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Abstract: This paper addresses the correctness problem of an algorithm solving the
constrained shortest path problem. We de�ne an abstract, nondeterministic form of
the algorithm and prove its correctness from a few simple axioms. We then de�ne a
sequence of natural re�nements which can be proved to be correct and lead from the
abstract algorithm to an e�cient implementation due to Ulrich Lauther [Lauther 1996]
and based on [Desrosiers et al. 1995]. Along the way, we also show that the abstract
algorithm can be regarded as a natural extension of Moore's algorithm [Moore 1957]
for solving the shortest path problem.
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1 Introduction

The subject of this case study is an algorithm to solve the constrained shortest
path problem. This problem is speci�ed in Section 2. We develop an abstract
generic algorithm for solving shortest path problems in Section 3, and prove its
correctness from a few simple axioms in Section 4. This abstract algorithm is
non{deterministic. This non-determinism is eliminated in Section 5, yielding a
generic deterministic algorithm. In Section 6, this generic algorithm is instan-
tiated in order to solve the constrained shortest path problem. To this end, we
provide an implementation of certain operations on step functions. The resulting
algorithm can readily be translated into an e�cient C++ program.

The algorithms are presented as abstract state machines (ASM), a notion
introduced by Gurevich under the name of evolving algebras [Gurevich 1993].
ASMs can be regarded as pseudo code. However, in contrast to pseudo code,
ASMs have a rigorous semantics, formally de�ned in Gurevich [Gurevich 1995].
The notation used to present an ASM is mostly self explanatory. For the reader
not familiar with [Gurevich 1995] we explain this notation and its semantics on
an informal level.

The basic notion of an ASM is the notion of an update. It takes the form

f(t1; � � � ; tn) := s

where f is a function symbol and s, t1, � � �, tn are expressions that can be
evaluated. If the evaluation of these expressions produces the values v0, v1, � � �,
vn, respectively, then the value of f(v1; � � � ; vn) is changed to v0, as the e�ect of
this update.

Updates may be combined into blocks of updates. A block of n updates takes
the form
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f(t1) := s1

...

f(tn) := sn

where t1, � � �, tn denote tuples of expressions. To execute a block of n updates,
all of its updates are executed simultaneously. (The fact that these updates
are executed simultaneously rather than sequentially is perhaps the only impor-
tant di�erence between conventional programming languages and the notion of
abstract state machines.)

The quali�ed choose construct can be used to describe non-determinism. Its
form is

choose x in S satisfying p(x)
B(x)

where x is a variable, S is a sort, p(x) is a Boolean expression containing the
variable x, while B(x) is a block of updates that contains expressions mentioning
the variable x. To execute this choose construct we non-deterministically choose
a value v with sort S such that p(v) is satis�ed. This value is then substituted
for x in B(x) and the resulting block B(v) is executed. If there is no value v in
S such that p(v) is satis�ed, then the computation terminates.

The guarded block has the form

if G then

B

where G is a Boolean expression referred to as the guard of the block B. This
block is executed only if the guard G evaluates to true.

It should be noted that the choose construct and the guarded block can be
mixed freely. All further notations used like, e.g. the initialization, are self ex-
planatory. The above explanation of abstract state machines should be su�cient
for the rest of this paper. The reader interested in a rigorous de�nition is ad-
vised to consult [Gurevich 1995]. The methodology applied in this paper has
been suggested by B�orger, cf. [B�orger 1995].

2 Preliminaries

The constrained shortest path problem is a generalization of the shortest path
problem. For didactic purposes, we de�ne this simpler and well known problem
�rst. To this end, we introduce the notion of a weighted graph, i.e. a graph where
a weight is associated with every edge.

De�nition 1 (weighted graph) A weighted graph is a triple

hNodes;Edges; weighti

such that the pair hNodes;Edgesi is a directed graph and weight : Edges! N

is a function assigning a natural number to every edge. If weight(e) = l, then
l is also called the length of e. For any edge e = hv; wi we use the notation
head(e) = w and tail(e) = v, i.e. an edge is regarded as an arrow pointing
from tail(e) to head(e). 2

The de�nition of a weighted graph given above is actually the de�nition
of a directed weighted graph. However, there is no loss in generality since an
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undirected weighted graph can be seen as a special case of a weighted graph
where the set Edges and the function weight are symmetric.

