instructions of the DEC-Alpha assembly language. We describe only those
used in this article, more details can be found in [Gaul and Zimmermann 1995].
The addressable memory unit is a byte. In order to load and store quadwords {
the usual integer type for DEC-Alpha architectures { or 
oats we introduce the
function content8 : QUAD ! VALUE which loads and stores 8 bytes from/into
memory. For example, fetching a quadword or 
oat from memory is carried out
by concatenating 8 subsequent bytes starting at the given address. Register are
always accessed as full QUADs, that means there is no byte-access to registers.
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A.2.1 The language speci�cation

The sorts of programs are ADDR; CELL; INSTR; and PROG. The inter-
pretation of ADDR and CELL is isomorphic to BIT 64 and BY TEb=BIT 8,
respectivly.

�L� = f makeinstr : BIT k � INSTR

makeprog : ADDR � INSTR ! PROG g

�L� = f start : PROG �ADDR

next : ADDR ! ADDR

addr instr : N � PROG ! ADDR

get instr : ADDR � PROG ! INSTR g

For the interpretation of the Control Flow see Figure 10, section 4.1.

A.2.2 The operational semantics

The operational semantics uses the sorts QUAD and DOUBLE which are 64-
bit sequences. It is not necessary to introduce or distinguish these sorts, but it
makes the speci�cation more readable. Furthermore, we use the sorts BYTE and
LONG, which are isomorphic to BIT 8 and BIT 32, respectively. Operations on
QUADs and DOUBLEs are the same as those de�ned by BB.
The dynamic functions of L� are:

reg : BIT
6 ! QUAD [DOUBLE

content : ADDR! BYTE

PC : ADDR

Furthermore: IP = get instr(PC; prog)

The speci�cation uses the following macro de�nitions �L� : (for de�nitions of
content and reg see Figure 11)

BYTE b= BIT8

QUAD b= BIT64

DOUBLE b= BIT64

Regquad (X) b= reg(0:X)
Reg
t(X) b= reg(1:X)

The reg macros re
ect the two di�erent kinds of registers. Furthermore, a se-
ries of macros is used to de�ne the bit-sequences and to interpret them. These
macros de�ne the bit-sequences representing instructions in a symbolic way. The
expansion of these terms always leads to bit-sequences. The way how these bit-
sequences are obtained is described in the instruction manual. We demonstrate
this by the ADD-instruction (See �gure 18). For this article it is su�cient to
know that there is an expansion according to the instruction manual.

LDA : BIT
5 � BIT

16 �BIT
5 ! INSTR

LDA(ireg1 ; disp; ireg2 ) Load address (ireg2 + disp) to ireg1
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31 26 25 21 20 16 15 12 11 5 4 0

0 1 0 0 0 0 a a a a a b b b b b 0 0 0 0 0 1 0 0 0 0 0 c c c c c

opcode register a register b type + function code register c

Figure 18: Bit-sequence representing the ADD-instruction of type QUAD

LDQ : BIT
5 � BIT

16 � BIT
5 ! INSTR

LDQ(reg1 ; disp; ireg2 ) Load integer from memory (ireg2 + disp) to reg1

LDT : BIT
5 � BIT

16 � BIT
5 ! INSTR

LDT (reg1 ; disp; ireg2 ) Load 
oat from memory (ireg2 + disp) to reg1

STQ : BIT
5 � BIT

16 � BIT
5 ! INSTR

STQ(reg1 ; disp; ireg2 ) Store integer reg1 to memory (ireg2 + disp)

STF : BIT
5 � BIT

16 � BIT
5 ! INSTR

STF (reg1 ; disp; ireg2 ) Store 
oat � pointreg1 to memory (ireg2 + disp)

ADD : BIT
5 � BIT

5 � BIT
5 �BIT ! INSTR

ADD(reg1 ; reg2 ; reg3 ; type) Add reg1 + reg2 into reg3 ; all of type
0
type

0

BR : BIT
5 � BIT

21 ! INSTR

BR(ireg ; o�s) Branch unconditionally to o�set
0
o�s

0; relative to PC ; ireg = PC

BEQ : BIT
5 � BIT

21 ! INSTR

BEQ(ireg ; o�s; cond) Check condition
0
equal

0
on ireg ; branch conditionally

BLT : BIT
5 � BIT

21 ! INSTR

BLT (ireg ; o�s; cond) Check condition
0
less � than

0
on ireg ; branch conditionally

: : :

