
Gurevich Abstract State Machines and Sch�onhage Storage

Modi�cation Machines

Scott Dexter

(University of Michigan, USA

sdexter@eecs.umich.edu)

Patrick Doyle

(Stanford University, USA

pdoyle@cs.stanford.edu)

Yuri Gurevich

(University of Michigan, USA

gurevich@eecs.umich.edu)

Abstract: We demonstrate that Sch�onhage storage modi�cation machines are equiv-
alent, in a strong sense, to unary abstract state machines. We also show that if one
extends the Sch�onhage model with a pairing function and removes the unary restric-
tion, then equivalence between the two machine models survives.

1 Introduction

Sch�onhage introduced storage modi�cation machines (Sch�onhage machines) in

[Sch�onhage 70] (and expanded them in [Sch�onhage 80]) as a general model of

computation. Although developed independently, Sch�onhage's model generalizes

an earlier model presented by Kolmogorov in [Kolmogorov 53] and explained

in [Kolmogorov and Uspenskii 63]. In both cases, the goal was to provide a

machine model exible enough to simulate the operation of arbitrary sequen-

tial algorithms \in real time." The notion of real-time simulation is de�ned in

[Sch�onhage 80].

In this paper we con�rm the thesis in [Blass and Gurevich 94] that Sch�onhage's

storage modi�cation machines are lock-step equivalent (de�ned below) to unary

(i.e. containing only nullary and unary functions) sequential Gurevich abstract

state machines (ASMs) without external functions. We then extend this result

to show that when we extend the Sch�onhage machine model with an additional

pairing function we may remove the unary restriction on the abstract state ma-

chine model without violating equivalence.

The notion of \real time" computing has changed since the time of Sch�onhage's

work. [Gurevich 91] de�nes the notion of \lock-step" as an alternative to Sch�onhage's

notion of real time. For the purpose of this paper, the rather limited de�nition

of lock-step simulation we present below su�ces.

Journal of Universal Computer Science, vol. 3, no. 4 (1997), 279-303
submitted: 20/12/96, accepted: 21/4/97, appeared: 28/4/97 Springer Pub. Co.

The kind of computing devices (algorithms, machines, etc.) we consider here

are deterministic devices which interact with the environment in the following

way: the input is given ahead of time, output may be emitted (to the environ-

ment) at any step, and there is no other interaction. We presume that for each

machine there is a well-de�ned notion of states, initial states, �nal states, and

sequence of states (such that state Ai+1 succeeds Ai). Furthermore, each state

contains a particular binary string, the input , and each state transition may or

may not yield a one-bit output. A run of machine A is a sequence hAi : i 2 �i

where � is a nonempty initial sequence of N. A0 is an initial state; if � is �nite

and i = max(�) and Ai is not a �nal state, then Ai is a hang state. No Aj , j < i,

is �nal.

De�nition. A machine B simulates a machine A in lock-step with lag factor

c if there exists a mapping � from the states of A to the states of B such that

for every run hAi : i 2 �i of A, there is a run B0; B1; : : : of B and a monotone

function J : �! N (from indices to indices) such that

1. J(0) = 0. Moreover A0 and B0 contain the same input.

2. BJ(i) = �(Ai) and if x is the input at Ai, then x is exactly the input at

BJ(i).

3. If an output � is emitted during the transition from Ai to Ai+1, then there

is a unique l 2 [J(i); J(i + 1)) such that an output is emitted during the

transition from Bl to Bl+1. Furthermore, this output is �. And if no output

is emitted during the transition from Ai to Ai+1 then no output is emitted

during any transition from Bl to Bl+1, l 2 [J(i); J(i+ 1)).

4. If 0 < i < max� then J(i)� J(i� 1) � c.

5. If � is �nite, i = max(�), and Ai is �nal, then BJ(i) is �nal.

Remark. One may want instead to require a function from states of B to

states of A, so that � is replaced by a multivalued function �1.

In the case where c = 1, we say that A strictly lock-step simulates B.

Two machine models A and B are lock-step equivalent if (i) for every machine

A of A there is a machine B of B which lock-step simulates A with �nite lag

factor, and (ii) for every machine B of B there is a machineA of A which lock-step

simulates B with �nite lag factor. 2

The rest of this paper is organized as follows: in Section 2 we review the

Sch�onhage storage modi�cation machine model; in Section 3 we review the ab-

stract state machine model; in Section 4 we prove that every Sch�onhage machine

can be strictly lock-step simulated by an appropriate unary ASM; in Section 5

we prove that every unary ASM can be lock-step simulated by an appropriate

Sch�onhage machine; and in Section 6 we prove that the Sch�onhage model with

280 Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

pairing and the sequential ASM model with no arity restriction are lock-step

equivalent.

We use sans serif text to indicate abstract state machine code; Courier indi-

cates Sch�onhage machine code.

2 Storage Modi�cation Machines

A Sch�onhage machine (described fully in [Sch�onhage 80]) consists of a dynamic

data structure (called a �-structure), combined with a �nite control program

that manipulates the structure while reading an input string and writing to an

output string. Intuitively, this is a machine that reads from a one-way input tape

and uses as storage a dynamic labeled multigraph. Edges in the multigraph are

labeled by symbols from an alphabet �; elements in the multigraph are named

(not necessarily uniquely) by the path to them from a distinguished center node.

The machine modi�es storage by adding new elements and redirecting edges (so

some elements may be rendered unreachable).

