
Ten Years of Gurevich's Abstract State Machines.

Egon B�orger
(Universit�a di Pisa, Italy

boerger@di.unipi.it)

Abstract State Machines have come quite a way since they have been discov-
ered by Yuri Gurevich in an attempt to improve on Turing's thesis so that:

Every algorithm can be simulated in lock{step on its natural abstrac-
tion level by an ASM.

The �rst years after the de�nition of ASMs appeared in the literature (under
the name of dynamic or evolving algebras, see [Gurevich 1988]) were character-
ized by an impressive number of challenging experiments to test this bold thesis
through complex real-life case studies, ranging from semantics and implemen-
tation of full 
edged programming languages to speci�cation and veri�cation of
protocols and hardware designs. The �rst full de�nition and careful motivation
for the new notion appeared in 1991 in the Bulletin of the EATCS and was
completed four years later by a solid foundation and an extension to distributed
ASMs (see [Gurevich 1995]). The �rst international ASM workshop|held as
part of the IFIP 1994 World Computer Congress in Hamburg with an unexpect-
edly great number of participants|has marked the end of this rather successful
exploratory phase. The interested reader can �nd a detailed overview in the
ASM chapter of the congress proceedings (see [Pehrson and Simon 1994]) and
through the annotated bibliography which covers the ASM literature completely
up to the end of 1994 (see [B�orger 1995a]). In a relatively short time the ASM
approach to speci�cation and veri�cation of complex hw/sw systems has proved
its feasability for real-life problems and is now establishing its feasability to
applications under industrial constraints.

The 
ourishing ASM research is steadily growing as is documented in this
special J.UCS issue which is devoted entirely to ASMs and came into life through
a call for papers sent out last year. The great number of submissions which
passed the reviewing process forced us to split the special ASM issue into two
parts, one issued in April and one in May. The papers in this issue deal with
foundational questions, with questions from complexity theory, with the central
notion of re�nement and with machine support for reasoning about ASMs.

The paper on Recursive Abstract State Machines by Gurevich and Spielmann
presents an interesting use of distributed ASMs to interpret recursive calls as
creating slaves of the calling program. Thus the usual stack which is hidden by
the very concept of recursion and is used only for its implementation is re
ected
(although hidden) in the the master/slave hierarchy of the distributed ASM.
This construction allows one to view recursive notation as mere abbreviation and
thereby to combine the convenience of the use of recursion with the advantage
of the simple semantical foundation of the basic ASM notion which deliberately
has no built-in concept of sequencing, loop or recursion.

Two papers deal with complexity theoretic questions. The paper on The Lin-
ear Time Hierarchy by Blass and Gurevich suggests a new approach for attempts

Journal of Universal Computer Science, vol. 3, no. 4 (1997), 230-232
submitted: 20/12/96, accepted: 21/4/97, appeared: 28/4/97  Springer Pub. Co.



to prove lower bounds for natural linear time problems. It establishes a linear
time hierarchy theorem for a wide class of ASMs|namely sequential ASMs with-
out external functions|which includes RAMs with the usual arithmetic opera-
tions and Sch�onhage's storage modi�cation machines. The latter machines are
characterized in the paper on Gurevich Abstract State Machines and Sch�onhage
Storage Modi�cation Machines by Dexter, Doyle and Gurevich as unary sequen-
tial ASM without external functions (via ASMs lock-step equivalence). The ASM
approach to linear time hierarchy theorems mentioned above re
ects the expe-
rience of practical computing that a realistic complexity measure has to take
the underlying data structure into account; it brings hope for a new complexity
theory which may be capable of having more impact on real computing.

The next three papers are centered around the use of re�nement techniques
for ASMs. I have explained elsewhere (see [B�orger 1995]) why Gurevich's notion
of ASM o�ers the optimal combination of abstraction and re�nement features
which have been investigated for decades now. This is con�rmed once more by
the three papers in this volume which are devoted to re�nement techniques. The
paper The constrained shortest path problem: A case study in using ASMs by
Stroetmann de�nes an abstract (nondeterministic) algorithm for the constrained
shortest path problem and proves its correctness from a small number of natural
axioms; it then de�nes a sequence of natural re�nements which are proved to
be correct and lead to an e�cient C++ program. This illustrates very nicely the
advantage a programmer can take from developing programs through sequences
of stepwise re�ned (and possibly provably correct) ASMs leading to executable
code which is well documented and inspectable by mathematical means.