Paths are de�ned as usual. The set of all paths will be denoted as Paths.
The function weight is extended to Paths by collecting all the weights along
the path, i.e.

weight(e1e2 � � � en) :=
nP
i=1

weight(ei).

If p = e1e2 � � � en is a path in G, then we say that p connects the node tail(e1)
with the node head(en). Furthermore, the empty path " connects every node to
itself. The set of all path connecting node x with node y will be denoted as
Paths(x; y).

In the rest of this paper we will assume that every graph is �nite. In general,
the set Paths(x; y) is not �nite, since there may exist paths containing cycles.
However, in the application we have in mind we can restrict our attention to
paths containing no cycles and this set is �nite.

De�nition 2 (shortest path problem) Given a distinguished node source,
the single source shortest path problem consists in computing the following func-
tion:

sp : Nodes! N

sp(v) := min
�
weight(p) : p 2 Paths(source; v)

	
. 2

For the constrained shortest path problem we rede�ne the notion of a weighted
graph by letting the function weight assign a pair of natural numbers to every
edge, i.e. we have weight : Edges! N�N . If weight(e) = hl; ci, then l is called
the length of e and c is called the cost of e. Therefore, we introduce two functions
length and cost satisfying weight(e) = hlength(e); cost(e)i. These functions
are extended from Edges to Paths:

length(e1e2 � � � en) :=
nP
i=1

length(ei),

cost(e1e2 � � � en) :=
nP
i=1

cost(ei).

De�nition 3 (SF) A function f : N ! N [ f1g is a monotonically decreasing
step function i�

l1 � l2 ) f(l2) � f(l1).

The set of all monotonically decreasing step functions is denoted by SF. 2

De�nition 4 (constrained shortest path problem) Given a distinguished
node source, the constrained shortest path problem consists in computing the
following function:

csp : Nodes! SF

csp(v)(l) := min
�
cost(p) : p 2 Paths(source; v) ^ length(p) � l

	
. 2

In the form given above, it is not easy to see that the constrained shortest
path problem and the shortest path problem are instances of the same problem.
In order to emphasize the similarity between these problems we reformulate the
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constrained shortest path problem. Our �rst task is to extend the function weight

from Edges to Paths. Since weight(e) is composed of length(e) and cost(e),
we can use the extensions of these functions in order to generalize weight.

De�nition 5 If p is a path in G and l is a natural number, then we de�ne:

weight(p)(l) :=

�
1 if l < length(p);
cost(p) if l � length(p):

2

Note that when the domain of weight is changed from Edges to Paths, the
range of weight changes from N � N to the function space SF.

The above de�nition of weight(p) is unsatisfactory because it is structurally
di�erent from the de�nition of weight in the case of the shortest path problem.
To be able to give an inductive de�nition of weight, which is similar to the
de�nition of this function in the shortest path problem, we have to introduce an
addition for functions from SF and weights from N � N.

De�nition 6 (+) For f 2 SF and hx; yi 2 N � N the function f + hx; yi is
de�ned as follows:�

f + hx; yi
�
(t) =

�
1 if t < x;
f(t� x) + y if t � x:

2

The operation + can be used to give an alternative de�nition of weight.

De�nition 7 For a path p, weight0(p) is de�ned by induction on p:

1. weight0(") := 0.
(Here the function 0 2 SF is de�ned as 0(l) = 0.)

2. weight0(p e) := weight0(p) + weight(e). 2

Lemma 8 For any path p we have:

weight0(p) = weight(p) 2

Proof: The proof is by induction on the number of edges in p.

Base case: p = ". Then length(p) = 0, cost(p) = 0, and weight0(p) = 0.
Therefore, we have

weight(")(l) :=

�
1 if l < length(")
cost(") if l � length(")

=

�
1 if l < 0
0 if l � 0

= 0(l)

= weight0(")(l).