Formally,� is a �nite set (alphabet) of directions . The �-structure is a triple

S = (X; a; p), where X is a �nite set of nodes in a graph; a 2 X is a distinguished

center node of the graph; and p is a set (with cardinality j�j) of functions from

X to X indexed by elements of �. Thus each � 2 � de�nes a mapping p� from

X to X ; p�(b) is the node found at the end of the edge starting at b labeled by

�. See Figure 1 for an example.

x

y

x
y

x

x

y

y

x

y

a

Figure 1: A possible �-structure for � = fx; yg

p can be generalized to the mapping p� : �� ! X , where we think of each

281Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

wordW 2 �� as de�ning a path through the structure. So we can de�ne p�(�) =

a, and, recursively, p�(W�) = p�(p
�(W)). Thus we can closely associate words

in �� and elements of X .

A state of a Sch�onhage machine is given by the remaining input, the accu-

mulated output, a current instruction, and a �-structure. In the initial state

of a Sch�onhage machine, the remaining input is the original input string, the

accumulated output is empty, the current instruction is the �rst in the program,

and the �-structure contains a single node, the distinguished node a with p such

that p�(a) = a for all � 2 �. That is, all pointers from the center node point

back to the center node.

The control for a Sch�onhage machine is provided by a program in a simple

programming language. There are two types of instructions in this language:

common instructions which are the same for all Sch�onhage machines, and in-

ternal instructions which depend on �. The common instructions are input,

output, goto, and halt, and the internal instructions are new, set, and if.

Each statement may, optionally, have a label associated with it. Labels are sym-

bols followed by colons that precede statements. They are used so that other

statements in a program may refer to a particular statement. If two statements

have the same label, the �rst one in the program is treated as the only statement

with such a label.

Input and output take the form of single binary strings; these strings are

manipulated, bit by bit, by the input and output commands.

The input instruction takes the form input �0; �1. A symbol � 2 f0; 1g

is read from the input string. If � = 0, control is transferred to the statement

labeled �0; if � = 1, control is transferred to �1. If the input string is empty,

control is transfered to the next instruction.

The output instruction takes the form output �. Intuitively, � is emitted to

the environment during the execution of this instruction.

The goto instruction takes the form goto �, and transfers control to the

statement labeled by �.

The halt instruction causes the program to halt. The machine also halts if

control passes the end of the program.

The new instruction takes the form new W . This causes a new node y to

be created and added to X ; its placement with respect to the other nodes and

pointers is determined by W . If W is the empty string (denoted 2), this has

the e�ect of creating a new center node a, with all pointers from the new a

pointing to the old a (and no other pointers are changed). If we think of W as

having the form U�, then new U� causes the �-pointer from the node indicated

by U to be redirected to the new node y, and all pointers from y to point to the

original node described by U�. No other pointers are changed. For example, new

xy creates a new node that is reached by following the y pointer from the node

282 Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

designated by x. All pointers from this new node point to the node previously

designated by xy. See Figure 2.

a

x

y

x

y x y

x

y

x

y

a

Figure 2: new xy

The set instruction takes the form set W to V . This causes a pointer

redirection. If W is the empty string, then this has the e�ect of renaming a to

be the node indicated by V . If we think of W as U�, this causes the �-pointer

from U to be directed to the node indicated by V , and no other pointers are

changed. See Figure 3 for an illustration of the e�ect of this instruction.

-

x

y

x

y

x

y x

y

xy

x

y x

y x

y

xy

y
x

Figure 3: set xy to xx

Finally, the if instruction may take either the form if U = V then � or

if U 6= V then �. � is an instruction of one of the above types (i.e. not an if

statement) which is executed i� p�(U) = p�(V) or p�(U) 6= p�(V), respectively.

A run of a Sch�onhage machine is a sequence of states such that each state

is computed from the previous state by executing the previous state's current

instruction.

283Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

3 Abstract State Machines

An abstract state machine A (described fully in [Gurevich 95]) is given by a sig-

nature, a program, and an initial state. For the purposes of this paper, we restrict

our attention to sequential abstract state machines without external functions.

The signature (or vocabulary) of A is a �nite collection of function names, each

with a �xed arity. Some function names will be regarded as relation names. A

state of A is a set, the superuniverse, together with interpretations of the func-

tion names in the vocabulary. The superuniverse does not change as A evolves;

the interpretations of the functions may. In particular, the interpretations of

dynamic functions may change; static functions maintain a single interpretation

during the course of a run.

The superuniverse X contains distinguished elements true, false, and undef

which allow us to deal with relations and partial functions, where f(�a) = undef

intuitively means f is unde�ned at �a. These three elements are logical constants .

An r-ary function name is interpreted as a function from Xr to X ; an r-ary

relation name is interpreted as a function from Xr to ftrue; falseg. Boolean terms

are built by combining terms f(�t), where f is a relation name, using the Boolean

operators and, or, and not.

A universe U is a unary relation usually identi�ed with the set fx : U(x)g.

The universe Bool = ftrue; falseg is another logical constant. When we speak

about a function f from a universe U to a universe V , we mean formally that f

is a unary operation on the superuniverse such that f(a) 2 V for all a 2 U and

f(a) = undef otherwise. We use intuitive notation like f : U ! V , f : U1�U2 !

V , and f : V . The last means that the nullary function (or distinguished element)

f belongs to V .

We assume that every ASM has the universeModes = fInitial;Working;Finalg

in its vocabulary; the distinguished element Mode holds the current mode of the

program.

