
Recursive Abstract State Machines

Yuri Gurevich1

(University of Michigan, USA
gurevich@umich.edu)

Marc Spielmann2

(RWTH Aachen, Germany
masp@informatik.rwth-aachen.de)

Abstract: According to the ASM thesis, any algorithm is essentially a Gurevich ab-
stract state machine. The only objection to this thesis, at least in its sequential version,
has been that ASMs do not capture recursion properly. To this end, we suggest recursive
ASMs.

Key Words: abstract state machines, recursion, distributed computations, concur-
rency

Category: F.1.1, F.1.2

1 Introduction

The abstract state machine (formerly evolving algebra) thesis [Gurevich 91] as-
serts that abstract state machines (ASMs, for brevity) express algorithms on
their natural level of abstraction in a direct and coding-free manner. The the-
sis is supported by a wide spectrum of applications [B�orger 95], [Castillo 96],
[Huggins 96]. However, some people have objected that ASMs are iterative in
their nature, whereas many algorithms (e.g., Divide and Conquer) are naturally
recursive. In many cases recursion is concise, elegant, and inherent to the al-
gorithm. The usual stack implementation of recursion is iterative, but making
the stack explicit lowers the abstraction level. There seems to be an inherent
contradiction between

� the ASM idea of explicit and comprehensive states, and
� recursion with its hiding of the stack.

But let us consider recursion a little more closely. Suppose that an algorithm A
calls itself. Strictly speaking it does not call itself; rather it creates a clone of
itself which becomes a sort of a slave of the original. This gives us the idea of
treating recursion as an implicitly distributed computation. Slave agents come
and go, and the master/slave hierarchy serves as the stack.

Building upon this idea, we suggest a de�nition of recursive ASMs. The
implicit use of distributed computing has an important side bene�t: it leads
naturally to concurrent recursion. In addition, we reduce recursive ASMs to
distributed ASMs as described in the Lipari guide [Gurevich 95]. If desired, one
can view recursive notation as mere abbreviation.

1 Partially supported by NSF grant CCR 95-04375 and ONR grant N00014-94-1-1182.
2 Visiting scholar at the University of Michigan, partially supported by DAAD and
The University of Michigan.

Journal of Universal Computer Science, vol. 3, no. 4 (1997), 233-246
submitted: 20/12/96, accepted: 21/4/97, appeared: 28/4/97 Springer Pub. Co.

The paper is organized as follows. In [Section 2], we introduce a restricted
model of recursive ASMs, where the slave agents do not change global functions
and thus do not interfere with each other. The syntax of ASM programs is ex-
tended with a rec construct allowing recursive de�nitions like those in common
programming languages. We then describe a translation of programs with recur-
sion into distributed programs without recursion. In [Section 3], we generalize
the model by allowing slave agents to change global functions. As a result, the
model becomes non-deterministic. Finally, in [Section 4] we restrict the general
model of [Section 3] so that global functions can be changed but determinism is
ensured by sequential execution of recursive calls.

Conventions

The paper is based on the Lipari guide [Gurevich 95] and uses some addi-
tional conventions. The executor of a one-agent ASM starts in an initial state
with Mode = Initial and halts when Mode = Final. A distributed ASM of the
kind we use in this paper has a module Main, executed by the master agent,
and additional modules F1; : : : ; Fn, executed by slave agents. In the case of slave
agents, the Mode function is actually a unary function Mode(Me). (The distinc-
tion between master and slave agents is mostly didactic.) As usual, the semantics
of distributed ASMs is given by the class of possible runs [Gurevich 95]. Notice
that in general this semantics is non-deterministic; di�erent �nite runs may lead
to di�erent �nal states.

We say that an atomic subrule of a rule R is enabled in a state S, if it
contributes to the a priori update set of R at S (which may be wedded as the
�nal update set of R at S is computed.) In other words, an atomic rule is enabled
at S, if all the guards leading to it are true at S. Sometimes we abbreviate f(x)
to x:f for clarity.

2 Concurrent Recursion without Interference

We start with a restricted model of recursion where di�erent recursive calls do
not interfere with each other although their execution may be concurrent. In
applications of distributed ASMs, one usually restricts the collection of admis-
sible (or regular) runs. Because of the non-interference of recursive calls here, in
the distributed presentation of a recursive program, we can leave the moves of
di�erent slave agents incomparable, so that the distributed ASM has only one
regular run and is deterministic in that sense.

