
Type Compatibility for Extensible Module Types,

Their Reference Parameters, and Their Pointer Types

Jürgen F. H. Winkler
(Friedrich Schiller University Jena, Germany

winkler@informatik.uni-jena.de)

Abstract: Objects in object-oriented languages have often been treated as a special kind of
entity different from other variables or constants. Similarly, their types, which are typically
called classes, have often been treated differently from other types. This complicates the
understanding of these concepts. The present paper proposes to see the classes as module
types leading to a very natural integration of objects and classes into the framework of con-
temporary programming languages. The main part of the paper contains typing rules for mod-
ule types for assignment and for value and variable parameters. It is shown that the rules for
reference parameters in some existing languages lead to unexpected results and sometimes to
undefined behavior. Furthermore, assignment involving dereferenced pointers to modules is
studied for the first time in detail. The paper shows that the type compatibility rule for pointer
assignment is not sufficient for deref assignment. The last part of the paper contains a com-
parison of the language definitions and of compilers for Borland Pascal with Objects, C++,
Oberon, and Object CHILL.

Key Words: Object-Oriented languages, extensible module types, parameters and parameter
passing, deref assignment, Borland Pascal with Objects, C++, Oberon, Object CHILL
Category: D.3 Programming Languages

1 Introduction

Objects in object-oriented languages have often been treated as a special kind of
entity different from other variables or constants. Similarly, their types, which are
typically called classes, have often been treated as a special kind of type. This com-
plicates the understanding of these concepts. The present paper proposes to see the
classes as module types leading to a very natural integration of objects and classes
into the framework of contemporary programming languages.
The main part of the paper deals with type compatibility rules for extensible module
types. We show that some languages use compatibility rules for reference parameters
which lead to unexpected results and sometimes to undefined behavior. We show
especially that reference parameters are not pointers. Furthermore, assignment in-
volving dereferenced pointers to modules is studied for the first time in detail. The
paper shows that the type compatibility rule for pointer assignment is not sufficient
for deref assignment.
The last part of the paper contains a comparison of the language definitions and of
compilers for Borland Pascal with Objects, C++, Oberon, and Object CHILL.

Journal of Universal Computer Science, vol. 3, no. 2 (1997), 120-146
submitted: 11/7/96, accepted: 8/12/96, appeared: 28/2/97  Springer Pub. Co.

The formalisms used are all defined in the paper. We assume a general familiarity
with the basic concepts of object-orientation. For program examples we use a sug-
gestive syntax which should be self explanatory.
For easier reference for the reader the central definitions of the paper are collected in
the Appendix.

Despite the assumed familiarity with the basic concepts of object-orientation we
mention four essential concepts of OO which are relevant to the topics of this paper:

a) module as first class value: modules as values of variables, as parameters, and as
the target value of a pointer;

b) type derivation and substitutivity: wherever an object OTb of a (base) type Tb is
used an object OTd of a (derived) type Td can be used instead;

c) reimplementation of operations in derived types: an operation O defined in a type
Tb may be given a new implementation (body) in a derived type Td;

d) combination of reimplementation and substitutivity (polymorphism): if an opera-
tion O is applied to a variable, which may refer to objects of different (but usually
related) types, then the implementation belonging to the type of the current object
is used, i.e. depending on the type of the current object one of possibly several
different implementations of that operation is used.