The ASM model [Gurevich 95] does not include input/output conventions,

allowing users some freedom. Here we adopt the following conventions. Input is

a binary sequence. Input is represented by a universe InputPositions with dis-

tinguished elements 0 and Last, and unary functions Succ and Bit. 0, Last, and

Succ give an ordering on the elements of the universe; Succ(Last) = undef. We

may abbreviate Succ(0) by 1, Succ(1) by 2, etc. Bit maps InputPositions to f0; 1g

(where 0 and 1 are elements of InputPositions; we assume InputPositions contains

at least these two elements). The input string itself is represented by the distin-

guished element InputString (this represents the \current position" in the input

string; thus Bit(InputString) represents the current bit in the input string).

We represent output with a nullary function Output. Intuitively, if hAi : i 2 �i

is a run, Output = � 6= undef at Ai, and i + 1 2 �, then � is emitted to the

284 Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

environment during the transition from Ai to Ai+1. We assume Output = undef

at A0.

A program of A is a transition rule. The simplest transition rule is an update,

which has the form

f(t1; : : : ; tr) := t0

where we may abbreviate t1; : : : ; tr as �t. When an update rule is �red, the

function f at �t is changed so that its value in the next state is t0.

The other transition rules are de�ned inductively. If R0 through Rk are tran-

sition rules, g0 through gk are Boolean terms (built using Boolean operators from

terms of the form f(�t) where f is a relation name), and k is a natural number,

then the following are transition rules:

(i) block R0 : : : Rk endblock

(ii) if g0 then R0

elseif g1 then R1

...

elseif gk then Rk

endif

(iii) import v R0 endimport

(i) is the block rule; a block of transition rules is �red by �ring all rules

simultaneously (the block/endblock notation is often omitted when the meaning

is clear from context). During the �ring of these rules, all terms are evaluated

and the set of updates to execute is computed. If there is some pair of updates

which attempt to set the value of one location to two di�erent values, then we

say the update set is inconsistent ; in this case no updates are �red and the state

does not change. Otherwise the set of updates is consistent and all updates in

the set are simultaneously �red.

(ii) is the conditional rule; the guards g0, g1, g2,: : : are evaluated sequentially

until some gi evaluates to true, at which point the corresponding Ri is �red. If

no gi evaluates to true then no Ri is �red and the rule does not change the state.

(iii) is the import rule; this is used when we need to create a new element

(e.g. add a new node to a graph or create a new message in some protocol). v

refers to an element which is brought from the special universe Reserve; typically

v appears in R.

A run of a program is a sequence of states such that each state is computed

from the previous state by applying the updates determined by the program.

285Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

3.1 Normal Forms

We introduce a variety of normal forms for abstract state programs which will

be of use to us in reasoning about properties of general ASM programs.

We may suppose without loss of generality (wlog) that an abstract machine

program does not reuse variables; that is, each occurrence of import v has a

di�erent variable v. Furthermore, an ASM program may be written without the

use of elseif; e.g. we may rewrite

if g0 then R0

elseif g1 then R1

elseif g2 then R2

endif

as

if g0 then R0 endif

if not g0 and g1 then R1 endif

if not g0 and not g1 and g2 then R2 endif

3.1.1 First Normal Form

An arbitrary abstract state program may be put in NF1

import v1,: : : ,vk
R

endimport

by rewriting

if g0 then

import v

R

endimport

endif

as

import v

if g0 then

R

endif

endimport

and rewriting

import v

R

endimport

import w

S

endimport

as

import v,w

R

S

endimport

where v and w are distinct under our assumption that variables are not

reused.

286 Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

3.1.2 Second Normal Form

Programs in Second Normal Form (NF2) have the form

import v1,: : : ,vk
if g1 then R1 endif
...

if gn then Rn endif

endimport

where R1; : : : ; Rn are updates.

We may translate programs in NF1 to programs in NF2 by rewriting

if g then

if h then

R

endif

endif

as

if g and h then R endif

and rewriting

if g then R1; : : : ; Rn endif as if g then R1 endif

if g then R2 endif
...

if g then Rn endif

(recall that all updates are executed simultaneously). In general, this will

produce a program of the form

import v1; : : : ,vk
if g1 then R1 endif
...

if gl then Rl endif

Rl+1

...

Rl+m

endimport

where R1; : : : ; Rl+m are updates. We then rewrite this as

287Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

import v1; : : : ,vk
if g1 then R1 endif
...

if gl then Rl endif

if true then Rl+1 endif
...

if true then Rl+m endif

endimport

3.1.3 Third Normal Form

Programs in Third Normal Form (NF3) have the form

if CONS then R endif

where

1. R is a program in NF2.

2. For every state A satisfying CONS, R is consistent (i.e. generates a consistent

update set) at A.

Let if gi then hi(�ti) := �i be a transition rule in R. The desired CONS is the

conjunction of the Boolean terms

[gi ^ gj ^ (�ti = �tj)]! (�i = �j)

for all pairs i < j such that the function symbols hi and hj are identical.

Programs in NF3 are consistent: if R is inconsistent in a given state, CONS

will be false, so no updates in R will be selected to �re.

Lemma 1. Every ASM program� reduces to an NF3 program� 0 such that

� and� 0 simulate each other in strict lock-step. Furthermore, if � is unary then

so is � 0.

The proof is obvious.

3.1.4 Fourth Normal Form

Programs in Fourth Normal Form (NF4) have a vocabulary containing arbitrarily

many nullary and unary function names, at most one binary function name, and

no function names of arity greater than 2.

