Journal of Universal Computer Science, vol. 3, no. 2 (1997), 120-146
submitted: 11/7/96, accepted: 8/12/96, appeared: 28/2/97 [1 Springer Pub. Co.

Type Compatibility for Extensible Module Types,
Their Reference Parameters, and Their Pointer Types

Jirgen F. H. Winkler
( Friedrich Schiller University Jena, Germany
winkler@informatik.uni-jena.de )

Abstract: Objects in object-oriented languages have often breated as a special kind of
entity differentfrom other variables or constants. Similarly, thigpes, whichare typically
called classes, have often beweated differentlyfrom other types. This complicates the
understanding of these concepts. The present paper proposes the classes asodule
types leading to &ery natural integration of objects and classes intofthmework of con-
temporary programming languages. The npert of the paper contaigping rulesfor mod-

ule types for assignmerindfor valueand variable parameters. It is shothat the rules for
reference parameters in some existing languksgesto unexpected results and sometimes to
undefined behavior. Furthermore, assignment involving dereferenced pointers to modules is
studied for the first time in detail. The paper shows thatyie compatibilityrule for pointer
assignment is not sufficient for deref assignm@ihie last part of the papeontains a com-
parison of thdanguage definitions and of compileéim Borland Pascalith Objects,C++,
Oberon, and Object CHILL.
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1 Introduction

Objects in object-orientethnguages have often been treated as a spdaidl of
entity different from other variables or constants. Similatlyeir types,which are
typically called classes, have often béerated as a specikind of type. This com-
plicates the understanding of thesmceptsThe present papgroposes to see the
classes as module typksading to avery natural integration obbjectsand classes
into the framework of contemporary programming languages.

The main part of the papedeals withtype compatibilityrules for extensible module
types. We showhatsomelanguages use compatibility rules for reference parameters
which lead to unexpected resufiad sometimes to undefined behavior. \&eow
especiallythat reference parameteese not pointers. Furthermore, assignment in-
volving dereferenced pointers to modules is studiedHerfirst time in detail. The
papershowsthat thetype compatibilityrule for pointer assignment igot sufficient

for deref assignment.

The last part of the paper contains@anparison of the language definitioasd of
compilers for Borland Pascal with Objects, C++, Oberon, and Object CHILL.
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The formalismausedare alldefined inthe paper. We assume a general familiarity
with the basic concepts of object-orientation. Fsogram examples wese a sug-
gestive syntax which should be self explanatory.

For easier reference for the reader the central definitions of the papeilected in
the Appendix.

Despitethe assumed familiarity with thbasic concepts of object-orientation we
mention four essential concepts of OO which are relevant to the topics of this paper:

a) module as first class valuenodules as values of variables, as parametatsas
the target value of a pointer;

b) type derivation and substitutivitywherever an object OTb of a (base) type Th is
used an object OTd of a (derived) type Td can be used instead;

¢) reimplementation of operations in derived tyas operation O defined intgpe
Th may be given a new implementation (body) in a derived type Td;

d) combination of reimplementation and substitutivity (polymorphighan opera-
tion O is applied to a variable, which may refepbjects ofdifferent (but usually
related) types, then the implementation belonging tayihe ofthe currenbbject
is used, i.e. depending on thge ofthe currentobjectone of possibly several
different implementations of that operation is used.

2 Why Module Types ?

In this paper waisethe termmodule typefor what is often calledlass or object
typein object-oriented languages. There are several reasons for this.

First, objectusuallyhas avery general meaning: “something physical or mental of
which asubject is cognitively awargMerriam Webster NewCollegiate Dictionary,
1977: 791). In the field of programming languages object is also often used in a more
general sense: “Aobject is anentity that contains (has) @alue of a given type.”
[Ref 83: 3-2] or “An object declaration creates one or more variables. These variables
can be of any typandneed not just be instances of classes.” [CW 96: Ttk gen-
eral meaning ofobject” seems to bappropriate, and this is theason not to adopt
e.g. the ternfobject type”[CDG 92: 19]. Inobject-oriented languagedjectis used
more narrowly for one specikind of suchobjects, namely for variables oonstants

of so callecclasses“An objectis aclass instancer an array.” [GJS 96: 38]. Some-
times the ternobjectis even used with sevenaleanings: “Frormow on, objectwill
have a precise meaningrecord with procedure fields, accessed through a poihter
[RW 92: 218], “Declarations alsgerve to specifgertain permanent properties of an
object,such as whether it is a constantype, a variable or a procedure.” [RW 92:
284].

The second reason tisat of all thedifferent entities in contemporary programming
languages thebjects of object-orientelinguages resemblaostly the modulesof
CHILL [Rec 93] or Modula [Wir 88b] packagein Ada [Ref 83], unit in Borland
Pascal withObjects [Bor93]). This resemblancean be characterized by the key
concepts “aggregation”, “encapsulation/abstractiarigd “scoping”. The relation
between modulend module type isvery much the same abat between a record
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variableand arecord type. These observatioare the essential reason uee the
term“module mode” in CHILL-96 [CHI96]. (There are additionally monitanodes
and taskmodes in CHILL-96, where, as in Alg@8, “mode” is used instead of
“type”.)

The thirdreason ighat theuse of “moduletyp€e’ avoidsthe problematic ternalass
[Win 92]. Since theclasses of objeabriented languages aessentially typesi.e.
descriptions describing the nature of varialflesd constants), geems vernnatural

to usethe termtype also inthis case. Other more recent approacheohject-
orientation also avoithe termclass[OMG 93]. Inrare casesherecould be some
misunderstanding because the tenoduleis sometimes also used in a more general
sensemeaning a buildingplock in general which could also encompass procedures.
This view is especially usedhen speaking abolinking several (object) modules
into a single object program.

Anotherpossiblenamefor this kind oftype could beuple typewhich is even more
neutral thanmodule type. From a somewhat abstraeoint of view the objects of
object-orientecprogramming ar€heterogeneous) tuples i.e. aggregationsoafipo-
nents of pesibly different typeThe termtupleis also used in Linda [CG 89hd in
[Car 93]. Therewould be no problem to replace tinis paper the terrmodule type

by tuple type But this would not reflectthe visibility properties of objects. In a tuple
(e.g. arecord with daandprocedure components in Algol68 [KMP 69] or Modula-
2 [Wir 88b] ) the proceduresre isolatedrom the data components, whereas in an
object in a typical OQanguage the data componeate automaticallyisible in the
bodies of the procedure components.

3 Typing

In programming languages with typing entitireay betyped Thetype T of a typed
entity describes the set of admissible valugafd the set of operationsg Thvolving
those values. A type may b&atic i.e. To andespecially T, are a statiproperty, or
it may bedynamic The language is strongtyped if typeerrors arealways detected
[Seb 93: 151]. There is a preference for static propdsteause thegan bechecked
at compile time. But noall aspects of typeare static properties. In Ada efgr a
rangetypethe set §, may only be fixed atuntimebut thetype ofthe values is fixed
statically:

TYPE IntRange IS Integer RANGE 1..ReadAnInteger;

In this example thealues ofintRange  will always beinteger numbers but the set

Ty is only fixed at runtime (and may even be empty).