2 Why Module Types ?

In this paper we use the term module type for what is often called class or object
type in object-oriented languages. There are several reasons for this.
First, object usually has a very general meaning: “something physical or mental of
which a subject is cognitively aware” (Merriam Webster New Collegiate Dictionary,
1977: 791). In the field of programming languages object is also often used in a more
general sense: “An object is an entity that contains (has) a value of a given type.”
[Ref 83: 3-2] or “An object declaration creates one or more variables. These variables
can be of any type and need not just be instances of classes.” [CW 96: 76]. This gen-
eral meaning of “object” seems to be appropriate, and this is the reason not to adopt
e.g. the term “object type” [CDG 92: 19]. In object-oriented languages object is used
more narrowly for one special kind of such objects, namely for variables or constants
of so called classes. “An object is a class instance or an array.” [GJS 96: 38]. Some-
times the term object is even used with several meanings: “From now on, object will
have a precise meaning: a record with procedure fields, accessed through a pointer.”
[RW 92: 218], “Declarations also serve to specify certain permanent properties of an
object, such as whether it is a constant, a type, a variable or a procedure.” [RW 92:
284].
The second reason is that of all the different entities in contemporary programming
languages the objects of object-oriented languages resemble mostly the modules of
CHILL [Rec 93] or Modula [Wir 88b] (package in Ada [Ref 83], unit in Borland
Pascal with Objects [Bor 93]). This resemblance can be characterized by the key
concepts “aggregation”, “encapsulation/abstraction”, and “scoping”. The relation
between module and module type is very much the same as that between a record

121Winkler J.F.H.: Type Compability for Extensible Module Types ...

variable and a record type. These observations are the essential reason to use the
term “module mode” in CHILL-96 [CHI 96]. (There are additionally monitor modes
and task modes in CHILL-96, where, as in Algol 68, “mode” is used instead of
“type”.)
The third reason is that the use of “module type” avoids the problematic term class
[Win 92]. Since the classes of object oriented languages are essentially types, i.e.
descriptions describing the nature of variables (and constants), it seems very natural
to use the term type also in this case. Other more recent approaches to object-
orientation also avoid the term class [OMG 93]. In rare cases there could be some
misunderstanding because the term module is sometimes also used in a more general
sense meaning a building block in general which could also encompass procedures.
This view is especially used when speaking about linking several (object) modules
into a single object program.
Another possible name for this kind of type could be tuple type which is even more
neutral than module type. From a somewhat abstract point of view the objects of
object-oriented programming are (heterogeneous) tuples i.e. aggregations of compo-
nents of possibly different type. The term tuple is also used in Linda [CG 89] and in
[Car 93]. There would be no problem to replace in this paper the term module type
by tuple type. But this would not reflect the visibility properties of objects. In a tuple
(e.g. a record with data and procedure components in Algol68 [KMP 69] or Modula-
2 [Wir 88b]) the procedures are isolated from the data components, whereas in an
object in a typical OO language the data components are automatically visible in the
bodies of the procedure components.

3 Typing

In programming languages with typing entities may be typed. The type T of a typed
entity describes the set of admissible values TV and the set of operations TO involving
those values. A type may be static, i.e. TO and especially TV are a static property, or
it may be dynamic. The language is strongly typed if type errors are always detected
[Seb 93: 151]. There is a preference for static properties because they can be checked
at compile time. But not all aspects of types are static properties. In Ada e.g. for a
range type the set TV may only be fixed at runtime but the type of the values is fixed
statically:

TYPE IntRange IS Integer RANGE 1..ReadAnInteger;

In this example the values of IntRange will always be integer numbers but the set
TV is only fixed at runtime (and may even be empty).
In general, a variable V may therefore have a static type ST(V) and also a dynamic
type DT(V).
The application of an operation is legal if the static types of all operands and the
result (if there is one) are correct with respect to the static semantics of the language.
The application of an operation is safe if all operands and the result (if there is one)
have values within their types. The application of an operation is statically safe if

122 Winkler J.F.H.: Type Compability for Extensible Module Types ...

safety is a static property; it is dynamically safe if it is not statically safe and safety
is guaranteed by dynamic checks.

Remarks:
(a) Safety is used here only with respect to typing; i.e. it should not be confused with
the much broader meaning of safety in the term software safety.
(b) in this paper we always use simple variables. All observations and results also
hold for variables which are components of larger variables as e.g. records or arrays.

4 Basic Properties of Module Types

A module type MT is characterized by its set of components:

CS(MT) = {C1, ..., Cn} with n ≥ 0.