2.1 Syntax

De�nition 2.1 (Recursive program). A recursive (ASM) program � con-
sists of

1. a one-agent (ASM) program �main, and
2. a sequence �rec of recursive de�nitions of the form

rec Fi(Argi1; : : : ; Argiki)
�i

endrec

234 Gurevich Y., Spielmann M.: Recursive Abstract State Machines

Here �i is a one-agent program and each Fi (respectively, Argij) is a ki-ary
(respectively, unary) function symbol which is an external function symbol
in � (respectively, �i). Formally speaking, any function f updated in �i

as well as any Argij has Me as its �rst/only argument, so that every such
function is local. (We will relax this restriction in [Section 3].) For readability
Me may be omitted.

Optionally, one may indicate the type of any Argij or the type of Fi. A type is
nothing but a universe [Gurevich 95]. All types in �rec should be universes of
�main. Notice that type errors can be checked by additional guards. 2

The de�nition easily generalizes to the case where, instead of �main, one has
a collection of such one-agent programs. However, in this paper we stick to the
single-agent program �main.

Example 2.2 (ListMax). The following recursive program � = (�main; �rec)
determines the maximum value in a list L of numbers using the divide and con-
quer technique. �main is

if Mode = Initial then
Output := L:ListMax
Mode := Final

endif

where L is a nullary function symbol of type list, and �rec is the recursive de�-
nition

rec ListMax(List : list) : int
if List:Length = 1 then

Return := List:Head
else

Return := Max(List:FirstHalf:ListMax;List:SecondHalf:ListMax)
endif

Mode := Final
endrec

The functions List;Return and Mode in the body �ListMax of the recursive de�-
nition, are local. In other words, they have a hidden argument Me.

Starting at an initial state S0, the master agent computes the next state.
This involves computing the recursively de�ned L:ListMax. To this end, it cre-
ates a slave agent a, passes to a the task of computing L:ListMax, and then
remains idle till a hands over the result. When a starts working on �ListMax,
it �nds Me:Mode = Initial, Me:Return = undef and Me:List = L. Essentially, a
acts on �ListMax like the master agent on �main: if Me:List:Length 6= 1, then a
creates two new slave agents b and c computing Me:List:FirstHalf:ListMax and
Me:List:SecondHalf:ListMax, respectively. When eventually Me:Mode = Final,
Me:Return contains maxfx j x 2 Lg and a stops working. In general, we use the
unary function Me:Return to pass the result of a slave agent to its creator. Thus
in our example, after receiving a's result, the master agent moves to a �nal state
by updating Output with a's result and Mode with Final, and then it stops.

Syntactically the program looks quite similar to a standard implementation
in a common imperative programming language like PASCAL or C. However,

235Gurevich Y., Spielmann M.: Recursive Abstract State Machines

its informal semantics suggests a parallel implementation: associate with each
agent a task executable on a multi-processor system. Before a task handles
the else branch of �ListMax, it has to create two new tasks which compute
List:FirstHalf:ListMax and List:SecondHalf:ListMax. One or both of the new
tasks may be executed on another processor in parallel.

On the other hand, using many tasks may not be intended. One may wish
to enforce sequential execution. A slight modi�cation of �ListMax ensures that
in every state a slave agent will �nd at most one enabled recursive call and thus
creates at most one new slave agent. Since every agent waits for a reply of its
active slave, the agents execute one after another.

rec SeqListMax(List : list) : int
if Mode = Initial then

if List:Length = 1 then

Return := List:Head
Mode := Final

else

FirstHalfMax := List:FirstHalf:SeqListMax
Mode := Sequential

endif

endif

if Mode = Sequential then
Return := Max(FirstHalfMax;List:SecondHalf:ListMax)
Mode := Final

endif

endrec 2

Example 2.3 (Savitch's Reachability). To prove Pspace = NPspace, Wal-
ter Savitch has suggested the following recursive algorithm for the REACHA-
BILITY decision problem, which works in space log2(GraphSize). Some famil-
iarity with Savitch's solution [Savitch 70] would be hepful for the reader. (We as-
sume that the input is an ordered graph with constants FirstNode and LastNode,
and a unary node-successor function Succ):