In general, a variable Yhay therefore have static typeST(V) andalso adynamic
typeDT(V).

The application of an operation lisgal if the statictypes ofall operandsand the

result (if there is one) are correct with respect to the static semantics of the language.
The application of an operation safeif all operandsand the resulfif there isone)

have valuesvithin their types.The application of an operation $atically safeif
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safety is astatic property; it iglynamically saféf it is not staticallysafeand safety
is guaranteed by dynamic checks.

Remarks:

(a) Safety is used here only with respect to typing; i.e. it should not be confused with
the much broader meaning of safety in the teoftware safety

(b) in this paper wealways use simple variable&ll observationsand results also

hold for variables which are components of larger variables as e.g. records or arrays.

4 Basic Properties of Module Types

A module type MT is characterized by its set of components:
CS(MT) ={C,, ..., G} with n>0.

Which kinds of entities can lkefined as a component of a modtylpe depends on
the language: Oberon [RW 92] allowsly variablesandprocedures, where&3bject
CHILL [DW 92] and C++ [ES 90] allow constants, types, variables, and procedures.
A module type can be used to declare variables, e.g. a variable MV of type MT:

VAR MV: MT;
There are two important subsets of a module type:

E(MT) O CS(MT) is theexternal interfacesf MT.
If id is the identifier of a component in E(MT) MV.id is ancess tdhis com-
ponent. Outside the definition of MT such access idegal forall elements of
E(MT) but notfor those in CS(MT) - E(MT). Thesare called thénternal com-
ponents. Irsomelanguages the internabmponentare furtherdivided into dif-
ferent groups but this is of no importance to the topic of this paper.

V(MT) O CS(MT) is the set ofariable components
A variable component of MV may assume different values as is typical for vari-
ables. In most cases the variable components are data variables but there may also
be variable components of procedure or module type. It depentie specific
language and its type system which kinds of variable components are possible.

There is no fixed relationship between E(MT) and V(MT).

A type MTd may bedirectly derivedfrom a giventype MTb. The semantics of this
derivation is that from a logical point of view the following relation holds: CS(MTd)
0 CS(MTb), i.e. thalerived typecontains allcomponents of itbase type MTb and
possiblymore. Physically, MTd declaremly those componentshich arenew or
modified. This form of derivation is usually callethgle inheritancédecausehere is
exactly one direct base type for a derived type MTd.

We speak ofmultiple inheritanceif a derived typeMTd is directly derived from
several givertypes MTh, ..., MTh,, where n > 1. Inhis case we saythatMTd is
directly derived from each dhe MTh. Some ofthe MTh may even behe same
type,i.e. MTd may be directly derived from an MTb madieanonce (see.g.[Mey
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92: 167 f.]). Multiple inheritance is e.g. supported in Gard in Eiffel[Mey 92].

Simula, OberonandObject CHILL support single inheritanaanly. With respect to

the topics discussed ithis paper, there is ndifference betweesingle inheritance

and multiple inheritance as long as there arepnablems with visibility. There are
two characteristic problems with multiple inheritance in the area of visibility:

a) name clash: MTh..., MTh, containtwo or more different components with the
same name;

b) repeated inheritance: one component defined in a common ancestor MTa is in-
herited by MTd several times via differgpaiths from MTd to MTandmay be
replicated in MTd.

There exist different solutiorfer these problems, e.g. to forltide critical situation,

to allowthe introduction of aliase®r such components in MTd, or give priority

to one of the replicas. For tHellowing we assumehat these visibility problems

have been solved and especially, that there arsewetal replicas of a component in

one MT which have the same visibility status.

The semantics of multiple inheritancetien CS(MTd) 0 CS(MTh), fori=1 .. n.

For each component of MTd it is well defined from which Mitthasbeeninher-

ited.

A type MTd is derivedfrom anothettype MTb, MTd = MTh, if MTd is either di-

rectly derived from MTb or if it is derived from a type Muhich is directly derived

from MTb. The derivation relation is restricted in such a way that its graph is a set of

directed acycligraphs,becausehe derivation of MT from MT, eithedirectly or
indirectly, is usually not allowed. We assuthe direction of the arcs from MTd to

MTb. In these DAGSs the nodes with no successerminimal wrt 2" and thenodes

with no predecesscare maximal. To each element e of th&#&Gs belongs a

nonempty set ofinimal elements min(eand anonempty set of maximal elements

max(e). We use MT1 > MT2 as an abbreviation for MTUT2 O MT1 = MT2.

Remark: The relation> is sometimes definetthe otherway round. The definition

here is motivated by the relation between the sets of components:

MTd = MTb => CS(MTd)O CS(MTh).

This monotonicity of derivation wrt to the component set is fundamental to the topics
and results of this paper (e.g. for substitutivity).

For thetopic of this paper it is important that thderivation has additionally the
following monotonicity properties:

MonE) MTd = MTb => E(MTd)O E(MTb) (Monotonicity of
the external intdace)

MonV) MTd =MTb => V(MTd) O V(MTb) (Monotonicity of
the variable components)

There are languagdsr which MonEdoesnot alwayshold (e.g. for private deriva-
tion in C++).

MonV holds in most OO languages. In our framework here, Mon\c@naequence
of the semantics of inheritancBecause MonV ismportantfor several properties
discussed we have mentioned it particularly and given it an own name.
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For pointer types of the kind “REF MT”, where MT is a module typetrasmsfer the
ordering relation:

POrd) “REF MT1"z “REF MT2"” := MT1 = MT2.

The ordering relation can lkefined analogously fdrigher order pointerdzor each
pointer level("REF MT”, “REF REFMT", etc.) we obtain a derivatiograph iso-
morphic to thatfor the module types. A consequence tbfs correspondence are
propositions as e.g. min(“REF MT”) = “REF min(MT)".

Modula-3 [CDG 92]and Java [GJS 96kee module types (actualballed “object
types” in Modula-3and “class types” in Java) as mixture of moduletype and
“pointer to module type"assignment e.g. is pointer assignment, dereferencing is not
possible,and “variable.component-id” accesses onetltd components. Therefore,
not all situations, which ar@vestigated in this paper, are relevant to theselan-
guages.