Which kinds of entities can be defined as a component of a module type depends on
the language: Oberon [RW 92] allows only variables and procedures, whereas Object
CHILL [DW 92] and C++ [ES 90] allow constants, types, variables, and procedures.
A module type can be used to declare variables, e.g. a variable MV of type MT:

VAR MV: MT;

There are two important subsets of a module type:

E(MT) ⊆ CS(MT) is the external interface of MT.
If id is the identifier of a component in E(MT) MV.id is an access to this com-
ponent. Outside the definition of MT such an access is legal for all elements of
E(MT) but not for those in CS(MT) - E(MT). These are called the internal com-
ponents. In some languages the internal components are further divided into dif-
ferent groups but this is of no importance to the topic of this paper.

V(MT) ⊆ CS(MT) is the set of variable components.
A variable component of MV may assume different values as is typical for vari-
ables. In most cases the variable components are data variables but there may also
be variable components of procedure or module type. It depends on the specific
language and its type system which kinds of variable components are possible.

There is no fixed relationship between E(MT) and V(MT).

A type MTd may be directly derived from a given type MTb. The semantics of this
derivation is that from a logical point of view the following relation holds: CS(MTd)
⊇ CS(MTb), i.e. the derived type contains all components of its base type MTb and
possibly more. Physically, MTd declares only those components which are new or
modified. This form of derivation is usually called single inheritance because there is
exactly one direct base type for a derived type MTd.
We speak of multiple inheritance if a derived type MTd is directly derived from
several given types MTb1, ..., MTbn , where n > 1. In this case we say, that MTd is
directly derived from each of the MTbi. Some of the MTbi may even be the same
type, i.e. MTd may be directly derived from an MTb more than once (see e.g. [Mey

123Winkler J.F.H.: Type Compability for Extensible Module Types ...

92: 167 f.]). Multiple inheritance is e.g. supported in C++ and in Eiffel [Mey 92].
Simula, Oberon, and Object CHILL support single inheritance only. With respect to
the topics discussed in this paper, there is no difference between single inheritance
and multiple inheritance as long as there are no problems with visibility. There are
two characteristic problems with multiple inheritance in the area of visibility:
a) name clash: MTb1, ..., MTbn contain two or more different components with the

same name;
b) repeated inheritance: one component defined in a common ancestor MTa is in-

herited by MTd several times via different paths from MTd to MTa and may be
replicated in MTd.

There exist different solutions for these problems, e.g. to forbid the critical situation,
to allow the introduction of aliases for such components in MTd, or to give priority
to one of the replicas. For the following we assume that these visibility problems
have been solved and especially, that there are not several replicas of a component in
one MT which have the same visibility status.
The semantics of multiple inheritance is then CS(MTd) ⊇ CS(MTbi), for i = 1 .. n.
For each component of MTd it is well defined from which MTbi it has been inher-
ited.
A type MTd is derived from another type MTb, MTd ≥ MTb, if MTd is either di-
rectly derived from MTb or if it is derived from a type MT which is directly derived
from MTb. The derivation relation is restricted in such a way that its graph is a set of
directed acyclic graphs, because the derivation of MT from MT, either directly or
indirectly, is usually not allowed. We assume the direction of the arcs from MTd to
MTb. In these DAGs the nodes with no successor are minimal wrt “≥” and the nodes
with no predecessor are maximal. To each element e of these DAGs belongs a
nonempty set of minimal elements min(e) and a nonempty set of maximal elements
max(e). We use MT1 > MT2 as an abbreviation for MT1 ≠ MT2 ∧ MT1 ≥ MT2.
Remark: The relation ≥ is sometimes defined the other way round. The definition
here is motivated by the relation between the sets of components:

MTd ≥ MTb => CS(MTd) ⊇ CS(MTb).

This monotonicity of derivation wrt to the component set is fundamental to the topics
and results of this paper (e.g. for substitutivity).
For the topic of this paper it is important that the derivation has additionally the
following monotonicity properties:

MonE) MTd ≥ MTb => E(MTd) ⊇ E(MTb) (Monotonicity of
the external interface)

MonV) MTd ≥ MTb => V(MTd) ⊇ V(MTb) (Monotonicity of
the variable components)

There are languages for which MonE does not always hold (e.g. for private deriva-
tion in C++).
MonV holds in most OO languages. In our framework here, MonV is a consequence
of the semantics of inheritance. Because MonV is important for several properties
discussed we have mentioned it particularly and given it an own name.