if Mode = Initial then
Output := Reach(StartNode;GoalNode; log(GraphSize))
Mode := Final

endif

rec Reach(From;To : node; l : int) : bool
if Mode = Initial then

if l = 0 then

if From = To or Edge(From;To) then

Return := true
else

Return := false
endif

Mode := Final
else

Thru := FirstNode

236 Gurevich Y., Spielmann M.: Recursive Abstract State Machines

Mode := CheckingFromThru
endif

endif

if Mode = CheckingFromThru then

FromThru := Reach(From;Thru; l � 1)
Mode := CheckingThruTo

endif

if Mode = CheckingThruTo then

ThruTo := Reach(Thru;To; l � 1)
Mode := CheckingThru

endif

if Mode = CheckingThru then

if FromThru and ThruTo then

Return := true
Mode := Final

elseif Thru 6= LastNode then

Thru := Succ(Thru)
Mode := CheckingFromThru

else

Return := false
Mode := Final

endif

endif

endrec

If we remove the second and third rules in �Reach and instead add the following
rule, a parallel execution is possible (which may, however, blow up the space
bound).

if Mode = CheckingFromThru then

FromThru := Reach(From;Thru; l � 1)
ThruTo := Reach(Thru;To; l � 1)
Mode := CheckingThru

endif 2

2.2 Translation to distributed ASMs

This subsection addresses those readers who are interested in a formal de�nition
of the semantics of recursive programs.

There are many ways to formalize the intuition behind De�nition 2.1. For
example, one can de�ne a one-agent interpreter for ASMs which treats F1; : : : ; Fn
in �main as external functions. Whenever such an external function Fi has to
be computed, the interpreter suspends its work and starts evaluating �i with
Argi1; : : : ; Argiki initialized properly. When eventually Mode = Final for �i,
the interpreter reactivates �main and uses Return as the external value. Notice
that suspension and reactivation are the main tasks of implementing recursion
by iteration. Typically this is realized with a stack. The one-agent interpreter
sketched above can use a stack to keep track of the calling order.

237Gurevich Y., Spielmann M.: Recursive Abstract State Machines

Here, we describe a translation of a recursive program � into a distributed
program � 0 and in this way de�ne the semantics of � by the runs of � 0. Sus-
pension and reactivation is realized with a special nullary function RecMode.
The master/slave hierarchy serves as the stack. (A more general approach would
be to add a construct for suspending and reactivating agents to the formalism
of distributed ASMs. The introduction of such a construct may be addressed
elsewhere.) We concentrate on a useful subclass of recursive programs, where

{ no recursive call occurs in a guard or inside a vary rule, and
{ there is no nesting of external functions (with recursively de�ned functions
counted among external functions).

A translation of recursive programs in the sense of De�nition 2.1 is possible but
becomes tedious in its full generality. All recursive programs in this paper satisfy
the above conditions. In fact, we made Example 2.3 a little longer than necessary
in order to comply with the �rst condition. For instance, instead of using boolean
variables FromThru and ThruTo in the last rule of �Reach one might directly
call Reach(From;Thru; l � 1) and Reach(Thru;To; l � 1), respectively.

The main idea of the translation is to divide the evaluation of �main into two
phases:

A. Create slave agents (suspension): At a given state S, create a separate
agent for every occurrence of every term Fi(s) in an atomic rule u in �main

such that u should �re at S. These slave agents will compute the recursively
de�ned values needed to �re �main at S.

B. Wait, and then execute �main (reactivation):Wait until all slave agents
�nish their work, and then execute one step of �main with the results of the
slaves substituted for the corresponding recursive calls.

A slave agent a starts executing the module Mod(a) right after its creation.
Notice that a slave agent may or may not halt. If at least one slave agent fails
to halt, � \hangs"; it will not complete the current step.

The translation of � is given in two stages: I. we translate �main into a
module Main executed by the master agent, and II. we translate the body �i

of every recursive de�nition in �rec into a module Fi executed by some slave
agents. Thus � 0 consists of module Main and modules Fi.