Given an abstract state program � , constructing its NF4 translate � 0 is

straightforward: �rst, a new binary function name Pair is added to the vocab-

ulary; second, every function name f of arity greater than 1 is replaced by the

288 Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

unary function name f 0. Terms f(t1; t2; : : : ; tr�1; tr) (for r > 1) are correspond-

ingly replaced by terms f 0(Pair (t1;Pair (t2; : : : ;Pair (tr�1; tr)) � � �). Thus, the

abstract state machine � which has functions of arbitrary arity is simulated by

the abstract state machine � 0 which has only unary functions, with the excep-

tion of the binary function Pair .

Lemma 2. An arbitrary ASM program � reduces to an NF4 program � 0

such that � and � 0 simulate each other in strict lock-step.

4 Simulating Sch�onhage machines by Unary Abstract State

Machines

Theorem 1. For every Sch�onhage machine A there exists an abstract state

machine B that strictly lock-step simulates A.

Before proving Theorem 1, we provide some necessary infrastructure, as well

as the mapping � required by the de�nition of lock-step simulation. Because of

the exible and adaptable nature of the abstract state machine paradigm, this

argument is much simpler than its inverse. B can be seen as a formalization of

A in the abstract state machine context. We begin by providing the vocabulary

of B.

We �rst observe that the initial state of a Sch�onhage machine contains the

program, a pointer alphabet, a center node, an input string, and an empty output

string. We simulate this as closely as possible in the abstract state machine

model.

Input and output are simulated in a natural way by the ASM input/output

conventions.

We regard the Sch�onhage program as an ordered list of instructions; for the

purpose of a close simulation we reuse elements in the universe of InputPositions

to index instructions. (We assume that the length of the input is greater than

the number of instructions.) We also need a distinguished element CurInst which

holds the index of the current instruction.

The universe Nodes is initially empty; it has a distinguished element Center

which is initially undef. This universe will be �lled as the Sch�onhage program

creates new nodes. For every direction � in � of the Sch�onhage machine, there

is a unary function � : Nodes! Nodes.

Finally, Mode is a distinguished natural number which encodes the phase of

execution of the simulation; we abbreviate 0 by Initial, 1 by Working, and 2 by

Halt.

Note that all functions described here are nullary (i.e. distinguished elements)

or unary.

289Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

4.1 Simulating Sch�onhage Programs

In this section we describe how to translate a Sch�onhage program into a simu-

lating abstract state machine program. We occasionally use the notation x:f for

f(x).

We �rst specify the initial state of the abstract state machine. Mode must

be Initial and CurInst is set to 0. Output is undef; Bit(n) 2 f0; 1g for all n 2

InputPositions. InputString is set to 0.

Each Sch�onhage instruction is translated as a transition rule guarded by a

test of the index of the rule (i.e. the value of CurInst). We �rst give the special

case of CurInst = 0.

if CurInst = 0 and Mode = Initial then

import y

Nodes(y) := true

Center := y

�1(y) := y
...

�m(y) := y

endimport

CurInst := 1

Mode := Working

endif

Before the simulation proper begins, we import a Center node and set the

pointer values appropriately, assuming a pointer alphabet � = f�1; : : : ; �mg.

The translations of the instructions depend on their index and their type (i.e.

new, set, output, etc.) We consider the ith instruction and present schemata

for each type of instruction.

input �0, �1

if CurInst = i and Mode = Working then

if Bit(InputString) = undef then

CurInst := Succ(CurInst)

elseif Bit(InputString) = 0 then

CurInst := Lambda0

else CurInst := Lambda1

endif

InputString := Succ(InputString)

endif

290 Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

The input command reads a bit from the input string. If the bit is undef, then

the instruction is e�ectively skipped and control moves to the next instruction.

If the bit is either a 0 or 1, control is transferred to the instruction numbered

Lambda0 or Lambda1 respectively, where these are the indices of the instructions

with labels �0 and �1.

output �

if CurInst = i and Mode = Working then

Output := Beta

CurInst := Succ(CurInst)

endif

This simply emits the appropriate output bit. In order to ensure that Ouput

is undef for all other (non-output) instructions, we need a rule to explicitly

accomplish this.

if CurInst 6= i1 and : : : and CurInst 6= ik then

if Output 6= undef then

Output := undef

endif

endif

Suppose i1; : : : ; ik are all the indices of output instructions. This rule tests

the index of the current instruction and sets Output to undef if the current

instruction is not an output instruction.

goto �

if CurInst = i and Mode = Working then

CurInst := Lambda

endif

This simply causes control to be transferred to the instruction indexed by

Lambda (which is the index of the instruction labeled by �).

halt

if CurInst = i and Mode = Working then

Mode := Final

endif

291Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

When Mode is set to Final, no further rules will �re, as all are guarded either

by Mode = Initial or Mode = Working.

new 2 new w1 : : : wk (k � 1)

if CurInst = i and Mode = Working if CurInst = i and Mode = Working

then then

import y import y

Nodes(y) := True Nodes(y) := True

Center := y �(PARENT) := y

�1(y) := Center �1(y) := �1(PARENT)
...

...

�m(y) := Center �m(y) := �m(PARENT)

endimport endimport

CurInst := Succ(CurInst) CurInst := Succ(CurInst)

endif endif

PARENT abbreviates w1 : : : wk�1.

To add a new element, we import element y from Reserve into Nodes. If the

parameter of the new instruction is empty, we make this new node the Center

and set all pointers from this node to the old Center. Otherwise, we set the �

pointer from the node designated by PARENT to point to the new element y; in

addition, every possible pointer from the new element y is set to point to the

element previously referred to by PARENT.