Step case: p = q e. If weight(e) = hx; yi, i.e. length(e) = x and cost(e) =
y, then cost(p) = cost(q) + y and length(p) = length(q) + x. Since
weight0(p) = weight0(q) + hx; yi we have

weight0(p)(l) =

�
1 if l < x;
weight0(q)(l � x) + y if l � x:

By induction hypothesis we have weight0(q) = weight(q), yielding
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weight0(p)(l) =

�
1 if l < x;
weight(q)(l � x) + y if l � x:

Substituting the de�nition of weight(q) we arrive at

weight0(p)(l) =

(
1 if l < x;
1 if l � x < length(q) ^ l � x;
cost(q) + y if l � x � length(q) ^ l � x:

However, since l � x < length(q) is equivalent to l < length(q) + x =
length(p) and, furthermore, cost(p) = cost(q) + y, we have found that

weight0(p)(l) =

�
1 if l < length(p)
cost(p) if l � length(p)

= weight(p)(l). 2

Using weight, we can give a di�erent formulation of the constrained shortest
path problem that resembles the formulation of the shortest path problem more
closely. However, there is one important di�erence: In contrast to the set N of
natural numbers, the function space SF is not linearly ordered. Therefore, in
general the minimum of two functions f1; f2 2 SF does not exist. Instead, the
greatest lower bound (glb) has to be used. It is de�ned as the pointwise minimum
of f1 and f2, i.e. glb(f1; f2)(l) = min

�
f1(l); f2(l)

�
. Then the constrained shortest

path problem can be reformulated as shown by the following theorem.

Theorem 9

csp(v) = glb
�
weight(p) : p 2 Paths(source; v)

	
.

Proof: For all l 2 N we have the following chain of equations:

csp(v)(l) = min
�
cost(p) : p 2 Paths(source; v) ^ length(p) � l

	
= min

�
weight(p)(l) : p 2 Paths(source; v) ^ length(p) � l

	
(by the de�nition of weight : Paths! SF)

= min
�
weight(p)(l) : p 2 Paths(source; v)

	
(since weight(p)(l) =1 if l < length(p))

= glb
�
weight(p) : p 2 Paths(source; v)

	
(l)

(since glb is de�ned pointwise) 2

3 A Generic Algorithm for Solving Shortest Path Problems

In this section we present an algorithm that is able to solve generalized shortest
path problems. The algorithm is generic. This is achieved by working with an
abstract data type. The bene�t of this approach is twofold. Firstly, it is quite
universal. The algorithm presented in this section can be used to solve the clas-
sical shortest path problem as well as the constrained shortest path problem.
Secondly, this approach simpli�es the development of the algorithm: By sepa-
rating the implementation of the abstract data type from the implementation
of the generic algorithm to solve the shortest path problem we have e�ectively
split our original problem into smaller problems that are easier to solve.

Proceeding in this spirit, we generalize the notion of a weighted graph given
in the last section by working with an abstract version of the function weight,
i.e. we do no longer assume that the result of weight is a pair of positive natural
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numbers. Rather, the signature of weight is now given as

weight : Edges! W ,

where the set W is a set of abstractly given weights. Furthermore, we assume
that there is a set M the elements of which are called measures. This set is
characterized via the following axioms:

1. M is partially ordered via a well{founded relation � with
(a) a largest element 1,
(b) a smallest element 0, and
(c) for any two elements m1;m2 2 M the greatest lower bound glb(m1;m2)

exists. It is characterized by
i. glb(m1;m2) � m1 ^ glb(m1;m2) � m2,
ii. m3 � m1 ^ m3 � m2 ) m3 � glb(m1;m2).

2. There is a function + : M � W ! M for \adding" the weight of an edge e
to the measure of a path when this path is extended by e. This function has
the following properties:
(a) + is monotone, i.e. m1 � m2 ) m1 + w � m2 + w.
(b) glb is distributive with respect to +, i.e.

glb(m1 + w;m2 + w) = glb(m1;m2) + w.

The function + is used to generalize the function weight : Edges ! W to a
function with signature weight : Paths! M by induction:

1. weight(") := 0.
2. weight(p e) := weight(p) + weight(e).

Since � is well{founded, the function glb can be extended to countable sets.