Example
In the rest of the paper we will refer to the following example of module types:

TYPE BasicFigureType = MODULE
PUBLIC
PROC Move(To: PositionType);
INTERNAL
VAR CurrentPosition: PositionType INIT := (0,0);
END BasicFigureType;

This defines a module tyfasicFigureType  which containdwo components: the
proceduréMove and thevariableCurrentPosition . The components of thexter-
nalinterface are written under the headifgBLIC. There is one public component:
the procedur&ove. The internal components are written under the heddingR-
NAL

TYPE CircleType DERIVED_FROM BasicFigureType = MODULE
PUBLIC
PROC SetRadius(Radius: RadiusType);
INTERNAL
VAR CurrentRadius : RadiusType INIT := 1;
END CircleType;

TYPE SquareType DERIVED_FROM BasicFigureType = MODULE
PUBLIC
PROC SetSideLength(Side: SideType);
INTERNAL
VAR CurrentSideLength : SideType INIT :=1;
END SquareType;

For this example we have:
CS(BasicFigureType) =

{ (PROC Move(PositionType)), (VAR CurrentPosition PositionType) }
E(BasicFigureType) = { (PROC Move(PositionType)) }
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V(BasicFigureType) = { (VAR CurrentPosition PositionType) }

CS(CircleType) =
{ (PROC Move(PositionType)), (VAR CurrentPosition PositionType),
(PROC SetRadius(RadiusType)), (VAR CurrentRadius RadiusType) } =

CS(BasicFigureType)]
{ (PROC SetRadius(RadiusType), (VAR CurrentRadius RadiusType) }
E(CircleType) ={(PROC Move(PositionType)), (PROC SetRadius(RadiusType)) }

V(CircleType) =
{ (VAR CurrentPosition PositionType), (VAR CurrentRadius RadiusType) }
min(SquareType) = BasicFigureType
min(“REF CircleType”) = “REF BasicFigureType”
max(BasicFigureType) = {CircleType, SquareType}

An example of multiple inheritance is:

TYPE ColoringType = MODULE
PUBLIC
TYPE ColorType = (Red, Green, Blue);
PROC SetColor(Color: ColorType);
INTERNAL
VAR CurrentColor : ColorType INIT := Blue;
END ColoringType;

TYPE ColoredCircleType
DERIVED_FROM CircleType, ColoringType = MODULE
PUBLIC
PROC ColoredCircleType(Radius: RadiusType; -- constructor
Color: ColorType);
END ColoredCircleType;

It is straightforward to computhe differentsets of components as tine preceding
example.

5 Typing Rules for Module Types

5.1 Variables

If we declare a variable of type MT we mask whether derivation hasy influence
on the type of this variable. For the declaration

VAR MV: MT;
we have the following two conditions:
MvVarl) ST(MV)=MT
MVar2) ST(MV) =DT(MV) is an invariant during the lifetime of MV.
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This means that MV islways of type MT as is typical forariables in typed lan-
guages. Thealue of MV is always a module of typ&T. Therefore, derivation has
no influence on the typing of variables of module type.

The mainreason to use these classical rulestlier typing of variables aiodule
type is one of implementation efficiency. It would be more complicatedpgtement
the variables if the dynamigpe could varyThis polymorphism is usually reserved
for variables oftype “pointer to module type” fowhich it is much easier to imple-
ment. Pointer types are treated in sect. 6.

The preceding paragraphs hold for both statically declared vareidieynamically
created anonymous variablasdfor variables whickarecomponents ofarger vari-
ables.

5.2 Assignment

In most languages with extensiltigoes type compatibility foassignment isisually
defined in a more relaxed forthanfor othertypes.This relaxation idue to the
properties of the derivation relation. For an assignment of the form:

LHS := RHS;
where ST(LHS) and ST(RHS) are module types, we have the following rules.
MAss1) Type compatibility: ST(LHSk ST(RHS)

MAss2) Semantics: Assignment of corresponding variable components;
this is called aprojection because V(ST(LHS))O
V(ST(RHS)) is possibleThis rule guaranteeshat
MVar2 holds.

If MonV holds, the assignment is statically safe. Since assignment means assignment
of a copy ofthe corresponding components into twbcomponents dhe variable
LHS, the statictype of LHS isnot affected atall. Thereforethis assignment is NOT
an example of substitutivity.

These rules argypically used in object-orientdednguages with strong typing as e.g.
Borland Pascal witlobjects,C++, andOberon. Object CHILL usebe stronger rule
ST(LHS) = ST(RHS) because projection weaxd rated asery important by the first
users of the language. Differesystems have been developeing Object CHILL
[GW 92], but none ofhe users missed projection. Jal@esnot provide assignment
for composite types [GJS 96: 41, 460].

For the variables

VAR MyFigure, YourFigure: BasicFigureType;
VAR MyCircle: CircleType;

the following assignments are legal and statically safe:

MyFigure := YourFigure; -- same type
MyFigure := MyCircle; -- projection:
-- MyFigure.CurrentPosition :=
-- MyCircle.CurrentPosition
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On the other hand the following assignment is illegal:

MyCircle := MyFigure; -- which value should be
-- assigned to MyCircle.CurrentRadius ?

5.3 Parameters

The properties of a formal parameter FP of a procedure P are defined by its kind. The
essential point is the mechanism of parameter association, i.e. the mechseism

to associatehe formal parameter FP with the actual parameter AP given in a call
"P(FP => AP);". Inthefollowing we discuss twdéinds of parameters, valymrame-

ters andreference parameterbecause thestwvo formsare mostly used intyped
object-oriented languages.

5.3.1 Value Parameters
A procedure with a value parameter typically looks like:

PROC P(FVP: MT);
Body

For value parameters parameter association is defined as follows:
the call P(FVP => AVP); is equivalent to

VAR FVP: MT INIT := AVP;
Body

This means thatST(FVP) = DT(FVP)” is aninvariant in thescope of FVP. Often
FVP is treated as a local variable (CHILL and Object CHILL, Pascal, Modathjn
other cases as a local constant (Ad#js difference is of no importance thetopic
of this paper. What is important here is that parameteociation is essentially the
same as assignment.

This observation suggests to ue same rulefor typing and semantics as for as-
signment. This isypically done.Borland Pascal witlobjects,C++, andOberon use
ST(FVP)< ST(AVP) and projection, and Object CHILL uses ST(FVP) = ST(AVP).

If we have the following procedure P:

PROC P(Figure: BasicFigureType);
BEGIN

Figure.SetPosition(To => (1,4));
END P;

the calls

P(Figure => MyFigure);
P(Figure => MyCircle);

are both legal and statically safe if the projection rule is used.

To call this parameter &alue parameter” is somewhat unfortundiecausethis
termdoesnot clearlydescribethe roleFVP plays in P (as mentioned FVP is often a
variablein thebody of P). The term is mainly implementation oriented motivated by
the fact that the value of the AVP is copied into the FVP.
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5.3.2 Reference Parameters

The termreference parameter (sometimes also called variable parameter) is also an
implementation oriented term but does not reflect the logic of parameter association.
Referencgparameters anesed e.g. irCHILL, C++, Modula, OberorandPascal. In

Ada a more abstract view of formal parameters is used.