I. From �main to Main:

A. Create slave agents: Enumerate all occurrences of subterms Fi(s), i.e.,
recursive calls, in �main arbitrarily. Suppose there are m recursive calls.
If the jth recursive call has the form Fi(s1; : : : ; ski), de�ne the rule Rj

as

if gj then

extend Agents with a
Mod(a) := Fi
Argi1(a) := s1

...
Argiki(a) := ski
Mode(a) := Initial

238 Gurevich Y., Spielmann M.: Recursive Abstract State Machines

RecMode(a) := CreatingSlaveAgents
Child(Me; j) := a

endextend

endif

where the guard gj is true in a given state S i� the atomic rule with the

jth recursive call is enabled in S. We will give an inductive construction
of gj in Proposition 2.4 below. The �rst part of the module Main is the
rule

if RecMode = CreatingSlaveAgents then

R1

...
Rm

RecMode :=WaitingThenExecuting
endif

where RecMode = CreatingSlaveAgents is assumed to be valid in the ini-
tial state of � 0.

B. Wait, and then execute �main: The second part of Main is the rule

if RecMode =WaitingThenExecuting and

andmj=1

�
Child(Me; j) = undef or Mode(Child(Me; j)) = Final

�

then

� 0

main

Child(Me; 1) := undef
...

Child(Me;m) := undef
RecMode := CreatingSlaveAgents

endif

where � 0

main
is obtained from �main by substituting for j = 1; : : : ;m the

jth recursive call with Return(Child(Me; j)). Note that Child(Me; j) =
undef happens if the jth recursive call produces no slave agent.

II. From �i to Fi: The translation of �i is similar to that of �main, except
that the following functions in gj ; s1; : : : ; ski (the guard and the argument
terms in phase A) and in � 0

i (the main part of phase B) now are local, i.e.,
get the additional initial argument Me:
� Mode
� RecMode
� every dynamic function (with respect to �i).

This modi�cation ensures that every slave agent uses its private dynamic
functions only and thus avoids any side-e�ects. Call the resulting module Fi.

It remains to exhibit the guards g1; : : : ; gm. For the time being, let R(x)
denote a rule R with free variables in x, and consider free variables as nullary
function symbols. Thus, the vocabulary of R(x) includes some of the variables
in x.

239Gurevich Y., Spielmann M.: Recursive Abstract State Machines

Proposition 2.4 Let R(x) be a rule and o an occurrence of an atomic rule in
R(x) but not inside any import, choose or vary rule. There is a guard g(x)
(constructed in the proof) such that for every state S of R(x) the following are
equivalent:

1. o is enabled in S.
2. S j= g(x).

Proof. Induction on the construction of R(x): The cases where R(x) is atomic
or a block (sequence of rules) are straightforward. Assume R(x) = if g0(x)
then R0(x) endif, where o occurs in R0(x). (An if-then-else rule can easily be
replaced by a block of two if-then rules; as guards choose the original guard and
its negation.) By induction hypothesis there is a g0(x) satisfying the equivalence
with respect to R0(x). Thus let g(x) = g0(x) and g0(x). 2

To obtain the guards g1; : : : ; gm, distinguish two cases: 1. Suppose �main is
a rule where no recursive call occurs inside an import or choose rule. (Recall
our general assumption in this subsection that no recursive call occurs inside
a vary rule either.) Since �main has no free variables, Proposition 2.4 gives us
the desired closed guard gj , if we choose o to be the atomic rule with the jth

recursive call.
2. Suppose �main has some recursive calls inside some import or choose

rules. We can assume that �main has the form

import x1; : : : ; xp
choose y1 2 U1; : : : ; yq 2 Uq

��

main
(x1; : : : ; xp; y1; : : : ; yq)

endchoose

endimport

where every remaining import and choose in ��

main
(x; y) occurs in a vary rule,

and the variables in x; y are disjoint and do not occur bounded in ��

main
(x; y).