Theorem 10 If M = fmi : i 2 Ng is a countable set, then the greatest lower
bound of M exists.

Proof: We de�ne a sequence (gi)i2N by induction.

1. g0 := m0.
2. gi+1 := glb(gi;mi+1).

We have gi+1 � gi for all i 2 N. Since � is well{founded, there exists a k 2 N

such that gi = gk for all i � k. It is straightforward to see that gk is the greatest
lower bound of M . 2

3.1 The Algorithm

We assume to be given a distinguished node source. Our goal is to compute the
function min weight : Nodes! M de�ned as

min weight(v) := glb
�
weight(p) : p 2 Paths(source; v)

	
.

Since the set of all paths from source to v is at most countable, Theorem 10
shows that the above greatest lower bound exists. (Theorem 10 is needed because,

although there are only �nitely many nodes, the set Paths(source; v) need not be

�nite. After all, there may exist paths containing cycles!)

In order to compute the function min weight the idea is to de�ne a function

309Stroetmann K.: The Constrained Shortest Path Problem: A Case Study in Using ASMs



label : Nodes! M

assigning a label to every node such that this label is an approximation from
above of min weight(v), i.e. we always have min weight(v) � label(v). This
function is successively improved until no further improvement is possible. There-
fore, the algorithm proceeds as follows:

1. Initially, the only node v that is known to be connected to the source is the
source itself. Therefore we label source with 0 and all nodes di�erent from
source are labeled with 1.

2. Then, the following step is repeated as long as possible: We look for an edge
e = hv; wi such that label(w) 6� label(v) + weight(e). If we are able to
�nd an edge e with this property, then we relabel w with the new label
glb

�
label(w); label(v)+weight(e)

�
. Otherwise, the algorithm terminates.

Note that in the second step the label of a node can only be decreased since we
always have

glb
�
label(w); label(v) + weight(e)

�
� label(w).

The above inequality is strict i� label(w) 6� label(v) + weight(e).

asm shortest path1( label : Nodes! M ; source : Nodes )

initialization
8x 2 Nodesnfsourceg : label(x) := 1
label(source) := 0

transition relabeling
choose e = hv; wi in Edges

satisfying label(w) 6� label(v) + weight(e)

label(w) := glb( label(w); label(v) + weight(e) )

Figure 1: The ASM shortest path1.

A formalization is given by the ASM shortest path1 in Figure 1. The com-
putation of this ASM stops as soon as we have label(w) � label(v)+weight(e)
for every edge e = hv; wi.

4 Correctness of shortest path1

In this section we show the correctness of the ASMs shortest path1.

Lemma 11 For any node v and any moment in the computation of the ASM
shortest path1 the following invariant holds:

min weight(v) � label(v).

Proof: The proof is done by induction on the computation of the ASM. In order
to show the claim to be true after the initialization, we have to deal with two
cases.
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1. v = source. We have " 2 Paths(source; v) and weight(") = 0, showing
min weight(v) = 0. Since 0 � m for all m 2 M this proves the claim.

2. v 6= source. Then we have label(v) = 1 and since m � 1 for all m 2 M

the claim is obvious.

For the induction step assume the edge e = hv; wi to be chosen. Then
label(w) is updated to the value

glb
�
label(w); label(v) + weight(e)

�
.

Therefore we have to show that

min weight(w) � glb
�
label(w); label(v) + weight(e)

�
holds. This is equivalent to the conjunction of (1) and (2) below:

min weight(w) � label(w) (1)

min weight(w) � label(v) + weight(e). (2)

(1) is true by the induction hypothesis stated for w and (2) follows from

min weight(w) � min weight(v) + weight(e) (3)

and the induction hypothesis for v. In order to prove (3), we note that�
weight(p e) : p 2 Paths(source; v)

	
�
�
weight(q) : q 2 Paths(source; w)

	
holds, since p 2 Paths(source; v) implies p e 2 Paths(source; w). Therefore,

glb
�
weight(q) : q 2 Paths(source; w)

	
� glb

�
weight(p e) : p 2 Paths(source; v)

	
.