124 Winkler J.F.H.: Type Compability for Extensible Module Types ...

For pointer types of the kind “REF MT”, where MT is a module type, we transfer the
ordering relation:

POrd) “REF MT1” ≥ “REF MT2” :⇔ MT1 ≥ MT2.

The ordering relation can be defined analogously for higher order pointers. For each
pointer level (“REF MT”, “REF REF MT”, etc.) we obtain a derivation graph iso-
morphic to that for the module types. A consequence of this correspondence are
propositions as e.g. min(“REF MT”) = “REF min(MT)”.

Modula-3 [CDG 92] and Java [GJS 96] see module types (actually called “object
types” in Modula-3 and “class types” in Java) as a mixture of module type and
“pointer to module type”: assignment e.g. is pointer assignment, dereferencing is not
possible, and “variable.component-id” accesses one of the components. Therefore,
not all situations, which are investigated in this paper, are relevant to these two lan-
guages.

Example

In the rest of the paper we will refer to the following example of module types:

TYPE BasicFigureType = MODULE
PUBLIC
 PROC Move(To: PositionType);
INTERNAL
 VAR CurrentPosition: PositionType INIT := (0,0);
END BasicFigureType;

This defines a module type BasicFigureType which contains two components: the
procedure Move and the variable CurrentPosition . The components of the exter-
nal interface are written under the heading PUBLIC. There is one public component:
the procedure Move. The internal components are written under the heading INTER-
NAL.

TYPE CircleType DERIVED_FROM BasicFigureType = MODULE
PUBLIC
 PROC SetRadius(Radius: RadiusType);
INTERNAL
 VAR CurrentRadius : RadiusType INIT := 1;
END CircleType;

TYPE SquareType DERIVED_FROM BasicFigureType = MODULE
PUBLIC
 PROC SetSideLength(Side: SideType);
INTERNAL
 VAR CurrentSideLength : SideType INIT := 1;
END SquareType;

For this example we have:

CS(BasicFigureType) =
{ (PROC Move(PositionType)), (VAR CurrentPosition PositionType) }

E(BasicFigureType) = { (PROC Move(PositionType)) }

125Winkler J.F.H.: Type Compability for Extensible Module Types ...

V(BasicFigureType) = { (VAR CurrentPosition PositionType) }

CS(CircleType) =
{ (PROC Move(PositionType)), (VAR CurrentPosition PositionType),
 (PROC SetRadius(RadiusType)), (VAR CurrentRadius RadiusType) } =

CS(BasicFigureType) ∪
{ (PROC SetRadius(RadiusType), (VAR CurrentRadius RadiusType) }

E(CircleType) = { (PROC Move(PositionType)), (PROC SetRadius(RadiusType)) }

V(CircleType) =
{ (VAR CurrentPosition PositionType), (VAR CurrentRadius RadiusType) }

min(SquareType) = BasicFigureType

min(“REF CircleType”) = “REF BasicFigureType”

max(BasicFigureType) = {CircleType, SquareType}

An example of multiple inheritance is:

TYPE ColoringType = MODULE
PUBLIC
 TYPE ColorType = (Red, Green, Blue);
 PROC SetColor(Color: ColorType);
INTERNAL
 VAR CurrentColor : ColorType INIT := Blue;
END ColoringType;

TYPE ColoredCircleType
 DERIVED_FROM CircleType, ColoringType = MODULE
PUBLIC
 PROC ColoredCircleType(Radius: RadiusType; -- constructor
 Color: ColorType);
END ColoredCircleType;

It is straightforward to compute the different sets of components as in the preceding
example.

5 Typing Rules for Module Types

5.1 Variables

If we declare a variable of type MT we may ask whether derivation has any influence
on the type of this variable. For the declaration

VAR MV: MT;

we have the following two conditions:

MVar1) ST(MV) = MT

MVar2) ST(MV) = DT(MV) is an invariant during the lifetime of MV.