For a reference parameter FRP in a procedure P

PROC P(VAR FRP: MT);
Body

parameter association is defined as follows:
the call P(FRP => ARP); is equivalent to:

VAR FRP: MT ALIAS ARP;
Body

This equivalence followdrom the definition ofreference parametéseee.g.[ANS
83: 6.6.3.3]) and of the implementatistrategy for such parametdiseee.g. [ST
85: 602; Har 92: 118]).

A reference parameter FRP therefore has the following important properties:

Refl) FRP is a variable of type MT and not a reference or pointéhjsraspect it is
similar to a value parameter.

Ref2) FRP is anew (additional)namefor the variable identified bARP, i.e. the
connection between FR&dARP ismuch moreclosethanfor a value pa-
rameter. One consequence of this propertiiasanywhere irthe intersection
of the scopes of FRRNdARP FRPcan be replaced witARP, or equiva-
lently FRP=ARP is an invariant in this intersection.

A consequence of Ref2 ihat ST(FRP) = ST(ARP) must hold. If ST(FRB)
ST(ARP) were allowedhe substitution(FRP - ARP) would give ST(ARP}
ST(ARP), which is a clear contradiction. ST(FRP) = ST(ARP) holdslfdinds of

types.
The following examples showhat weaker rules foparameter association lead to

situations with undefined behavior.

a) ST(FRPX ST(ARP)
b) ST(FRP} ST(ARP)

Example a) (ST(FRP) < ST(ARP)):

PROC Pgreater(VAR Figure: BasicFigureType);
VAR LocalFigure: BasicFigureType;

BEGIN
Figure := LocalFigure;

END Pgreater;

The call
PGreater(Figure => MyCircle);
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is now equivalent tohe following block, in whichthe ruleRef2 hasbeen applied to
the parametefigure :

BLOCK
VAR Figure: BasicFigureType ALIAS MyCircle;
VAR LocalFigure: BasicFigureType;
BEGIN
Figure := LocalFigure;
END;

and, due to the alias relation between FRP and ARP, this is equivalent to:

BLOCK
VAR Figure: BasicFigureType ALIAS MyCircle;-- (1)
VAR LocalFigure: BasicFigureType;
BEGIN
MyCircle := LocalFigure; -- ST(LHS) > ST(RHS) (2
-- which value should be assigned to
-- MyCircle.CurrentRadius ?
END;

The problem whichbecomesnanifest in the assignment (2) can alreadyplerved
in the declaration (1): ifigure denotes a variable ¢fpe BasicFigureType it
cannot simultaneously denote a variabletypie CircleType , which is different
from BasicFigureType

Example b) (ST(FRP) > ST(ARP)):

PROC PLess(VAR Circle: CircleType);
VAR LocalCircle: CircleType;

BEGIN
LocalCircle := Circle;

END PLess;

The call
PLess(Circle => MyFigure);
is now equivalent to:

BLOCK
VAR Circle: CircleType ALIAS MyFigure;
VAR LocalCircle: CircleType;

BEGIN
LocalCircle := Circle;
END;
and, due to the alias relation between FRP and ARP this equivalent to:
BLOCK

VAR Circle: CircleType ALIAS MyFigure;
VAR LocalCircle: CircleType;
BEGIN
LocalCircle := MyFigure; -- ST(LHS) > ST(RHS) 3)
-- which value should be assigned to
-- LocalCircle.CurrentRadius ?
END;
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In assignments (2and(3) ST(LHS) >ST(RHS)and V(ST(LHS)) O V(ST(RHS))
hold, which contradict the rulassl given in sect.2. Assignment (3) itherefore
especially dangerous becaude implementation strategyfor such assignments
based orthe rulesMAss1 and MAss2 wouldassign an undefined value ttocal-
Circle.CurrentRadius . One solution tdhis problem is to checkhe assignment
(3) dynamically.This would mean that anodule assignment involving vaarame-
ters had to benplemented differently from a module assignmaaitinvolving such
parameters. Apart frorthis, theconceptual problem of wh#te semantics ofVAR
Circle: CircleType ALIAS MyFigure; " should actually be would still exist.
Borland Pascal witlObjects,C++, andOberon usehe following type compatibility
rule for reference parameters: ST(FRR) ST(ARP) whichcan lead to th@roblem
presented in example @bject CHILL useghe type compatibilityrule ST(FRP) =
ST(ARP) which guaranteethat assignmenténvolving reference parameters of
module type are statically safe if the rules for assignment given in sect. 5.2 hold.
We discuss this problem further in sect. 7 after we have discussed the typing rules for
pointer-to-module types in sect. 6.

5.4 Function result

In strongly typedprocedural languages a function behavessy much in thesame
way as a variable, whetke resultype ofthe function corresponds to thge of the
variable. Therefore MVarl and MVar2 should also hold for function result.

6 Typing Rules for Pointer-to-Module Types

In object-oriented languages pointer-to-modtylpes (PTMT) aretypically treated
differently from other pointetypes.The reason is thillowing. Thetypes of a deri-
vation tree ardogically related to each other irery much the samway asthe vari-
ants of a recordype with variants in Ada or Pascal. The variants of such a record
type with variants are defined withametype:

TYPE Figure = RECORD
CurrentPosition: PositionType;
CASE Kind: FigureKind OF
Circle: CurrentRadius: RadiusType;
Square: CurrentSideLength: SideType;
END,;

A variable of type Figure is polymorphic in the following way. For a variable
VAR MyFigure: Figure;

the following assignments are legal and safe:

MyFigure := (Position => (3,4),
Kind => Circle, CurrentRadius => 2);
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MyFigure := (Position => (7,8),
Kind => Square, CurrentSideLength => 4);

This ispossible becaudbe set of variants ifixed in the definition of theype Fig-
ure . We have seen in sect. tiatsuch a polymorphism is typicallyot defined for
variables of module typ&.he reason ishat the variants am@ore isolated whethey
aredefined via derivation. This greater isolation hadso some advantages lthis
is of no importance to the topic of this paper.) After the definition of thetypetof
a derivation hierarchy, as e.@asicFigure  in the runningexample, the set of
variants is noffixed but may be extended lige definition of additionatierived
types. Such derived types may even be definexttiar or as other compilation units.
This is the reasothat implementation isnore complicatedhan for recordtypes
with variants.

For PTMT the situation is simpldyecausethe representation of a pointealue
usually useshe same amount of storageen ifthe type ofthe value pointed to var-
ies. Thisobservation allows a polymorphism as used for record variabléeipre-
ceding assignment to be used for PTMT variables.