Since weight(p e) = weight(p) + weight(e) and glb is distributive with respect
to +, (3) follows from the de�nition of min weight. 2

While the last lemma showed that label(v) is never too small, the next
lemma shows that, once the algorithm has terminated, label(x) is not too big
either.

Lemma 12 If the algorithm has terminated, then for any node w and any path
q 2 Paths(source; w) the following holds:

label(w) � weight(q).

Proof: The proof is by induction on the number n of edges of q.

Base Case: n = 0 and therefore q = " is the empty path. Then w = source

and the claim is trivial since, initially, label(source) = 0 and subsequent
relabeling can only decrease the value of the function label.

Step Case: The path has the form q = p e. If e = hv; wi, then p is a path
connecting source to v, i.e. p 2 Paths(source; v). By induction hypothesis
label(v) � weight(p). Using the monotonicity of + this gives

label(v) + weight(e) � weight(p) + weight(e). (1)

If the algorithm has terminated, then

label(w) � label(v) + weight(e), (2)

since otherwise the choose construct would be able to choose the edge e and
the algorithm would not have been terminated. Taken together, (1) and (2)
yield

label(w) � weight(p)+weight(e) = weight(p e) = weight(q). 2
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Theorem 13 (partial correctness) When the algorithm terminates, then we
have label(v) = min weight(v) for any node v.

Proof: This is an immediate consequence of Lemma 11 and Lemma 12. 2

Theorem 14 (termination) Every computation of the ASM shortest path1

terminates.

Proof: Every time the relabeling rule is applied, the label for one node w strictly
decreases and the other labels remain unchanged. Since there are only �nitely
many nodes and the relation � is well{founded, this rule can be applied only a
�nite number of times. 2

5 Re�ning the ASM shortest path1

We re�ne the ASM shortest path1 to shortest path2 by eliminating the non-
deterministic choice of edges. The method that we use is known in the literature
as the labeling and scanning method, cf. [Tarjan 1983]. It is essentially a book-
keeping method that works by maintaining a set S of nodes that still need to be
scanned, where scanning a node v is carried out in three steps:

1. The set E of all edges originating in v is computed. For this purpose, we use
the function adjacent de�ned as

adjacent(v) =
�
e 2 Edges : tail(e) = v

	
.

2. For every edge e = hv; wi in E such that

label(w) 6� label(v) + weight(e)

we relabel w with glb
�
label(w); label(v) + weight(e)

�
. Then w is added

to the set S of nodes that still need to be scanned, since it might then be
possible to lower the labeling of nodes reachable via edges originating in w.

3. We delete v from the set S.

This is formalized by the ASM shortest path2 given in Figure 2. Note that the
computation of this ASM terminates i� in the scanning rule the set S becomes
empty, since then the choose construct is unable to produce a node v 2 S.

5.1 Correctness of the Re�nement

Theorem 15 The ASM shortest path2 computes the same value for the func-
tion label as the ASM shortest path1.

Proof: We show that every computation of shortest path2 can be regarded as
a computation of shortest path1. Indeed, if we abstract from the variables S,
E , and mode, then

{ the initialization of shortest path2 is the same as that of shortest path1,
{ the transition rules \scanning" and \back to scanning" have no e�ect, and
{ the transition rule \relabeling" has the same e�ect on the function label for
both ASMs.
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asm shortest path2( label : Nodes! M ; source : Nodes )

initialization
8x 2 Nodesnfsourceg : label(x) :=1
label(source) := 0
S := fsourceg
mode := scan

transition scanning
if mode = scan

then choose v in Nodes satisfying v 2 S
E := adjacent(v)

S := S � fvg
mode := relabel

transition relabeling
if mode = relabel

& E 6= ;
then choose e = hv; wi in Edges satisfying e 2 E

E := E � feg
if label(w) 6� label(v) + weight(e)
then label(w) := glb( label(w); label(v) + weight(e) )

S := S [ fwg

transition back to scanning
if mode = relabel

& E = ;
then mode := scan.

Figure 2: The ASM shortest path2.