JMP : BIT
5 � BIT

5 ! INSTR

JMP(ireg1 ; ireg2 ) Jump to address contained in ireg2 ; ireg1 = PC

IntTest ( EQ, op ) = ( op =I 0
64
2 )

IntTest ( LT, op ) = ( (op)h63 i = 12 )
IntTest ( LE, op ) = ( IntTest ( LT, op ) _ IntTest ( EQ, op ) )
: : :

Furthermore, the following macros are used in the transition rules:
Sextn : BITn ! QUAD sign extends its argument to a 64-bit integer:
Sextn(X) b= Xn�1: : : : :Xn�1| {z }

64�n times

:X

LogShiftL : QUAD � BIT 6 ! QUAD shifts logically the �rst argument
by the amount of the second argumentto the left. It is de�ned by 2k macros
(0 � k � 63).

LogShiftL(X; k) b= Xh0 : 64� ki_h 0; : : : ; 0| {z }
k

i

ANDn : BITn�BITn ! BITn de�nes the bitwise and for sequences of n-bits:
AND1(0; b) b= 0
AND1(1; b) b= b
ANDn(0:X; b:Y ) b= 0:ANDn�1(X;Y )

560 Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...



ANDn(1:X; b:Y ) b= b:ANDn�1(X;Y )

In arithmetic operations (ADD; : : :) the type of the operation is destinguished
by one bit, denoted by: Qb=1; F b=0
Finally we give some transition rules. For simplicity we omit the exception han-
dling:

ASM4STORE

if PC = STQ(ra; disp; rb) then
content8(Regquad(rb)�A Sext16 (disp)) := Regquad (ra)
PC := next(PC )
endif

endif
if PC = STT(ra ; disp; rb) then
content8(Regquad(rb)�A Sext16 (disp)) := Reg
td(ra)
PC := next(PC )

endif

ASM5LOAD

if PC = LDQ(ra; disp; rb)then
Regquad (ra) := content(Regquad (rb)�A Sext16 (disp))
PC := next(PC )

endif
if PC = LDT(ra ; disp; rb)then
Reg
td(ra) := content(Regquad(rb)�A Sext16 (disp))
PC := next(PC )

endif

if PC = LDA(ra; disp; rb) then
Regquad (ra) := Regquad (rb)�A Sext16 (disp)
PC := next(PC )

endif

Arithmetic operations are de�ned analogously:

ASM6ADD

if PC = ADD(ra ; rb; rc; type) then
if type = F then Reg
td(rc) := Reg
td(ra)�F Reg
td(rb)

PC := next(PC )
if type = Q then Regquad (rc) := Regquad (ra)�Q Regquad(rb)

PC := next(PC )
endif

endif

561Zimmermann W., Gaul T.: On the Construction of Correct Compiler Back-Ends: ...



ASM7BRANCH

if PC = BR(ra; disp) then
Regquad (ra) := next(PC )
PC := PC �A 4�A LogShiftL(Sext21 (disp); 2)

endif

if PC = BEQ(ra; disp) then

if IntTest(0EQ0;Regquad(ra) then PC := next(PC )�A LogShiftL(Sext21 (disp); 2)
else PC := next(PC )

endif

ASM8JUMP

if PC = JMP(ra; rb) then
Regquad (ra) := next(PC )