126 Winkler J.F.H.: Type Compability for Extensible Module Types ...

This means that MV is always of type MT as is typical for variables in typed lan-
guages. The value of MV is always a module of type MT. Therefore, derivation has
no influence on the typing of variables of module type.
The main reason to use these classical rules for the typing of variables of module
type is one of implementation efficiency. It would be more complicated to implement
the variables if the dynamic type could vary. This polymorphism is usually reserved
for variables of type “pointer to module type” for which it is much easier to imple-
ment. Pointer types are treated in sect. 6.
The preceding paragraphs hold for both statically declared variables and dynamically
created anonymous variables and for variables which are components of larger vari-
ables.

5.2 Assignment

In most languages with extensible types type compatibility for assignment is usually
defined in a more relaxed form than for other types. This relaxation is due to the
properties of the derivation relation. For an assignment of the form:

LHS := RHS;

where ST(LHS) and ST(RHS) are module types, we have the following rules.

MAss1) Type compatibility: ST(LHS) ≤ ST(RHS)

MAss2) Semantics: Assignment of corresponding variable components;
this is called a projection because V(ST(LHS)) ⊂
V(ST(RHS)) is possible. This rule guarantees that
MVar2 holds.

If MonV holds, the assignment is statically safe. Since assignment means assignment
of a copy of the corresponding components into the subcomponents of the variable
LHS, the static type of LHS is not affected at all. Therefore this assignment is NOT
an example of substitutivity.
These rules are typically used in object-oriented languages with strong typing as e.g.
Borland Pascal with Objects, C++, and Oberon. Object CHILL uses the stronger rule
ST(LHS) = ST(RHS) because projection was not rated as very important by the first
users of the language. Different systems have been developed using Object CHILL
[GW 92], but none of the users missed projection. Java does not provide assignment
for composite types [GJS 96: 41, 460].
For the variables

VAR MyFigure, YourFigure: BasicFigureType;
VAR MyCircle: CircleType;

the following assignments are legal and statically safe:

MyFigure := YourFigure; -- same type
MyFigure := MyCircle; -- projection:

 -- MyFigure.CurrentPosition :=
 -- MyCircle.CurrentPosition

127Winkler J.F.H.: Type Compability for Extensible Module Types ...

On the other hand the following assignment is illegal:

MyCircle := MyFigure; -- which value should be
 -- assigned to MyCircle.CurrentRadius ?

5.3 Parameters

The properties of a formal parameter FP of a procedure P are defined by its kind. The
essential point is the mechanism of parameter association, i.e. the mechanism used
to associate the formal parameter FP with the actual parameter AP given in a call
″P(FP => AP);”. In the following we discuss two kinds of parameters, value parame-
ters and reference parameters, because these two forms are mostly used in typed
object-oriented languages.

5.3.1 Value Parameters
A procedure with a value parameter typically looks like:

PROC P(FVP: MT);
 Body

For value parameters parameter association is defined as follows:
the call P(FVP => AVP); is equivalent to

VAR FVP: MT INIT := AVP;
 Body

This means that “ST(FVP) = DT(FVP)” is an invariant in the scope of FVP. Often
FVP is treated as a local variable (CHILL and Object CHILL, Pascal, Modula) and in
other cases as a local constant (Ada). This difference is of no importance to the topic
of this paper. What is important here is that parameter association is essentially the
same as assignment.
This observation suggests to use the same rules for typing and semantics as for as-
signment. This is typically done. Borland Pascal with Objects, C++, and Oberon use
ST(FVP) ≤ ST(AVP) and projection, and Object CHILL uses ST(FVP) = ST(AVP).

If we have the following procedure P:

PROC P(Figure: BasicFigureType);
BEGIN
 Figure.SetPosition(To => (1,4));
END P;

the calls

P(Figure => MyFigure);
P(Figure => MyCircle);

are both legal and statically safe if the projection rule is used.

To call this parameter a “value parameter” is somewhat unfortunate because this
term does not clearly describe the role FVP plays in P (as mentioned FVP is often a
variable in the body of P). The term is mainly implementation oriented motivated by
the fact that the value of the AVP is copied into the FVP.