We have seen already that the relabeling rule can decrease the value of the
function label only a �nite number of times, but the ASM shortest path2 can
execute this rule without changing the value of the function label. Therefore we
have to exclude the possibility of in�nite computations of shortest path2. To
this end, assume that (sn)n is a sequence of states resulting from a computation
of shortest path2. Then there must be a time t such that for all n � t the value
of the function label remains unchanged in the transition from sn to sn+1. But
from that time on the set S can never be increased, since S is only increased
when the function label is decreased. The computations of shortest path2

consist of cycles described by the following regular expression:

\scanning" \relabeling"� \back to scanning".

Every relabeling step decreases the size of E , therefore after a �nite number of
relabeling steps, E will be empty and the transition back to scanning is executed.
This is followed by a scanning step that decreases the size of S. Therefore,
termination of shortest path2 is guaranteed.

Furthermore, we have to exclude the possibility that the computation of the
ASM shortest path2 terminates prematurely. This could happen if S = ; in
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the scanning step although there is an edge e = hv; wi such that

label(w) 6� label(v) + weight(e). (�)

De�ne t0 as the earliest time such that the above inequality holds from t0 on
up to the termination of the ASM. We �rst show that then v 2 S must hold at
time t0. To prove this claim, we need a case distinction:

1. Case: t0 = 0. Since at t0 the only node satisfying label(v) 6= 1 is v =
source, we have v = source and therefore v 2 S at t0.

2. Case: t0 > 0. Then the relabeling rule must have decreased the value of
label(v) at time t0 � 1. (After all, the only way for the inequality label(w) �

label(v)+ weight(e) to become false is when label(v) is decreased. A decrease of

of label(w) would surely leave this inequality valid.) But if label(v) has been
decreased at time t0 � 1, then v must have been added to S at t0 � 1 and
we have v 2 S at t0.

Since v 2 S at t0 and the ASM terminates only when S is empty, there must be a
time t1 > t0 such that v is selected in the scanning step. Because in the following
sequence of relabeling steps all edges leaving v are eventually dealt with, there
is a time t2 > t1 such that the edge e = hv; wi is selected at this time by the
relabeling rule. Since then the update

label(w) := glb( label(w); label(v) + weight(e) )

is executed, we have label(w) = glb( label(w); label(v)+weight(e) ) at time
t2 + 1, contradicting (�). 2

5.2 Moore's Algorithm

The algorithm presented in subsection 5.1 above still contains non-determinism
since it makes use of the choose construct. We eliminate this non-determinism
in this subsection. In order to do this we have to decide how the sets S and E
should be represented. We implement S as a queue, while E is implemented as a
stack. Then, we arrive at the following implementation shown in Figure 3, where
we make use of some functions working on queues and stacks that are speci�ed
below:

{ Queue : T ! Queue(T )

This function is a constructor of the polymorphic data type Queue. If v is a
node, then Queue(v) is a queue containing precisely the node v.

{ empty : Queue(T )! bool

The call empty(Q) evaluates to true i� the queue Q is empty.

{ head : Queue(T )! T

If Q is not empty, then head(Q) returns the �rst element of Q.

{ 2: T � Queue(T )! bool

The call t 2 Q yields true i� t is an element of the queue Q.

{ append : Queue(T )� T

The call append(Q; t) appends the element t at the end of the queue Q.
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Furthermore, we use a bit of Prolog notation in Figure 3: [] denotes the empty
stack, while [X|Xs] denotes a non-empty stack with top element X and tail Xs,
i.e. we have that Xs is the result of removing X from the stack [X|Xs].

It should be noted that the choose construct used with shortest path2 is
replaced by appropriately strengthening the guards of the corresponding tran-
sition rules in shortest path3. Note further that the ASM shortest path3

terminates when the queue S is empty and mode = scan since then no rule is
applicable.

asm shortest path3( label : Nodes! M ; source : Nodes )

initialization
8x 2 Nodesnfsourceg : label(x) :=1,
label(source) := 0,
S := Queue(source),
mode := scan.

transition scanning
if mode = scan

& : empty(S)
then E := adjacent(head(S))

S := S � fhead(S)g
mode := relabel

transition relabeling
if mode = relabel

& E = [ hv; wi j E 0 ]
then E := E 0

if label(w) 6� label(v) + weight(e)
then label(w) := glb( label(w); label(v) + weight(e) )

if w 62 S
then S := append(S; w)

transition back to scanning
if mode = relabel

& E = []
then mode := scan.