6.1 Variables

For a variable of a PTMT
VAR PV: REF MT;

typing is defined by a more relaxed rule: R\y assume pointeminting to vari-
ables of any type MTp MT. Therefore the following is legal:

VAR PointerToFigure: REF BasicFigureType;
PointerToFigure := NEW BasicFigureType;
-- PointerToFigure points to a variable of
-- type BasicFigureType
PointerToFigure := NEW SquareType;
-- PointerToFigure points to a variable of
-- type SquareType
PointerToFigure := NEW CircleType;
-- PointerToFigure points to a variable of
-- type CircleType

To describethis behavior we distinguishetweenthe statictype and thedynamic
type of aPTMT variable. As for other variabldke statictype is fixed inthe decla-
ration: ST(PV) = “REFMT” and ST(PointerToFigure) = “REF BasicFigureType”.
On the other hand, the dynamic type may vary:

PointerToFigure := NEW BasicFigureType;
-- PointerToFigure points to a variable of
-- type BasicFigureType

-- ST(PointerToFigure) = "REF BasicFigureType*“ d
-- DT(PointerToFigure) = "REF BasicFigureType*
PointerToFigure := NEW SquareType;
-- PointerToFigure points to a variable of
-- type SquareType
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-- ST(PointerToFigure) = "REF BasicFigureType* d
-- DT(PointerToFigure) = "REF SquareType*
PointerToFigure := NEW CircleType;
-- PointerToFigure points to a variable of
-- type CircleType

-- ST(PointerToFigure)
-- DT(PointerToFigure)

"REF BasicFigureType* d
"REF CircleType*“

The set of admissible values of a PTMT “REF MT” can be characterized by:
“REF MT"y = {nil} O{p |p pointsto VO ST(V)=MT }.

For a variable PV of a PTMT the following condition holds:

PPoly) DT(PV)= ST(PV) is an invariant in the scope of PV.

We define

PNil) ST(nil)= PT and DT(nilz PT forany PTMT PT.

The variability of the dynamitype of aPTMT variable together with the reimple-
mentation of procedures is the technical basis for polymorphism.

If any PTMT variable PV is initialized withil in its declaration the®T(PV) =
ST(PV) holds after the declaration of PV.

We assumehat all pointervalues# nil arecreated by the operation NEW. An ex-
pression “NEW MT” has the following property:

PNew) ST(*NEW MT”) = DT(*"NEW MT") = “REF MT".

For pointers thenly operationsare createcopy, and destroy. Therefore, a pointer
value of type “RERVIT” alwayspoints to a variable diype deref("RERMT") = MT.
This gives us the basic property of PTMT variables:

PBasic) PV nil O ST(PWt)=DT(PVt) = deref(DT(PV))

We use a notation in whidhe dereferencing of a pointer is indicatdlicitly: if

PV is a pointer variable “PV' is the variable pointed to by PV.

The rulePBasic is an implication dhe rule MVar2 (sect. 5.1hecause for any
PTMT variable PV “PV” is an MT variable.

As a reminder we remark thdéespite polymorphism a PTMT variable PV of static
type “REFMT” usually providesonly access tdhe elements of E(MT). Aiseful
consequence ¢his rule is thatlue to MonEall accesses “PV.id” are staticallysafe
independently of the dynamigpe of PV. Despitethis constrainpolymorphism is a
useful mechanism. lallows the aggregation of variables of different (but related)
module types into one data structure as e.g. an array or a linked list. It is furthermore
useful in combination with reimplementation of procedures. Sometthegserm
“redefinition” is used instead of reimplementatiamd insomelanguages such pro-
ceduresare called virtual odynamic procedures. We do not go into further details
here because we assuntiee reader is familiar with the maironcepts of object-
orientation.
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6.2 Assignment

If we have PTMT variables two forms of assignment have to be distinguished:

a) LHS := RHS; where thetype of LHS is aPTMT. This means that thessign-
ment is on thdevel of pointertypes. Thereforethis form of assignment is called
pointer assignment

b) LHS := RHS;where at least one &¢HS andRHShas theform “exprt” and the
type of expr is a PTMT. This means that the assignment is dawtbleof module
typesand atleast one of the operands islereferenced pointavhose type is a
PTMT. Therefore, thiform of assignment is callederef assignmentf neither
LHS nor RHS has theform “exprt” we have an assignment of the form which
has been discussed already in sect. 5.2 or a pointer assignment.

For the discussion of assignment it is helpful to distinghietiveenthe statebefore
the assignment and ttstate after the assignment. Wsethe following notation:
LHS isthe state ofhatentity beforethe assignment andHS’ is the state after the
assignment.

6.2.1 Pointer Assignment

The discussion in sect. 6.1 meahat for pointer assignment for PTMT a more
relaxed rulethan for other pointertypes applies. Let ST(LHS}ynd ST(RHS) be
PTMTs. For an assignment of the form:

LHS := RHS;
we have the following rules.

PAssl) Type compatibility: ST(LHS¥ DT(RHS)

PAss2) Semantics: Assignment ofcapy ofthe value ofthe RHS, which
implies DT(LHS") = DT(RHS).

The type compatibilityrule PAss1 allows for ST(LHS) > ST(RHS). this case a
dynamic check is necessary goiarantee theafety ofthe assignment, i.e?Poly
cannot be guaranteed statically.

Some typed object-orienteldnguages (e.g. Borland Pascal wifibjects, Eiffel,
Oberon) use the type compatibility rule:

PAss3) ST(LHS) ST(RHS)

instead of PAss1. PAss3 is strongfesin PAssland guaranteeBPolystatically. For
the moment we do not include parameters which are treateetin6.3. Therefore,
PPoly can only be affected by the declaration and by amsigh

PropPosITIONL: If PAss2and PAss3 holdandany PTMT variable PV is initialized
with nil, then PPoly is astatic property in programs using declaratamd as-
signment.

ProoF The proof is byinduction on thesequence of operatiomsanipulating one
specific pointer value p. Such a sequence begittiser with the declaration of
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PV, with an assignment of the fortaV := NEW MT;” or with an assignment of
the form “PV := nil;". The other elements of the sequence all have the'Rihn
:= PV2;” where p is thealue of PV2. For any assignmé®V := RHS” we have
ST(PV) = ST(PV).

1) DT(PV) = ST(PV) holds after the declaration (see sect. 6.1).

2) Letthe assignment have the forfaV := nil;". By PAss2 we have DT(PV’) =
DT(nil). By PNil we have DT(nil)= ST(PV) = ST(PV’). Therefore, DT(PV'e
ST(PV’) holds after the assignment.

3) Letthe assignment have the forfRV := NEW MT;". By definition of NEW we
have DT(*NEW MT") = ST(*"NEW MT") = “REF MT". By PAss2 we have
DT(PV’) = DT(“NEW MT") = “REF MT". By PAss3 we have ST(“NEW MT")
> ST(PV) = ST(PV). It follows that “REF MT” = DT(PV')2 ST(PV’).

4) Let the assignment have the forfRV1 := PV2;". We assume DT(PV2)=
ST(PV2) holds before the assignment. By PAss@PAss3 we have DT(PV1') =
DT(PV2) = ST(PV2)= ST(PV1) = ST(PVY1). M

The rules PAss2PAss3and MonE ensurethat pointer assignments aadcess to
external entities of module variables pointed to by pointer variables are statafelly

if only assignments are performed. Tdese of parameters will be discussed in sect.
6.3.