128 Winkler J.F.H.: Type Compability for Extensible Module Types ...

5.3.2 Reference Parameters

The term reference parameter (sometimes also called variable parameter) is also an
implementation oriented term but does not reflect the logic of parameter association.
Reference parameters are used e.g. in CHILL, C++, Modula, Oberon, and Pascal. In
Ada a more abstract view of formal parameters is used.
For a reference parameter FRP in a procedure P

PROC P(VAR FRP: MT);
 Body

parameter association is defined as follows:
the call P(FRP => ARP); is equivalent to:

VAR FRP: MT ALIAS ARP;
 Body

This equivalence follows from the definition of reference parameter (see e.g. [ANS
83: 6.6.3.3]) and of the implementation strategy for such parameters (see e.g. [ST
85: 602; Har 92: 118]).
A reference parameter FRP therefore has the following important properties:

Ref1) FRP is a variable of type MT and not a reference or pointer; in this aspect it is
similar to a value parameter.

Ref2) FRP is a new (additional) name for the variable identified by ARP, i.e. the
connection between FRP and ARP is much more close than for a value pa-
rameter. One consequence of this property is that anywhere in the intersection
of the scopes of FRP and ARP FRP can be replaced with ARP, or equiva-
lently FRP=ARP is an invariant in this intersection.

A consequence of Ref2 is that ST(FRP) = ST(ARP) must hold. If ST(FRP) ≠
ST(ARP) were allowed the substitution (FRP → ARP) would give ST(ARP) ≠
ST(ARP), which is a clear contradiction. ST(FRP) = ST(ARP) holds for all kinds of
types.
The following examples show that weaker rules for parameter association lead to
situations with undefined behavior.

a) ST(FRP) ≤ ST(ARP)
b) ST(FRP) ≥ ST(ARP)

Example a) (ST(FRP) < ST(ARP)):

PROC Pgreater(VAR Figure: BasicFigureType);
 VAR LocalFigure: BasicFigureType;
BEGIN
 Figure := LocalFigure;
END Pgreater;

The call
PGreater(Figure => MyCircle);

129Winkler J.F.H.: Type Compability for Extensible Module Types ...

is now equivalent to the following block, in which the rule Ref2 has been applied to
the parameter Figure :

BLOCK
 VAR Figure: BasicFigureType ALIAS MyCircle;
 VAR LocalFigure: BasicFigureType;
BEGIN

 Figure := LocalFigure;
END;

and, due to the alias relation between FRP and ARP, this is equivalent to:

BLOCK
 VAR Figure: BasicFigureType ALIAS MyCircle;-- (1)
 VAR LocalFigure: BasicFigureType;
BEGIN
 MyCircle := LocalFigure; -- ST(LHS) > ST(RHS) (2)

 -- which value should be assigned to
 -- MyCircle.CurrentRadius ?

END;

The problem which becomes manifest in the assignment (2) can already be observed
in the declaration (1): if Figure denotes a variable of type BasicFigureType it
cannot simultaneously denote a variable of type CircleType , which is different
from BasicFigureType .

Example b) (ST(FRP) > ST(ARP)):

PROC PLess(VAR Circle: CircleType);
 VAR LocalCircle: CircleType;
BEGIN
 LocalCircle := Circle;
END PLess;

The call

PLess(Circle => MyFigure);

is now equivalent to:

BLOCK
 VAR Circle: CircleType ALIAS MyFigure;
 VAR LocalCircle: CircleType;
BEGIN
 LocalCircle := Circle;
END;

and, due to the alias relation between FRP and ARP this equivalent to:

BLOCK
 VAR Circle: CircleType ALIAS MyFigure;
 VAR LocalCircle: CircleType;
BEGIN
 LocalCircle := MyFigure; -- ST(LHS) > ST(RHS) (3)

 -- which value should be assigned to
 -- LocalCircle.CurrentRadius ?