Figure 3: The ASM shortest path3.

When comparing the ASMs shortest path2 and shortest path3, there
is a subtle di�erence to note: The update S := append(S; w) in the ASM
shortest path3 is guarded by the condition w 62 S, while the corresponding
update S := S [ fwg in shortest path2 is not subject to a similar condition.
This guard takes care of maintaining the invariant that the queue S contains
every element at most once. This invariant is necessary since, without this pre-
caution, a queue represents a multiset rather than a set. We skip the (standard)
proof that this queue implementation is correct. (The sceptical reader may look
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at the more elaborate proof given for the implementation of the slightly more
complex queue concept in the Transputer using ASMs in [B�orger and Durdanovic
1996].)

6 Instantiation of the ASM shortest path3

Up to now the ASMs we have presented are generic since they all contain the
abstract data type M . In this section we instantiate M with concrete data types
and thereby solve both the shortest path problem and the constrained shortest
path problem.

6.1 Solving the Shortest Path Problem

To solve the shortest path problem, we instantiate W with N and M with the set
N [1. Then � is interpreted as the usual ordering < on natural numbers and
glb(x; y) is interpreted as the minimum min(x; y). Finally, x + y is interpreted
as the sum of x and y if x is a natural number and as 1 if x equals 1. It is
trivial to verify that the conditions postulated in Section 3 are satis�ed by this
instantiation. Using this instantiation we obviously have

min weight(v) = sp(v),

showing that the ASM shortest path3 solves the shortest path problem.

6.2 Solving the Constrained Shortest Path Problem

To solve the constrained shortest path problem, we instantiate W with N�N and
M with the the function space SF. The ordering � is de�ned pointwise, i.e.

f � g
def
() 8t 2 N : f(t) � g(t)

and f � g
def
() f � g ^ f 6= g. The greatest lower bound glb(f1; f2) is de�ned

as the pointwise minimum of f1 and f2 and addition has already been de�ned
in Section 2.

Using these de�nitions it is straightforward to verify that the speci�cation of
the abstract data type M given in Section 3 is satis�ed. The only requirement
that is not trivial to check is the well{foundedness of �. For technical reasons,
we defer the proof of this property to the next subsection.

It is easy to see that, with the instantiations given above, we have

min weight(v) = glb
�
weight(p) : p 2 Paths(source; v)

	
.

Therefore, Theorem 9 shows that the ASM shortest path3 solves the con-
strained shortest path problem.

6.3 Representation of SF

In order to make the instantiation M 7! SF work, we have to implement the
operations �, glb, and + for functions from SF. To this end, we have to choose
a representation for the set SF.
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De�nition 16 (SF
0

) The set of representations SF0 is de�ned as the set of all
lists of pairs of natural numbers of the form�

hx1; y1i; � � � ; hxn; yni
�

satisfying the following representation invariant:

1. xi; yi 2 N for all i = 1; � � � ; n,
2. xi < xi+1 for all i = 1; � � � ; n� 1,
3. yi > yi+1 for all i = 1; � � � ; n� 1.

De�nition 17 (
��
f
��
) If f =

�
hx1; y1i; � � � ; hxn; yni

�
2 SF

0, then the function��
f
��
2 SF represented by f is de�ned as follows:

��
f
��
(t) :=

8>>>><
>>>>:

1 if t < x1;
y1 if x1 � t < x2;
...
yn�1 if xn�1 � t < xn;
yn if xn � t: 2

Equivalently,
��
f
��
could be de�ned via:��

f
��
(t) = min

�
fyi : xi � t; i = 1; � � � ; ng

�
.

We have
��
[]
��
=1 and

��
[h0; 0i]

��
= 0.

Lemma 18 � is well{founded.

Proof: To every f =
�
hx1; y1i; � � � ; hxn; yni

�
2 SF we assign an ordinal o(f):

o(f) := ! � (x1 + yn) +
n�1P
i=1

(xi+1 � xi) � yi.