Remark. Normally (that is, without being bound by our obligation to use

only unary functions and restricted abstract state machine syntax), an abstract

state machinist would view elements of � as elements of the superuniverse and

write the last portion of this rule as

var � 2 �

Neighbor(�,y) := PARENT

endvar

where Neighbor is a binary function on elements of the superuniverse.

set 2 to v1v2 : : : vj set w1w2 : : : wk to v1v2 : : : vj (k � 1)

if CurInst = i and Mode = Working if CurInst = i and Mode = Working

then then

Center := Center.v1.v2 : : : vj wk(Center.w1.w2 : : :wk�1) :=

CurInst := Succ(CurInst) Center.v1.v2 : : : vj
endif CurInst := Succ(CurInst)

endif

292 Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

The set instruction changes function wk at the point

wk�1(wk�2(: : : (w1(Center)) : : :) to point to the element designated by

vj(vj�1(vj�2(: : : v1(Center) : : :))); if W is empty, this renames the Center node to

the element designated by vj(vj�1(vj�2(: : : v1(Center) : : :))).

if u1u2 : : : uk = v1v2 : : : vj then �

if CurInst = i and Mode = Working then

if Center.u1u2 : : : uk = Center.v1v2 : : : vj then

R�

else

CurInst := Succ(CurInst)

endif

endif

if u1u2 : : : uk 6= v1v2 : : : vj then �

if CurInst = i and Mode = Working then

if Center.u1u2 : : : uk 6= Center.v1v2 : : : vj then

R�

else

CurInst := Succ(CurInst)

endif

endif

R� is the abstract state machine update (without the guards of CurInst and

Mode) corresponding to the Sch�onhage machine instruction � (which is of one

of the previous types of instructions). The nodes indicated by U and V are

compared, and � is executed in the appropriate circumstance.

4.2 State Mapping

Per the de�nition of lock-step simulation, we de�ne � to be a mapping of

Sch�onhage machine states to abstract state machines states such that:

1. If the string w1 : : : wk designates an element x inA then in �(A) Center.w1 : : :wk

evaluates to x.

2. If k is the index of the current instruction in A, then CurInst evaluates to k

in �(A).

293Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

3. If A contains input x, then �(A) contains input x.

4. If the bit � is emitted during the transition from state A, � is emitted during

the transition from �(A). Otherwise no output is emitted.

5. If A is in the initial (respectively halting) state, Mode equals Initial (respec-

tively Final) in �(A); otherwise Mode = Working in �(A).

In particular we consider an initial state A of the Sch�onhage machine A. In

the corresponding state B = �(A) we have Mode = Initial; CurInst = 0; Output

= undef; Bit(n) 2 f0; 1g for all n 2 InputPositions; InputString = 0. In particular

every element of A is an element of B. When A creates a new element a, B

imports some a0 to represent a.

This creates a natural one-to-one mapping of elements of any state A of A

to elements of the corresponding state of B. For simplicity, and wlog, we may

identify a0 with a.

4.3 Proof of Theorem 1

Lemma 3. Let A0; A1; : : : be a run of a Sch�onhage program A. Let B be the

abstract state machine translate of A. Let B0; B1; : : : be a run of B such that

B0 = �(A0). Then for every i, Bi = �(Ai).

Proof. We prove Lemma 3 by induction on the index of the sequence of

Sch�onhage machine states. The base case follows from our assumptions about

the initial state of the simulating abstract state machine.

Now we must demonstrate that if Bk�1 = �(Ak�1) then Bk = �(Ak), where

Ak is obtained from Ak�1 by executing one instruction of A. This follows rel-

atively intuitively from the semantics discussed in x3:1 above, but we consider

each case in detail.

We consider each possible type of Sch�onhage machine instruction.

input �0,�1. This simply shifts control in a manner dependent on the value

of the state's input string. In the abstract state machine, this is simulated by

testing the value of a bit in the InputString and updating CurInst appropriately.

output �. This causes the bit � to be emitted, and control shifts to the

next instruction in the program. In A, the output bit is emitted, then control is

incremented.

goto �. This causes control to shift to the statement labeled �. In A, CurInst

is set to the index of the appropriate instruction.

halt. This stops execution. In A, Mode is set to Final, which prevents any

transitions from �ring.

new W (where W = w1; : : : ;wk). This instruction makes three changes to the

�-structure. First, a new node, y, is added to the structure. If W is empty, this

node becomes the center, and all pointers from the new node point to the old

294 Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

center. Otherwise, the pointer labeled wk from the node reached by following

w1; : : : ;wk�1 from a is directed to y, and all pointers � from y are directed to

the node formerly reached by w1 : : : wk. In A, the import constructor brings a

new element y into the universe of Nodes, the function wk is updated, and �(y)

for every � is set to the former value of �(Center:w1 : : : wk). And, of course,

control in both the Sch�onhage program and abstract state machine program is

incremented.

set W to V. If W is empty, the center is renamed to be the node v1; : : : ;vj ;

otherwise, this causes the pointer wk from the node w1; : : : ;wk�1 to be redirected

to the node v1; : : : ;vj , and control is incremented. In A, either

Center:w1:w2 : : : wk�1 := Center:v1:v2 : : : vj

or

wk(Center:w1:w2 : : : wk�1) := Center:v1:v2 : : : vj

is �red, and CurInst is updated.

if U = [6=]V then �. These two statements test the nodes found by travers-

ing U and V; if they are equal [not equal], then � is executed; otherwise control

passes to the next instruction. In A, the guard testing the equality of the two

terms represented by U and V is evaluated; if it is true, then R� is executed;

otherwise CurInst is incremented.