(This special form can be obtained, e.g., by the First Normal Form procedure
of [Dexter, Doyle, Gurevich 97] extended by a second round to push out choose
rules in the same way as import rules in the �rst round. Here vary rules are
considered as black boxes whose interior is ignored.) In this case Proposition
2.4 yields for the jth recursive call a guard gj(x; y) satisfying the equivalence
with respect to ��

main
(x; y). With these guards we translate ��

main
(x; y) into the

module Main� consisting of two rules, say, R�

A(x; y) for phase A and R�

B(x; y)
for phase B. As the actual module Main we then take

import x

choose y 2 U
R��

A (x; y)
R�

B(x
0; y0)

endchoose

endimport

where x0; y0 are new nullary function symbols and the rule R��

A (x; y) is identical
to R�

A(x; y) except that after the basic rule RecMode := WaitingThenExecuting
we add basic rules x0 := x and y0 := y. (x0; y0 become local in case of translating
�i, i.e., are unary function symbols with argument Me.)

240 Gurevich Y., Spielmann M.: Recursive Abstract State Machines

Remark 2.5 It is not literally true that slave agents cause no side e�ects. For
example, a slave may leave imported elements. However, these elements will be
inaccessible later on. To all practical purposes, there will be no side e�ects. 2

Example 2.6 (Translation of ListMax). A translation of � in Example 2.2
is:

Main :
if RecMode = CreatingSlaveAgents then

extend Agents with a
a:Mod := ListMax
a:List := L
a:Mode := Initial
a:RecMode := CreatingSlaveAgents
Child(Me; 1) := a

endextend

RecMode := WaitingThenExecuting
endif

if RecMode = WaitingThenExecuting and�
Child(Me; 1) = undef or Child(Me; 1):Mode = Final

�

then

if Mode = Initial then
Output := Child(Me; 1):Return
Mode := Final

endif

Child(Me; 1) := undef
RecMode := CreatingSlaveAgents

endif

ListMax :
if Me:RecMode = CreatingSlaveAgents then

if Me:List:Length 6= 1 then

extend Agents with a; b
a:Mod := ListMax
a:List := Me:List:FirstHalf
a:Mode := Initial
a:RecMode := CreatingSlaveAgents
Child(Me; 1) := a
b:Mod := ListMax
b:List := Me:List:SecondHalf
b:Mode := Initial
b:RecMode := CreatingSlaveAgents
Child(Me; 2) := b

endextend

endif

Me:RecMode := WaitingThenExecuting
endif

if Me:RecMode = WaitingThenExecuting and�
Child(Me; 1) = undef or Child(Me; 1):Mode = Final

�
and

241Gurevich Y., Spielmann M.: Recursive Abstract State Machines

�
Child(Me; 2) = undef or Child(Me; 2):Mode = Final

�

then

if Me:List:Length = 1 then

Me:Return := Me:List:Head
else

Me:Return := Max(Child(Me; 1):Return;Child(Me; 2):Return)
endif

Me:Mode := Final
Child(Me; 1) := undef
Child(Me; 2) := undef
Me:RecMode := CreatingSlaveAgents

endif 2

Note that in this section we used the powerful tool of distributed ASMs to
model a restricted form of recursion. All agents created live in their own worlds,
not sharing any memory or competing for any resource, e.g., updating a common
location. As a result every run of � 0, whether interleaved or truly concurrent,
produces the same result. In general a sequential execution, in which one agent
starts working after another �nishes, will be more space e�cient than a parallel
one.

In the next section we will relax our restriction that all functions in a recursive
de�nition are local. Specially designated global functions may be shared by the
master and some slave agents, and be updated by all of them. Consequently the
semantics of recursive programs becomes non-deterministic.

3 Concurrent Recursion with Interference

There are problems which naturally admit a recursive solution, but also involve
concurrency and competition. It makes sense to allow slave agents to vie with
one another for globally accessible functions, so that they may get in each other's
way.

Example 3.1 (Parallel ListMax with bounded number of processors).
Recall our simple divide and conquer example ListMax (Example 2.2). If we
consider the job of every agent as a task executable on a multi-processor system,
the number of processors depends on the length of List. Now, if we lower the
level of abstraction and take into account that a multi-processor system only
has, say, 42 processors, the following recursive program describes the new view.
(In the modi�ed recursive de�nition of ListMax the key word global declares
the nullary function Processors to be shared by all agents. Furthermore, assume
that Processors equals 42 in the initial state.)