Object CHILL and Simulause a more relaxetype compatibilityrule for pointer
assignment:

PAss4) [ ST(LHS)> ST(RHS)J ST(LHS) < ST(RHS)]0O
ST(LHS) < DT(RHS).

For PAss4 a dynamic check is necessary if ST(LHS) > ST(RHS).
Rule PAss3 is essentiallje same as MAssBut there is a biglifference between
these two forms of assigrent:
* a variable VMT of a modulgype has always the sametype ST(VMT), i.e.
DT(VMT) = ST(VMT) is an invariant during the lifetime of VMT.
 avariable VPMT of a PTMT is polymorphic which leadghe weakerinvariant
DT(VPMT) = ST(VPMT). This meanthat, as hadeen described in se&.1,
VPMT may point to variables of different modutgpes.This observation is im-
portant for deref assignment.

6.2.2 Deref Assignment

A deref assignment is actually an assignment for motdes,i.e. MAssl and
MAss2 must hold.
The most general form of a deref assignment is

PVL1 := PVRI;

where both PVlandPVR are oftype PTMT. We assum®@VL andPVR are both #
nil, since otherwis¢he attempt t@xecutethe statement will result in an error. As a
consequence of MAss1 we obtain:
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ST(PVLt) < ST(PVR)
deref(DT(PVL)) < deref(DT(PVR))
DT(PVL) < DT(PVR).

Even if we require ST(PVL) = ST(PVR) the deref assignment is not statically safe:
VAR PVL, PVR: REF BasicFigureType;

PVL := NEW CircleType;
PVR := NEW BasicFigureType;

[PBasic]
[PDer]

PVLt :=PVR 1; -- DT(PVL) > DT(PVR)!
PVR := NEW SquareType;
PVLt :=PVR 1; -- DT(PVL) and DT(PVR) are

-- not related at all!
The only condition making a deref assignment statically safe under PPoly is
PAss5) max(ST(PVL)) = { ST(PVR) }

ProPosITIONZ: If PAss2 and PAss5 hold, then the deref statement
“PVL1 := PVRt" is statically safe under PPoly.

ProOE Since the right hand side of PAss5 consists of a singleton set, ST(PVR) is the
only leaf in the subtree whose root is ST(PVL). Therefore this tree consists just of the
pathfrom ST(PVL) to ST(PVR). If ST(PVR) imaximal PPolyimplies DT(PVR) =
ST(PVR). If we assume DT(PVL) > DT(PVR)is means thadT(PVL) > ST(PVR)

which contradicts thefact that ST(PVR) is maximal. ThereforeDT(PVL) <
DT(PVR) must holdand according to PBasic ST(P\Vl) < ST(PVRr), i.e. MAssl

holds. M

PAss5 is a vergtrong restriction, but if it is not used a dynamic cheakeisessary,
i.e. PAss5 is also necessamihis can beseen at theninimal derivation tree, which
has one minimal node MT1and more than one maximalnodes MT2and MT3:
MT1<MT2 O MT1<MT3 O =(MT2<MT3) O =(MT3 < MT2). If ST(PVL)

= “REFMT1” O ST(PVR) = “REFMT2” then DT(PVL) = “REF MT3” means
that thederef assignment isot safe becaus® T3 may contain a component not
contained in MT2.

On the other hand, @eref assignment is nevsafe ifthe two typesare not on the
same path. Therefore,

PAss6) ST(PVL) and ST(PVR) are on the same path

could be aminimal requirement to behecked staticallyThis rule isused inObject
CHILL.

6.3 Parameters

6.3.1 Value Parameters

For a value parameter of a PTMe samebservations as for module types apply:
the value parameter is a local variatdad theassociation betweethe formal pa-
rameterFVP and the actual paramet&VP is an assignmentFVP := AVP;".
Therefore, the same rules as for pointer assignment can be used.
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6.3.2 Reference Parameters

In sect. 5.3.2 it is showtthat ST(FRP) = ST(ARP) must hold, duettte alias rela-

tion between FRRNAARP. This rule isused in Borland Pascal withbjects,C++,
Oberon, and Object CHILL.

It is easy to giveexamples where weaker rules lead to illegal situations. One such
example is given in [CCJ 93: 151].

6.3.3 PPoly as a Static Property

If for assignment to formal parameters the same rules hold as for vaR&tubsis a
static property.

ProPOSITIONS: If PAss2andPAss3 holdand allPTMT variables PV are initialized
with nil, then PPoly is astatic property in programs using declaration, assign-
ment, value parameters, and reference parameters.

ProoF Theproof is byinduction on thesequence S of operationgnipulating one

specific pointer value p.

1) Value parameter: an FVP is essentially a PTMT variabtetheassociation with
the AVP is essentially an assignment. Therefalepossible steps of S involving
an FVP are already covered by the proof of Prop.1.

2) Referencgarameter: arRP is essentially RTMT variableand theassociation
with the ARP is essentiallaliasing. Since theroof of Prop.1doesnot rely on
the fact that there inly oneidentifier for a variableall possible steps of S in-
volving an FRP are already covered by the proof of Prop.1. M

6.4 Function Result
In strongly typedprocedural languages a function behavessy much in thesame

way as a variable, whetke resultype ofthe function corresponds to thge of the
variable. Therefore functions should be treated in the same way as variables.

7 Behavior in Different Languages

When discussing real languages we have to distindngisteerthe languagelefini-
tion and a compiler (or interpreter) for the language.
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7.1 Languages

Thetables land 2 contain theompatibility rules forthe languages Borland Pascal
with Objects (BPO)C++, OberonandObject CHILL (OC) as theyare given in the
language definitions.

MTASsign PTMTASssign DerefAssign
BPO ST(LHS) < ST(RHS) ST(LHS) < ST(RHS) DT(LHS) < DT(RHS)
C++ ST(LHS) < ST(RHS)  ST(LHS) < ST(RHS) DT(LHS) < DT(RHS)
Oberon ST(LHS) < ST(RHS)  ST(LHS)< ST(RHS) DT(LHS) < DT(RHS)
ocC ST(LHS) = ST(RHS)  [ST(LHS)< ST(RHS) 0  DT(LHS) = DT(RHS)

ST(LHS) = ST(RHS) ] O
ST(LHS) < DT(RHS)

Table 1. Compatibility Rules for Assignments

ValMTPar RefMTPar ValPTMTPar RefPTMTPar
BPO ST(FVP)<ST(AVP) ST(FRP)<ST(ARP) ST(FVP)<ST(AVP) ST(FRP)= ST(ARP)
C++ ST(FVP)<ST(AVP) ST(FRP)<ST(ARP) ST(FVP)<ST(AVP) ST(FRP) = ST(ARP)
Ober. ST(FVP) < ST(AVP)  ST(FRP) < ST(ARP)  ST(FVP) < ST(AVP) ST(FRP) = ST(ARP)
OC ST(FVP) = ST(AVP)  ST(FRP)=ST(ARP) ST(FVP) < ST(AVP) ST(FRP)= ST(ARP)

Table 2. Compatibility Rules for Parameters

BPO, C++, andOberon definghe same rulefor MTAssign andfor PTMTAssign.