This demonstrates that each transition from �(Ak�1) to �(Ak) can be achieved

by �ring B at �(Ak�1), and thus that �(Ai) = Bi. 2

From Lemma 3 we may conclude that the given � with J(i) = i ful�lls the

de�nition of lock-step simulation with lag factor 1; thus Theorem 1 is proved.

5 Simulating Unary Abstract State Machines by Sch�onhage

Machines

Theorem 2. For every unary abstract state machine A there exists a Sch�onhage

machine B that strictly lock-step simulates A.

For the purposes of proving Theorem 2, we present a methodology for con-

verting a given unary abstract state machine with input into an equivalent

Sch�onhage machine. We then provide a mapping of abstract state machine states

to Sch�onhage machine states, and proceed with the proof. We restrict the input of

the abstract state machine to binary sequences to match the input of Sch�onhage

machines (note that other forms of input may be encoded as binary sequences).

Intuitively, our approach will be to use the pointers in the data structure of the

Sch�onhage machine to represent the values of the functions in the abstract state

machine. We simplify our task somewhat by assuming that the abstract state

program being simulated is in NF3 (i.e. is consistent), but some extra e�ort is

required to account for the evaluation of guards | these are expressions that

295Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

involve binary (Boolean) functions, so there is no clean way of expressing them

using the inherently unary Sch�onhage machine constructs.

First, we describe the pointer alphabet of the simulating Sch�onhage ma-

chine. The elements of this alphabet depend on three kinds of functions in the

abstract state machine: static nullary functions, dynamic nullary functions (i.e.

constants), and unary functions. The nullary functions are used to name ele-

ments in the abstract state machine; these will be translated into the Sch�onhage

machine �-structure as pointers emanating directly from the center node (note

that this construction obligates us to refrain from moving the center node at

any point during the simulation). Unary functions will be translated as pointers

directed from elements to elements (that is, from node to node in the Sch�onhage

machine). The destination node represents the value of the unary function when

applied to the element represented by the source node.

Because we are essentially simulating the execution of a parallel machine

by a sequential machine, we need to augment the vocabulary of the Sch�onhage

machine. Speci�cally, for every function name f in the abstract state machine

vocabulary, we include an additional pointer \shadow" f 0 in the pointer alphabet

of the Sch�onhage machine. These shadow pointers will be used to accumulate

updates which will then be applied after all guards have been evaluated.

We include extra nodes which are reached from the center by pointers True

and False. The center node itself corresponds to undef in the abstract state

machine. We also add a �nite number of additional pointers New1; : : : ; Newk to

be used in simulating import in the abstract state machine, where k is the number

of variables imported at the beginning of the NF3 abstract state program.

The initial state of an ASM consists of a superuniverse, interpretations on

function names in the vocabulary, a universe of InputPositions, and Output = un-

def. To simulate this, we assume that the initial state of the simulating Sch�onhage

machine contains an input string and an empty output string, and a �-structure

that reects the superuniverse and the initial vocabulary interpretation. Specif-

ically, for every element x of the superuniverse such that fk(f0:f1 : : : fk�1) = x

for some f0; : : : ; fk, f0f1 : : : fk and f0f1 : : : f
0

k designate x in the �-structure.

5.1 Execution

We �rst describe how each abstract state machine rule is converted into a

Sch�onhage program fragment, then discuss how these fragments are combined

to simulate the entire abstract state machine.

5.1.1 Updates

Since the maximum arity allowed in our case is 1, each update instruction has

the form fk(f0:f1 : : : fk�1) := g0:g1 : : : gl, where f0 and g0 are nullary functions.

296 Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

Because we need to separate the tasks of evaluating and updating in the simula-

tion, we translate each update to Sch�onhage machine code as set f0f1 : : : f
0

k to

g0g1 : : :gl (abbreviated set F0 to G where clear from context), where fi and gi

are the Sch�onhage machine pointers corresponding to the appropriate abstract

state machine functions, and f0k is the shadow of fk. We then later include code

that copies the relevant values of f0 to f.

5.1.2 Importing Elements

New elements in an abstract state machine can be brought into a universe by

using the import constructor; since we are assuming the program is in NF3, the

constructor will be of the form

import v1 : : : vk
R

end import

This is translated into the Sch�onhage program fragment

new New1
...

new Newk

R0

where R0 is the translation of R into Sch�onhage program code with every

occurrence of vi replaced by Newi.

5.1.3 Conditional Constructors and Guards

As we are assuming NF3, we need only describe how to translate conditional

constructors of the form

if g then R endif

into Sch�onhage machine code. We let R0 denote the sequence of Sch�onhage

machine instructions which simulates R.

If g is a Boolean term of the form f(t), where f is a unary relation and t is a

term composed of unary functions. We simply translate g as F = True, where,

as before, F is the is the word corresponding to the Boolean term. Thus, we

translate

297Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

if g then R as if F = True then goto L

goto L0

L :R0

L0:

where L and L0 are labels, and L0 labels the statement following the condi-

tional rule.

Otherwise, the translation is more complicated. We illustrate it with an ex-

ample, where g is (:gaorgb)and(t1 = t2) and ga, gb, t1, and t2 are unary terms.

if Ga = False then goto L1

if Gb = True then goto L1

goto L3

L1 : if T1 = T2 then goto L2

goto L3

L2 : R
0

L3 :

where Ga, Gb, T1, and T2 are the Sch�onhage translations of ga, gb, t1, and t2.