PC := (Regquad(rb)AndQ11
62
2 00

endif

A.3 Dec-Alpha Basic Block Graphs BB�

The operational semantics of DEC-Alpha basic block graphs can be de�ned
uniquely from the operational semantics of the basic block graphs and the DEC-
Alpha processor family. Consider DEC-Alpha basic block graph � and its ab-
stract state machine A. The sorts of A contain the sorts of the target machine
(except the instruction set which is partially di�erent). Additionally, it contains
the same sort LABEL as the basic block graphs. The signature of A contains
the same dynamic functions as the abstract state machines for the DEC-Alpha
except the instruction pointer. Instead, it contains the instruction pointer, the
basic block pointer and the procedure pointer of the basic block graph. loc and
glob are de�ned by the macros loc=̂Regquad(R1) and glob=̂Regquad(R2), respec-
tively.
The transition rules are the same as on the DEC-Alpha except the jump in-
struction.
BBAlpha cointains amoung other the following transition rules:

if IP = jump(B(ra; disp); L) then
BP := L
PC := 0

endif

if IP = jump(JMP (ra; rb); L) then
BP := L
PC := 0

endif

if IP = jump(BR(ra; disp; cond); L) then
if IntTest(Regquad(ra); cond) then
BP := L
PC := 0

else
PC := next(PC )

endif
endif

Remark: Other processors than DEC-Alpha may contain a status register and
conditional jumps are based on whether some particular bits are set or not.
Then, b is omitted, type are comparisons of checking whether a certain status
bit is set or not, and the test content(b) type is just replaced by type. �
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B Error detection

Detecting faulty parts in code generator speci�cations usually is a tedious job.
Sometimes testing the generated code with sample input does a good job, but
especially the transformation to concrete machine instructions is highly erro-
neous, because the e�ects of machine dependent data manipulations and side
e�ects are often not easy to realize.
The following example is taken from our own development cycle of a complete
compiling speci�cation. It shows the faulty variant of our example of section 6,
that occurred while developing with our students:

intconst i32 �! X

�
LDA (T1; i32h0 : 15i; R31)
LDAH (X; i32h16 : 31i; T1)

�
(22)

Intuitively our sequence seems to do a good job: The low-word is �rst loaded into
T1 (instruction 1), and then the high-word is shifted by the length of a word
and added to the low-word in T1 . We try now to prove the local correctness of
rule 22, i.e. we try to prove the

Presumption 28 (Local Correctness of Rule 22) Let �; � 2 L be arbitrary
programs with ���0, A� and A�0 their ASMs in A L , q 2 Q� a state with [[IP ]]q =
instr where rule 22 is applied onto instr to obtain � from �0, � be the correspond-
ing BE-substitution, q0 2 Q�0 be a state such [[IP ]]q0 = LDA(�(T1); i32:L; R31; L),
and q00 2 Q�0 be the state such that q0 !�0 q1 !�0!�0 q

00. Then, for any
� � Q� � Q�0 satisfying the requirements de�ned in subsection 3.3 (q; q0) 2 �
implies [[eval (intconst i32)]]q = [[Regquad ]]q00 (�(X)).

For proving the correctness we proceed as in section 6. We use the same nota-
tions as in the proof of lemma 26. Analogous to this proof, we show (15) and
(16). By the rule for LDA, the update Regquad(�(X)) := Regquad (�(T1)) �I

LogShiftL(Sext16 (i32:H); 16) is performed on q1. With (16) and (14) we obtain:

[[Regquad ]]q00 (�(X)) = s48l � (i32 )h0 : 15 i �I s
32
h � (i32 )h16 : 31 i � 016:

However, i32 = s48l � (i32 )h0 : 15 i �I s
32
h � (i32 )h16 : 31 i � 016 only if sl = 0.

Therefore, the above rule is faulty if 16-th bit of i32 is set. This error is very to
�nd with software testing, because it only occurs, if bit 15 of the desired integer
constant is non-zero. A solution is to compensate the sign extension with an
arithmetic operation or to zero the sign extended bits after the �rst instruction.
This version was chosen for rule 6 in subsection 4.3.