We show that f 0 � f implies o(f 0) < o(f). Assume f = [hx1; y1i; � � � ; hxn; yni]
and f 0 = [hx01; y

0

1i; � � � ; hx
0

n0 ; y0n0i]. Then x01 � x1 and y0
n0 � yn. If either of these

inequations is strict, then obviously o(f 0) < o(f). Assume therefore x1 = x01 and
yn = y0

n0 . We have
n�1P
i=1

(xi+1 � xi) � yi =
xnR
x1

f(t) dt

and a similar equation holds for f 0. As we have assumed x1 = x01 and yn = y0
n0 ,

the assumption f 0 � f implies
xnR
x1

f 0(t) dt <
xnR
x1

f(t) dt

and, since x0
n0 � xn, we conclude o(f

0) < o(f). 2

We need to de�ne an auxiliary function merge in order to compute the great-
est lower bound of two functions from SF.

De�nition 19 For f1; f2 2 SF
0, merge(f1; f2) is de�ned recursively:

1. merge([]; f) = f .

2. merge(f; []) = f .
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3. If x1 � x2, then merge
��
hx1; y1i j f1

�
;
�
hx2; y2i j f2

��
equals�

hx1; y1i j merge
�
f1;

�
hx2; y2i j f2

�� �
4. If x1 > x2, then merge

��
hx1; y1i j f1

�
;
�
hx2; y2i j f2

��
equals

=
�
hx2; y2i j merge

��
hx1; y1i j f1

�
; f2

� �
2

Note that merge(f1; f2) is, in general, not an element of SF0 since the repre-
sentation invariant is not maintained. For example, we have

merge
�
[h1; 1i]; [h2; 2i]

�
=
�
h1; 1i; h2; 2i

�
We need a function contract that reestablishes the representation invariant.

De�nition 20 (contract) The value contract(f) is de�ned by induction on
the length of the list f :

1. contract([]) = [].

2. contract
�
[hx; yi]

�
= [hx; yi].

3. If x1 = x2, then

contract
��
hx1; y1i; hx2; y2i j f

��
= contract

��
hx1;min(y1; y2)i j f

��
.

4. If x1 6= x2 and y1 > y2, then

contract
��
hx1; y1i; hx2; y2i j f

��
=
�
hx1; y1i j contract

��
hx2; y2i j f

�� �
.

5. If x1 6= x2 and y1 � y2, then

contract
��
hx1; y1i; hx2; y2i j f

��
= contract

��
hx1; y1i j f

��
. 2

De�nition 21 (glb0) For f1; f2 2 SF
0 we de�ne

glb0(f1; f2) = contract
�
merge(f1; f2)

�
2

The next lemma shows that the above de�nition of glb0 computes the greatest
lower bound of the set SF.

Lemma 22 If f1; f2 2 SF
0, then glb0(f1; f2) 2 SF

0. Furthermore,��
glb0(f1; f2)

��
= glb

���
f1
��
;
��
f2
���
. 2

Proof: This lemma can be shown by a simple expansion of the de�nitions. 2

Implementing the relation � is now straightforward:

De�nition 23 (�) f1 � f2
def
() glb0(f1; f2) = f1. 2

We proceed to de�ne addition for SF0.

De�nition 24 (+0

)�
hx1; y1i; � � � ; hxn; yni

�
+0 hx; yi :=

�
hx1 +x; y1+ yi; � � � ; hxn+x; yn+ yi

�
. 2

Lemma 25 If f 2 SF0 and hx; yi 2 N�N , then f+0 hx; yi 2 SF0. Furthermore,��
f +0 hx; yi

��
=
��
f
��
+ hx; yi. 2

Proof: This lemma can be shown by a simple expansion of the de�nitions. 2

Concluding Remark: At this point the implementation of SF is complete and
we have developed an algorithm to solve the constrained shortest path problem.
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Based on the precise semantical ASM description given in [Wallace 1995] for the
semantics of C++ we can transform the ASM obtained here to a C++-program and
further optimize this program in the spirit of [Lauther 1996]. In this way we can
prove the correctness of a highly sophisticated program that solves a non-trivial
graph theoretical problem.
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