OC differs in both cases; MTAssign being more restrictimd PTMTASssign being

more liberal. For DerefAssigthe situation is differenbecausehis form of assign-

ment is notexplicitly mentioned irthe language definitions. SinceDeerefAssign is
essentially an assignment on the level of module values Table 1 contains the rules for
MTAssign in the columror DerefAssign butaking PBasicinto account. We may
stresgthat this isour own interpretation, the language definitions just do not answer
this question explicitly.

Table 2 showdgurthermorethat BPO, C++, andOberon use twdlifferent compati-

bility rules for reference parameters:

a) if the type of the formal paramter is a MT the rule ST(FRBJT(ARP) is used;
b) if thetype ofthe formal parameter is a PTMT the ruT(FRP) = ST(ARP) is
used (which is also used for all other types).

As has already been mentioned in sect. 5.3.2cdhgpatibility rulefor RefPTMTPar
is notfully compatiblewith the alias relatiometween FRRNdARP. The reason for
this erroneous rulseems to b¢hatreference parameteese mistakerfor pointers
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(“Referenceparameters (ifPascaland Modula called VAR-parametersye consid-
ered as local pointers to which a referencé¢hto actual parameter is assigned ini-
tially. It follows that thesame relaxation holds for both valardreferenceparame-
ters.” [Wir 88a: 209]). The alias relation is fact implementedrery similar to a
pointer but on language level it has a different meaning.

7.2 Compilers

The behavior of compilelfar these four languages is given in Table Zhowsthat
the behavior okome of these compilers differs frotine corresponding language
definitions.

BPO: the compilerused is Borland Pascal withbjectsV7.0 running under Win-
dows 3.1 (case 33 could only be executadder MSDOS 6.0). All checks
that looked as if they could be useful were activated.
When using aleref assignment several assignments, whrehillegal if the
assignment is done directlgre executed (case$l, 12, 15, 16). Other as-
signments, which arkegally executed ithe assignment is done directly, are
flagged at compile time (cases 17, 18).
In the case of a RefMTPar case 35 shows the problems discussed in sect.
5.3.2. The test program contains the assignnitoisalVariable :=Parame-
ter;” and“Parameter := LocalVariable;”. Thegreboth executed without any

warnings.

Oberon BPO C++ oC

La Co La Co La Co La Co
MTAss
1 L=R + + + + + + + +
2 L<R + + + + + + - cte
3 L>R - cte - cte - cte - cte
4 LsR - cte - cte - cte - cte
PTMTAss
5 L=R R=r + + + + + + + +
5a R<r + + + + + + + +
6 L<R R=r + + + + + + + +
7 L>R R=r - cte - cte - cte - rte
7a L=r - cte - cte - cte + +
8 LsR R=r - cte - cte - cte - cte

Table 3. Behavior of Compilers
Continued on next page



140 Winkler J.F.H.: Type Compability for Extensible Module Types....

Deref Assignment

9 L=R It =rt + + + + + + + +
10 It <rt + + + + + + - rte
11 It >rr - rte - + - + - rte
12 It srt - rte - + - + - rte
13 L<R It =rt + rte + + + + + +
14 It <rt + + + + + + - rte
15 It >rr - rte - + - + - rte
16 It srt - rte - + - + - rte
17 L>R It =rr + cte + cte + cte + +
18 It <rt + cte + cte + cte - rte
19 It >rr - cte - cte - cte - rte
20 It srt - cte - cte - cte - rte
21 LsR It =rt - cte - cte - cte - cte
22 It <rt - cte - cte - cte - cte
23 It >rr - cte - cte - cte - cte
24 It srt - cte - cte - cte - cte
ValMTPar

25 F=A + + + + + + + +
26 F>A - cte - cte - cte - cte
27 F<A + + + + + + - cte
28 FsA - cte - cte - cte - cte
ValPTMTPar

29 F=A A=a + + + + + + + +
29a A<a + + + + + + + +
30 F>A A=a - cte - cte - cte - rte
30a F=a - cte - cte - cte + +
30b F<a - cte - cte - cte + +
31 F<A A=a + + + + + + +

32 FsA A=a - cte - cte - cte - cte
RefMTPar

33 F=A + + + + + + + +
34 F>A - cte - cte - cte - cte
35 F<A + +(rte) + o+ + o+ - cte
36 FsA - cte - cte - cte - cte

Table 3. Behavior of Compilers
Continued on next page
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RefPTMTPar

37 F=A A=a + + + + + + + +
37a A<a + + + + + + + +
38 F>A A=a cte - cte - cte - cte
39 F<A A=a - cte - cte - + - cte
40 FsA A=a - cte - cte - cte - cte

Abbreviations used in Table 3:

La: Language definition; Co: Compiler behavior

L: ST(LHS); R: ST(RHS); I: DT(LHS); r: DT(RHS);  s: sibling

A: ST(actual parameter); F: ST(formal parameter); a: DT(actual parameter)
+ : legal / successfully executed,; - lllegal;

cte: compile time error; rte: runtime error

Table 3(contd.). Behavior of Compilers

C++: the compiler used is Borland C++ V4.0 and V3.1 running udedows 3.1
(the executable cases where executed under V3.1). All checks that looked as if
they could be useful were activated.

When using aleref assignmerdeveal assignments, which are illegal if the
assignment is done directlgre executed (case$l, 12, 15, 16). Other as-
signments, which arkegally executed ithe assignment is done directly, are
flagged at compile time (cases 17, 18).

In the case of a RefMTPar case 35 shathie problems discussed in sect.
5.3.2. The test program contains the assignnitioisalVariable :=Parame-
ter;” and“Parameter := LocalVariable;”. Thegreboth executed without any
warnings.

In thecase of a RefPTMTPar ca88, which is illegal in the languagkefini-
tion andwhich is illegal if the assignment is done directlyei®cuted with-
out any warnings

Oberon: the compileused is Oberon (TMpystem 3v1.2 (Compiler NW 1.8.91 /
ARD 5.93) running under MS DOS 6.0.
For deref assignment illeg@lhsesare caught either atompile time or at
runtime. Case 13, which is legal, results in program abor{ibRAP 19).
Other assignments, which aegally executed ithe assignment is done di-
rectly, are flagged at compile time (cases 17, 18).
In the case of a RefMTPar case 35 shathie problems discussed in sect.
5.3.2. The test program contains the assignnitoisalVariable :=Parame-
ter;” and “Parameter := LocalVariable;”. Parameter associatioaxiscuted
without warning. The program isborted when attempting texecute
“Parameter := LocalVariable;” (TRAP 19).
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OC: the compileused is Object-CHILLY3.01 running undetOS/2 2.1. The gen-
eration of runtimechecks for module typeand PTMT was activated. The
compiler and the generated programs comply with the language definition.