if Mode = Initial then
Output := L:ListMax
Mode := Final

endif

rec ListMax(List : list) : int
global Processors : int

if List:Length = 1 then

242 Gurevich Y., Spielmann M.: Recursive Abstract State Machines

Return := List:Head
Mode := Final

elseif Processors � 1 then

Processors := Processors� 1
Mode := Parallel

else

FirstHalfMax := List:FirstHalf:ListMax
Mode := Sequential

endif

if Mode = Parallel then
Return := Max(List:FirstHalf:ListMax;List:LastHalf:ListMax)
Processors := Processors+ 1
Mode := Final

endif

if Mode = Sequential then
Return := Max(FirstHalfMax;List:LastHalf:ListMax)
Mode := Final

endif

endrec 2

A generalization of recursive programs in [Section 2] to recursive programs
with global functions is easy. Alter the second point in De�nition 2.1 as follows:

2. a sequence �rec of recursive de�nitions of the form

rec Fi(Argi1; : : : ; Argiki)
global fi1; : : : ; fili

�i

endrec

Here fij is an arbitrary function symbol in � which does not have Me as its
�rst argument, : : : and the rest is as before.

The functions fi1; : : : ; fili are intended to be global in �i in the sense that the
interpretation of the symbols fi1; : : : ; fili in �i is identical to that in �main. A
slight modi�cation of our translation into distributed programs reects the new
situation:

II. From �i to Fi: The translation of �i is similar to that of �main, except
that the following functions in gj ; s1; : : : ; ski and in � 0

i , which are di�erent
from any fi1; : : : ; fili , now are local, : : : and the rest is as before.

Note that even if a global function f is static in �i, f is still not local,
as there may be other agents which update f . We do not worry about the
distinction between global and local functions when f is static with respect to
� = (�main; �rec). Another example, which is purely recursive and also enjoys
competition, is the task of �nding the shortest path between two nodes in an
in�nite graph.

Example 3.2 (Shortest-Path). Consider the following discrete optimization
problem: Given an in�nite connected graph (e.g., the computation tree of a

243Gurevich Y., Spielmann M.: Recursive Abstract State Machines

PROLOG program) and nodes Start and Goal, �nd a shortest path from Start
to Goal. Of course, an imperative program implementing breadth-�rst search or
iterative deepening will �nd a shortest path, but let us sketch a parallel solution.

For simplicity assume that each node Node has exactly four neighbors, namely
Node:North, Node:East, Node:South and Node:West. The idea is to call a slave
agent with some Node and the cost of Node, that is, the length of the path
from Start to Node. The slave agent checks whether the cost is still less than
the length of the current best solution found by some competing slave agent. If
so, it searches recursively in all four directions, until a better solution is found.
The cost of this solution then is made public by storing it into a global nullary
function BestSolution. Otherwise, the slave agent rejects Node. For brevity, we
do not incorporate a mechanism (for instance a ClosedNodesList) preventing
agents from examining nodes several times. The algorithm can be formalized as
a recursive program with the global function BestSolution, which is assumed to
be initialized with 1:

if Mode = Initial then
OutputPath := ShortestPath(Start; 0)
OutputCost := BestSolution
Mode := Final

endif

rec ShortestPath(Node : node;Cost : int) : path
global BestSolution : int

if Mode = Initial and BestSolution � Cost then

Return := dump
Mode := Final

endif

if Mode = Initial and BestSolution > Cost then

if Node = Goal then
BestSolution := Cost
Return := nil
Mode := Final

else

North:Child := ShortestPath(Node:North;Cost+ 1)
East:Child := ShortestPath(Node:East;Cost+ 1)
South:Child := ShortestPath(Node:South;Cost+ 1)
West:Child := ShortestPath(Node:West;Cost+ 1)
Mode := SelectBestChild

endif

endif

if Mode = SelectBestChild then

if 9x 2 Direction : x:Child:Length+Cost+1 = BestSolution then

choose x 2 Direction
satisfying x:Child:Length+ Cost+ 1 = BestSolution

Return := Cons(Node; x:Child)
endchoose

else

244 Gurevich Y., Spielmann M.: Recursive Abstract State Machines

Return := dump
endif

Mode := Final
endif

endrec 2

There are many recursive problems which suggest a sequential execution|
and thus do not need concurrency or competition|but which naturally gain from
the use of global functions, e.g., global output channels. This kind of sequential
recursion using global functions is the topic of the subsequent section.