C Notations

Signatures are denoted by capital greek letters. Sorts and universes are denoted
by capital letters; usually taken from the end of the alphabet. Mappings and
homomorphisms and denoted by lower case greek letters. Algebras and ASMs
are denoted by calligraphic letters. Symbols de�ned by signatures are denoted by
lower case letters. An additional notation is that of indexing ASM. If an ASM
Ai is indexed with index i, then �i refers to the signature, Qi to the states,
Si to the sorts, !i to the transition relation, and Ii to the initial states of Ai,
respectively. Fi refers to the set of �nal states of Ai.Table 7{Table 10 summarize
notations commonly used in this article.
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t[o] subterm of t at occurence o Subsection 2.1
t[o=t0] the term obtained from t by replacing t[o]

by t0
Subsection 2.1

T (�) set of terms over signature � Subsection 2.1
T (�;V ) set of terms over signature � and variables

V
Subsection 2.1

[[t]]A interpretation of term t in algebra A Subsection 2.1
T (�) term algebra of terms over signature � Subsection 2.1
� = [x1=t1] � � � [xn=tn] substitution of variables by terms Subsection 2.1
t[u=u0] the term t where sub-term u is replaced by

u0
Subsection 2.1

Aj� restriction of an algebra Subsection 2.1
t1=̂t2 term-rewrite rule Subsection 2.1
 - rewrite relation de�ned by a TRS Subsection 2.1
NFR(t) normal form of term t w.r.t. a noetherian

and con
uent TRS
Subsection 2.1

i; i0; i1; : : : initial states of an ASM Subsection 2.2
q; q0; q1; : : : states of an ASM Subsection 2.2
�;� 0; �1; : : : static functions of an ASM Subsections 2.2, 3.2
X ;X 0;X1; : : : static algebra of an ASM Subsections 2.2, 3.2
�; �0; �1; : : : ASM-homomorphisms Subsection 2.2
U v V [[U ]]T (�) � [[V ]]T (�) Subsection 2.1

Table 7: Notations de�ned in Section 2

�L program structure of language L Subsection 3.1
�L control structure of language L Subsection 3.1
SL sorts of language L Subsection 3.1
INSTR sort of instructions Subsection 3.1
PROG sort of programs Subsection 3.1
IL interpretation of control and program

structure of language L
Subsection 3.1

�L signature of instructions of language L Subsection 3.1
�; �; : : : programs Subsection 3.1
IP instruction pointer Subsection 3.2
StatL static part of an operational semantics of

L
Subsection 3.2

	; 	 0; 	1; : : : static functions of an operational seman-
tics of L not used by the control and pro-
gram structure

Subsection 3.2

DynL dynamic part of an operational semantics
of L

Subsection 3.2

Table 8: Notations de�ned in Section 3 (1)
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�;�0; �1; : : : dynamic functions of an operational se-
mantics of L

Subsection 3.2


;
0; 
1; : : : observable dynamic functions of an opera-
tional semantics of L

Subsection 3.2

�;�0; �1; : : : signature of macros of an operational se-
mantics of L

Subsection 3.2

A L operational semantics of a language L Subsection 3.2
A� ASM of � in A L Subsection 3.2
qq ; qq 0; : : : computation sequence of a program � 2 L Subsection 3.2
B� behavior of program � Subsection 3.2
�
 
-equivalence relation Subsection 3.2
[q]
 
-equivalence class of state q Subsection 3.2
obqq observable behavior of qq Subsection 3.2
OB� observable behavior of program � Subsection 3.2
jj ; ll ; jj 0; ll 0; : : : witnesses of observable behavior of qq Subsection 3.2
�; �0; �1; : : : L-semantics monomorphisms Subsection 3.2
�; �̂; �0; : : : relations between 
-equivalence classes or

states
Subsection 3.2

C compiling relation Subsection 3.3

Table 9: Notations de�ned in Section 3 (2)

JUMP sort of jump instructions in basic block
graphs

De�nition 14

BLOCK sort of basic blocks De�nition 14
EXPR sort of expressions De�nition 14
LABEL sort of labels De�nition 14
ADDRESS sort of addresses De�nition 14, 15
VALUE sort of values De�nition 14, 15
BP block pointer De�nition 14
PC program counter De�nition 14, 15
IM signature of instruction macros Subsection 4.3
t! X; fm1; : : : ;mng back-end term-rewrite rule De�nition 18
��;instr ;o register assignment for application of a rule

on instr at occurence o
De�nition 18

� rewrite relation of term-rewrite systems for
back-ends

De�nition 18

rule rule annotation De�nition 19
regassign register assignment De�nition 19

Table 10: Notations de�ned in Section 4
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