8 Comparison with Other Work

Work on typing for object-oriented languages (O®Ba¥soften been based on typing
for functional programming (FP) [Bru 93CCH 89; CL 94; CL 95; CP 93] or on
constructive logidCar 93]. Thetype systemstudied in these approaches usually
deal with thetypes ofsimpleand higherorder functions. Practical OOL dwoostly

not supporhigher orderfunctions in general but contain other elements which are
not covered bythe approachesased on FP, as eassignment angointers. There-
fore, the approach of this paper and tqgproaches based on FP overlap only par-
tially. Similar differencesarealso observed in [CCI89a]. Thevery comprehensive
paper [Car 93] contairiso a number of those concepts used in practical OOL. The
paper [LW 93] is based on a “proof-theoretidpproach instead of &model-
theoretic”, on which the majority of work an typing is based. [LWe8} afocus on
assertionsand doesneither treatreference parameteror pointers. Similarly, [PS
94] deals neither witlreference parametersor with pointers (in thesensethat
pointer level and the level of dereferenced pointers are distinguished).

In this paper we deal with four aspects:

a) typing of extensible module types (EMT)

b) typing of assignment for EMTs

¢) typing of value and reference parameters whose types are EMTs
d) typing of pointer types whose base types are EMTs

a) Typing of EMT is usuallyvell covered by work on typing. Ithis paper we repeat
the definitions to make the papsif contained. In comparison to [Car 93] EMT
arevery similar to a combination of recotgipesand interfaces. This igypical
for current programming languages as e.g. C+©bject CHILL. Java, on the
other hand distinguishesbetween interfacaypes and module types (actually
called “class” types) [GJS6]. Another difference ithat thetypes ofthe compo-
nents are not taken into account when defining MTMT2 whereas thegre in
[Car 93]. Thisreflectsthe definition of MT1< MT2 as of MT2 being amxten-
sionof MT1 [Wir 88a]. If MT2 is obtained by adding components todbmpo-
nentset of MT1then thecommon components of MTAndMT2 arenecessarily
the same. This again reflects current practice. The approach of [Cde28bes
therefore a richer set of typing facilities whereas this paper is more focused on the
facilities of languages currently in use.

b) Assignment idypically avoided in FP[Car 93] also coversassignment, but it
seems in a more limited forthan inOOL, becaus¢he typing of the assignment
is given by the rule “var(A) := A”. IrDOL assignment often includes projection
when the type of the RHS is an extension of the type of the LHS.
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c) Referenc@arameters arasually not needed in approachmsed on FP because
there are no variables. @OL referenceparameters arocal variables which
may beread andupdated. [Car 93{liscusses INand OUT parameters. Since an
IN parametemay have a VAR componettie question ofeference parameters
arises indirectly and is solved in the same way as in this pgperB) [0 (B<:A)

O var(A) <: var(B).

d) Pointerand pointettypesare notused in FRandtheyarealso not treated ifiCar
93]. Even in the area of practic@OL this questionhas notbeen discussedery
thoroughly. The combination of polymorphism of pointangl thedereferencing
of such pointers leads to problems as shown in this paper.

9 Discussion

9.1 Reference Parameters

The survey ofthe type compatibilityrules in thefour languageshowsthat three of
them (BPO, C++, Oberon) have a ruléor reference parameters of moduigpe
which may lead tcsituations with undefined behavior. The technical properties and
consequences of this rule are:

a) the rule interferes with the homogeneity of the language. In those three languages
assignmentbetween module variablege staticallysafe.The rulefor reference
parameters of modulgpe makes assignments involving such parameters stati-
cally unsafe. Such parametene conceptually conceived as variables but differ
in their properties from other variables.

b) more important is thiactthat thestatically declaredype of a referencparame-
ter of module type is ndonger a static property; due to the aliasing the actual
type may be different for different calls.

In C++ a speciakind of values is used to realizbe effect of referencgparameters;
these valueare calledeferences. When used as a formal parameter a reference to a
module type is converted to “a referencehe base class sub-object thfe derived
class object[ES 90: 38, 49]. No precise definition tife sub-object isgiven. The
compiler doesobviously not generate angode forthis conversion. Thereforehis
sub-object is &ort of hybrid: the external interfacettsat of thebasic typeand the
behavior ighat of thederived type othe ARP. It is therefore possible toanipulate
data componentdefined only in a derived type lpalling a procedure which is re-
implemented in thelerived typeandwhich manipulates such componerfhis has
been validated by a corresponding experiment with Borland C++ compiler. In
order to produce a consistesub-objectthe compiler should generatede toalter
the pointer to théype descriptor suchhat it points temporarily to the descriptor of
the base type.
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9.2 Deref Assignment

It seemghat up tonow not all ramifications of theleref assignment haween seen.
Table Il suggestshat BPO, C++, andOberon use staticallthe same rule as for
pointer assignmen8T(LHS)< ST(RHS). Oberon, whictoesruntimechecks, traps
the erroneousaseqandone legal one (# 13)) atintime.BPO and C++(Borland)
do not recognize the erroneceeses whiclarepossible if only ST(LHSk ST(RHS)
is checked at compile time.
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Appendix: Collected Definitions

MonE)
MonV)

MTd = MTb => E(MTd)0 E(MTh)
MTd = MTb => V(MTd)O V(MTb)
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POrd) “REFMT1" = “REF MT2" := MT1 = MT2.

MVarl) ST(MV)=MT for VAR MV: MT,;

MVar2) ST(MV)=DT(MV) is an invariant during the lifetime of MV.
MAss1) Type compatibility for MT assignment: ST(LHS) ST(RHS)

MAss2) Semantics: Assignment of corresponding variable componémiss;is
called a projection because V(ST(LHS)) V(ST(RHS)) is possiblelhis
rule guarantees that MVar2 holds.

Refl) FRP is avariable oftype MT and not areference or pointer; ithis aspect
it is similar to a value parameter.

Ref2) FRP is a new (additionafjamefor the variable identified bARP,i.e. the
connection between FR&dARP ismuch moreclosethanfor a value
parameter. One consequencehid property isthatanywhere irthe inter-
section ofthe scopes of FRRNdARP FRPcan be replaced witARP, or
equivalently FRP=ARP is an invariant in this intersection.

PPoly) DT(PV) = ST(PV) is an invariant in the scope of PV.
PNil) ST(nil)= PT and DT(nilez PT forany PTMT PT.
PNew) ST(“NEW MT”) = DT(*"NEW MT") = “REF MT".
PBasic) PV#nil O ST(Pvi)=DT(PV1) = deref(DT(PV))