5.1.4 Programs

If we let B0 be the Sch�onhage program we get by applying the above translations

to the ASM program A, then the Sch�onhage program B equivalent to A has the

form

L: if Mode = Final halt

B0

UPDATE

goto L

where UPDATE is a sequence of set instructions of the form set f0f1 : : :fk

to f0f1 : : : f
0

k, with one such instruction for every f0f1 : : :f
0

k that appears in

B0. Thus the Sch�onhage machine states at which instruction 1 is about to be

executed correspond naturally to ASM states; we refer to these Sch�onhage states

as restart states.

5.2 State Mapping

We de�ne � to be a mapping of ASM states to Sch�onhage machine states such

that:

298 Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

1. If fk(f0:f1 : : : fk�1) = x in Ai then f0f1 : : : fk designates x in �(Ai).

2. The index of the instruction about to be executed in �(Ai) is 1.

3. If A contains input x then �(A) contains input x.

4. If the bit � is emitted between states Ai�1 and Ai, then exactly � is emitted

between states �(Ai�1) and �(Ai). Otherwise no output is emitted between

�(Ai�1) and �(Ai).

5. If Mode = Initial (respectively, Mode = Final) in Ai, then �(Ai) is an initial

(respectively, halting) state; otherwise �(Ai) is neither initial nor halting.

As before, we observe that we may identify elements of states of A with

elements of the corresponding states of B.

5.3 Proof of Theorem 2

Lemma 4. Let A0; A1; : : : be a run of an abstract state machine A. Let B be

the Sch�onhage machine translate of A. Let B0; B1; : : : be the run of B such that

B0 = �(A0). Let S0; S1; : : : (where S0 = B0) be the subsequence of restart states

of the run of B. Then for every i, Si = �(Ai).

Proof. Since the abstract state program is consistent, we may assume wlog

that the updates selected to �re at some state Ai a�ect distinct locations (al-

though more than one update may update a given location to the same value),

so we may consider them independently of each other.

We proceed by induction on i, the index of the abstract state machine state.

The base case (S0) follows by assumption.

To show the induction, we must show that the Sch�onhage machine correctly

simulates the �ring of the update set of Ai. Speci�cally, we must show that if the

update f(t) := t0 is �red in state Ak�1, then the updates set T0 to T0 and set

T to T0 are executed between Sk�1 and Sk. We observe that as the updates set

T to T0 are not guarded, it su�ces to demonstrate the execution of set T0 to

T0.

We proceed by structural induction on the transition rule in which the update

occurs.

If the update is �red in an update rule, then the translation is direct and the

Sch�onhage machine instruction set T0 to T0 is executed.

If the update occurs within the scope of the import rule, then there are two

cases. If the update does not refer to some vi, then this reduces to the base

case. If it does refer to vi, then the simulated update will be �red with every

occurrence of vi replaced by Newi for the appropriate i. We must check to see

that the abstract state machine import is simulated correctly: when an element

is imported in an abstract state machine, it is (1) distinct from any elements

299Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

that already exist and (2) distinct from any elements that might be imported

simultaneously. When this is simulated by a Sch�onhage machine, condition (1) is

met by the semantics of the Sch�onhage machine new instruction: the instruction

new Newi creates a new node which is reached from the center node by following

the Newi pointer (earlier nodes designated by Newi are chained from the newest

node). Condition (2) is met by the pointer vocabulary; one Newi pointer exists

for each variable imported.

If the update occurs within the scope of a conditional rule, then it is guarded

by some guard gj . By inspection, we see that when a guard gj is true in Ai�1,

then the Sch�onhage machine translation of the guarded rule is executed between

�(Ai�1) and �(A).

Finally, if it occurs in a block rule, we know that no other updates in that

block a�ect the same location (by consistency), so this reduces to the base case.

Thus, exactly those updates �red in Ak�1 are executed in the Sch�onhage

machine simulation between states Sk�1 and Sk. Therefore Si = �(Ai). 2

From Lemma 4 we may conclude that the given � and a J which maps

indices of ASM states to indices of Sch�onhage restart states ful�ll the de�nition

of lock-step simulation, where c is a �nite number determined by the number of

instructions in the program B. Thus Theorem 2 is proved.

6 Extended Sch�onhage Machines

We now discuss extending the Sch�onhage machine model by adding a pairing

function. In this section, abstract state machines are arbitrary (that is, not

necessarily unary) sequential abstract state machines without external functions.

6.1 Extended Syntax

In contrast to the usual pairing function found in set theory, we regard the

pairing function as one that encodes pairs of elements in one set with an element

in another set. We will code the pairing function as a collection of auxiliary nodes

with outgoing edges First and Second. These edges are permanent, in the sense

that once they are created, they cannot be modi�ed by the Sch�onhage machine

control. The semantics is intuitive | each such node represents an ordered pair

of elements indicated by the First and Second pointers. Using such a pairing

function in composition with itself, we can let one node in the Sch�onhage machine

structure represent a tuple (of arbitrary arity) of elements in the abstract state

machine; e.g. (X;Y; Z) may be represented by the pairing of the pair hX;Y i and

Z. Thus, while functions continue to be represented by pointers from one node to

another, the nodes themselves will represent not just single-element arguments

but tuples of arguments.