4 Sequential Recursion

Consider a recursive program with global functions where it is guaranteed (by
the programmer) that at each state of the computation at most one recursive
call takes place. In other words, at each state, at most one of the existing slave
agents a is working (i.e., neither a's mode is Final nor a is waiting for one of
its slave agents to �nish). In this case a deterministic, sequential evaluation is
ensured. Only one agent works, whereas all other agents wait in a hierarchical
dependency.

Example 4.1 (The Towers of Hanoi). The well-known Towers of Hanoi
problem [Lucas 96] is purely sequential: our task is to instruct the player how
to move a pile of disks of decreasing size from one peg to another using at most
3 pegs in such a way that at no point a larger disk rests on a smaller one. The
player can only move the top disk of one pile to another in a single step. The
following recursive program solves the Towers of Hanoi problem. We use the
global function Output to pass instructions to the player. (The nullary function
Dummy eventually gets the value undef; its only purpose is to call the recursively
de�ned function Towers.)

if Mode = Initial then
Dummy := Towers(Place1;Place2;Place3;PileHeight)
Mode := Final

endif

rec Towers(From;To;Use : place;High : int)
global Output : instructions

if Mode = Initial then
if High = 1 then

Output := MoveTopDisk(From;To)
Mode := Final

else

Dummy := Towers(From;Use;To;High� 1)
Mode := MoveBottomDisk

endif

endif

if Mode = MoveBottomDisk then

Output := MoveTopDisk(From;To)

245Gurevich Y., Spielmann M.: Recursive Abstract State Machines

Mode := MovePileBack
endif

if Mode = MovePileBack then

Dummy := Towers(Use;To;From;High� 1)
Mode := Final

endif

endrec 2

Because of the sequential character of execution, one can avoid having slave
agents change global functions: a recursive call can return a list of would-be
changes, such that the master can itself perform all the changes. For instance,
instead of outputting instructions in the last example, we compute a list of
instructions, and pass it to the player. Unfortunately the length of the list would
be exponential in the number of disks involved. Thus it makes sense to use a
global output channel.

The semantic property of sequentiality can easily be guaranteed by syntactic
restrictions on a recursive program � . For example, require in De�nition 2.1
that �main and each �i is a block of rules

if Mode = Modej then Rj endif

where the static nullary functions Modej have distinct values and each Rj con-
tains at most one recursive call.

As examples with this restricted syntax we refer to the Tower of Hanoi pro-
gram above and Savitch's Reachability algorithm (Example 2.3).

References

[B�orger 95] E. B�orger. Annotated bibliography on evolving algebras. In E. B�orger,
editor, Speci�cation and Validation Methods, pages 37{51. Oxford University
Press, 1995.

[Castillo 96] G. D. Castillo. WWW page Evolving Algebras Europe, http://www.uni-
paderborn.de/Informatik/eas.html, May 96.

[Dexter, Doyle, Gurevich 97] S. Dexter, P. Doyle, and Y. Gurevich. Gurevich abstract
state machines and sch�onhage storage modi�cation machines. Technical Report
CSE-TR-326-97, University of Michigan, 1997. Also in this volume.

[Gurevich 91] Y. Gurevich. Evolving Algebras: An attempt to discover semantics.
Bulletin of the EATCS, 43:264{284, 1991. A slightly revised version in
G. Rozenberg and A. Salomaa, editors, Current Trends in Theoretical Computer
Science, pages 266{292, World Scienti�c, 1993.

[Gurevich 95] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. B�orger, edi-
tor, Speci�cation and Validation Methods. Oxford University Press, 1995.

[Huggins 96] J. K. Huggins. WWWpage Abstract State Machines (Evolving Algebras),
http://www.eecs.umich.edu/ealgebras, September 1996.

[Lucas 96] E. Lucas. Recreations mathematiques, volume 3, pages 55{59. Gauthier-
Villars et �ls, Paris, 1891{1896. Reprinted by A. Blanchard, Paris, 1960.

[Savitch 70] W. J. Savitch. Relational between nondeterministic and deterministic
tape complexity. Journal of Computer and System Sciences, 4:177{192, 1970.

Acknowledgements. Thanks to the anonymous referees.

246 Gurevich Y., Spielmann M.: Recursive Abstract State Machines