The paper Formalizing Database Recovery by Gurevich, Soparkar, Wallace
provides ASM de�nitions of a standard database recovery algorithm at various
levels of abstraction, related by stepwise re�nements which are proved to be
correct. This provides a method for systematic and controllable development of
validated database recovery algorithms.

The paper A structured presentation of a closure-based compilation method
for a scoping notion in logic by Kwon deals with an extension of ASM re�nement
techniques I have developed together with Dean Rosenzweig for the implementa-
tion of PROLOG onWarren's abstract prolog machine, known under the name of
WAM (see [B�orger and Rosenzweig 1994]). Kwon's paper provides a systematic
reconstruction of a compilation method for an extension of logic programming
where clauses can be parameterized by binding some of their variables. It starts
with de�ning an ASM interpreter for the programming language under consid-
eration and then re�nes it stepwise until an interpreter is reached that uses the
intended (closure) representation for clauses. The mathematical nature of the
ASM models permits the author to accompany the re�nement steps by proofs
of their correctness.

The paper Reasoning about Abstract State Machines: The WAM Case Study
by Schellhorn and Ahrendt reports on the success of a project investigating
whether computer checking of mathematical ASM correctness proofs is feasi-
ble. The authors were not afraid to accept a challenging case study for their
experiment, namely the by no means trivial correctness proof for a compilation
scheme of Prolog programs to WAM code (see [B�orger and Rosenzweig 1994])
which has been established by a) modeling PROLOG and the WAM by ASMs
and b) linking the two through a dozen of re�nement steps and proving each
re�nement step to be correct. The underlying interactive theorem prover uses

231Boerger E.: Ten Years of Gurevich’s Abstract State Machines



dynamic logic in which ASMs are formalized; this includes, as major novelty for
theorem provers, a translation of the rather general form of the commuting di-
agram proof technique used in [B�orger and Rosenzweig 1994] where it is crucial
that m abstract computation steps may be simulated by n re�ned computation
steps without any a priori given bound on either m or n.

We hope the reader will bene�t from the ASM papers appearing here and
will be interested int the second part of the special ASM issue (appearing here in
May) which will contain applications of ASMs to software engineering problems.

References

[B�orger 1995] E. B�orger:\Why Use Evolving Algebras for Hardware and Software Engi-
neering?", M.Bartosek, J.Staudek, J.Wiedermann (Eds), SOFSEM'95 (22nd
Seminar on Current Trends in Theory and Practice of Informatics); Springer
LNCS 1012 (1995), 236{271.

[B�orger 1995a] E. B�orger: \Annotated Bibliography on Evolving Algebras"; E. B�orger
(ed.), Speci�cation and Validation Methods, Oxford University Press (1995)
37-51.

[B�orger and Rosenzweig 1994] E. B�orger and D. Rosenzweig: \The WAM De�nition
and Compiler Correctness"; C.Beierle, L.Pl�ummer (Eds.), Logic Program-
ming: Formal Methods and Practical Applications, North-Holland, Series in
Computer Science and Arti�cial Intelligence (1994), 20-90

[Gurevich 1988] Y. Gurevich: "Logic and the challenge of computer science." E. B�orger
(ed.), Current Trends in Theoretical Computer Science. CS Press (1988) 1-57.

[Gurevich 1995] Y. Gurevich: \Evolving Algebras 1993: Lipari Guide"; E. B�orger (ed.),
Speci�cation and Validation Methods, Oxford University Press (1995) 9-36.

[Pehrson and Simon 1994] B. Pehrson and I. Simon (Eds.), IFIP 13th World Computer
Congress 1994, Volume I: Technology/Foundations, Stream C: Evolving Al-
gebras, Elsevier, Amsterdam (1994), 377-444.

[Schellhorn and Ahrendt 1997] G. Schellhorn and W. Ahrendt: \Reasoning about Ab-
stract State Machines: The WAM Case Study"; J.UCS (Journal for Universal
Computer Science) 3,4 (1997).

232 Boerger E.: Ten Years of Gurevich’s Abstract State Machines