300 Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

We must extend the syntax of Sch�onhage programs to incorporate the pairing

function. The new command

create hu1u2 : : : ui,v1v2 : : : vji

creates a new node that represents the ordered pair of values represented by

U = u1 : : :ui and V = v1 : : :vj . This node is denoted hU; Vi. This command is

similar to the new command in that it brings a new node into the nodeset; it

di�ers from the new command in that it automatically sets the pointers First

and Second to point from node hU; Vi to nodes U,V, respectively | and these

edges can not be altered by the set command. Additionally, if such a node

hU; Vi already exists, � is not altered.

For example, to create a node representing the tuple (X;Y; Z), write

create hX;Y i

create hhX;Y i; Zi

The node representing the value of f at the location speci�ed by (X;Y; Z) is

the node hhX;Y i; Zif .

We can now show that Sch�onhage machines extended by a pairing function

in such a way are equivalent to sequential abstract state machines containing

functions of arbitrary arity.

6.2 Simulating Extended Sch�onhage Machines by Abstract State

Machines

Theorem 3. For every extended Sch�onhage machine A there exists an abstract

state machine B which lock-step simulates A.

Representing the pairing function in abstract state machine code is done with

a binary function Pair, and unary functions First and Second.

An extended Sch�onhage machine statement create hu1 : : : ui,v1 : : : vji can

be simulated by the rule

if Pair(Center.u1 : : : ui,Center.v1 : : : vj) = undef then

import v

Pair(Center.u1 : : : ui,Center.v1 : : : vj) := v

First(v) := Center.u1 : : : ui
Second(v) := Center.v1 : : : vj

endimport

endif

Wlog we can identify the imported element with the pair node.

Proof. Extend the de�nition of � from section 4.2:

301Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

6. If hu1 : : : ui; v1 : : : vji = x in state A, then

Pair(Center:u1 : : : uj ;Center:v1 : : : vj) = x in �(A)

The bulk of this proof is found in the proof of Lemma 3; we need simply

augment it to address the create statement.

create hW,Vi. This creates a new node and sets the First and Second point-

ers from this node appropriately. In the abstract state machine, this is mimicked

exactly; our induction hypothesis guarantees that the abstract state machine

translates of W and V (even if they involve pairing nodes) map appropriately to

Sch�onhage machine nodes. 2

6.3 Simulating Abstract State Machines by Extended Sch�onhage

Machines

Theorem 4. For every abstract state machine A there exists an extended

Sch�onhage machine B which lock-step simulates A.

As we observed in section 3, arbitrary abstract state machines are strictly

lock-step equivalent to NF4 ASMs; thus it su�ces to give a simulation of NF4

ASMs by extended Sch�onhage machines. We assume that the binary abstract

state machine function is named Pair as in x3. We translate the abstract state

machine program into a Sch�onhage program as described in section 5, replacing

terms Pair(t1; t2) by hT1; T2i.

Lemma 5. For every ASM program A in NF4 there exists an extended

Sch�onhage machine B that lock-step simulates A.

Proof. The proof is similar to the proof of Lemma 4, except that now we have

to use the create instruction in order to translate terms. Extend the de�nition

of � from section 5.2:

5. If Pair(Center:u1 : : : uj ;Center:v1 : : : vj) = x in Ai then hu1 : : : ui; v1 : : : vji =

x in �(Ai).

We assume that A is in NF3 as well and consider arbitrary updates as in

Lemma 4. If a given update contains no terms of the form Pair (�t1; �t2) then the

proof proceeds as in Lemma 4. If a given update contains one or more pairing

terms, then we observe that, by the de�nition of � and our construction, hT1; T2i

is an element of the superuniverse and so the proof of Lemma 4 applies to updates

involving these elements as well.

Proof. This follows directly from Lemmae 4 and 5. 2

302 Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

References

[Blass and Gurevich] Blass, A., and Gurevich, Y.: \Evolving algebras and linear time
hierarchy"; Proc. of IFIP Congress 94, vol. I, Elsevier (1994), 383{390.

[Gurevich 91] Gurevich, Y.: \Evolving algebras: An attempt to discover semantics";
Bulletin of European Assoc. for Theor. Computer Science, no. 43, Feb. 1991,
264{284. A slightly revised version appeared in \Current Trends in Theoreti-
cal Computer Science", Eds. G. Rozenberg and A. Salomaa, World Scienti�c,
1993, 266{292.

[Gurevich 95] Gurevich, Y.: \Evolving algebras 1993: Lipari guide"; Speci�cation and
Validation Methods, Ed. E. Boerger, Oxford University Press (1995), 9{36.

[Kolmogorov 53] Kolmogorov, A. N.: \On the notion of an algorithm";Uspekhi Mat.
Nauk, 8, 4 (1953), 175{176.

[Kolmogorov and Uspenskii 63] Kolmogorov, A. N. and Uspenskii, V. A.: \On the def-
inition of an algorithm"; AMS Tranlations 2nd Series, 29 (1963), 217{245.

[Sch�onhage 70] Sch�onhage, A.: \Universelle Turing Speicherung"; Automatentheorie
und Formale Sprachen, Bibliogr. Institut, Mannheim (1970), 369{383.

[Sch�onhage 80] Sch�onhage, A.: \Storage modi�cation machines"; SIAM J. Computing,
9 (1980), 490{508.

Acknowledgements

The work of Yuri Gurevich has been partially supported by NSF and ONR

grants.

303Dexter S., Doyle P., Gurevich Y.: Gurevich Abstract State Machines and Schoenhage ...