END;

130 Winkler J.F.H.: Type Compability for Extensible Module Types ...

In assignments (2) and (3) ST(LHS) > ST(RHS) and V(ST(LHS)) ⊃ V(ST(RHS))
hold, which contradict the rule Ass1 given in sect. 5.2. Assignment (3) is therefore
especially dangerous because the implementation strategy for such assignments
based on the rules MAss1 and MAss2 would assign an undefined value to Local-
Circle.CurrentRadius . One solution to this problem is to check the assignment
(3) dynamically. This would mean that a module assignment involving var parame-
ters had to be implemented differently from a module assignment not involving such
parameters. Apart from this, the conceptual problem of what the semantics of “VAR
Circle: CircleType ALIAS MyFigure; ” should actually be would still exist.
Borland Pascal with Objects, C++, and Oberon use the following type compatibility
rule for reference parameters: ST(FRP) ≤ ST(ARP) which can lead to the problem
presented in example a). Object CHILL uses the type compatibility rule ST(FRP) =
ST(ARP) which guarantees that assignments involving reference parameters of
module type are statically safe if the rules for assignment given in sect. 5.2 hold.
We discuss this problem further in sect. 7 after we have discussed the typing rules for
pointer-to-module types in sect. 6.

5.4 Function result

In strongly typed procedural languages a function behaves very much in the same
way as a variable, where the result type of the function corresponds to the type of the
variable. Therefore MVar1 and MVar2 should also hold for function result.

6 Typing Rules for Pointer-to-Module Types

In object-oriented languages pointer-to-module types (PTMT) are typically treated
differently from other pointer types. The reason is the following. The types of a deri-
vation tree are logically related to each other in very much the same way as the vari-
ants of a record type with variants in Ada or Pascal. The variants of such a record
type with variants are defined within one type:

TYPE Figure = RECORD
 CurrentPosition: PositionType;
 CASE Kind: FigureKind OF
 Circle: CurrentRadius: RadiusType;
 Square: CurrentSideLength: SideType;
 END;

A variable of type Figure is polymorphic in the following way. For a variable

VAR MyFigure: Figure;

the following assignments are legal and safe:

 MyFigure := (Position => (3,4),
 Kind => Circle, CurrentRadius => 2);

131Winkler J.F.H.: Type Compability for Extensible Module Types ...

 MyFigure := (Position => (7,8),
 Kind => Square, CurrentSideLength => 4);

This is possible because the set of variants is fixed in the definition of the type Fig-
ure . We have seen in sect. 5.1 that such a polymorphism is typically not defined for
variables of module type. The reason is that the variants are more isolated when they
are defined via derivation. (This greater isolation has also some advantages but this
is of no importance to the topic of this paper.) After the definition of the root type of
a derivation hierarchy, as e.g. BasicFigure in the running example, the set of
variants is not fixed but may be extended by the definition of additional derived
types. Such derived types may even be defined in other or as other compilation units.
This is the reason that implementation is more complicated than for record types
with variants.
For PTMT the situation is simpler because the representation of a pointer value
usually uses the same amount of storage even if the type of the value pointed to var-
ies. This observation allows a polymorphism as used for record variables in the pre-
ceding assignment to be used for PTMT variables.

6.1 Variables

For a variable of a PTMT

VAR PV: REF MT;

typing is defined by a more relaxed rule: PV may assume pointers pointing to vari-
ables of any type MTp ≥ MT. Therefore the following is legal:

VAR PointerToFigure: REF BasicFigureType;
PointerToFigure := NEW BasicFigureType;

 -- PointerToFigure points to a variable of
 -- type BasicFigureType

PointerToFigure := NEW SquareType;
 -- PointerToFigure points to a variable of
 -- type SquareType

PointerToFigure := NEW CircleType;
 -- PointerToFigure points to a variable of
 -- type CircleType

To describe this behavior we distinguish between the static type and the dynamic
type of a PTMT variable. As for other variables the static type is fixed in the decla-
ration: ST(PV) = “REF MT” and ST(PointerToFigure) = “REF BasicFigureType”.
On the other hand, the dynamic type may vary:

 PointerToFigure := NEW BasicFigureType;
 -- PointerToFigure points to a variable of
 -- type BasicFigureType
 -- ST(PointerToFigure) = "REF BasicFigureType“ ∧
 -- DT(PointerToFigure) = "REF BasicFigureType“
 PointerToFigure := NEW SquareType;
 -- PointerToFigure points to a variable of
 -- type SquareType

132 Winkler J.F.H.: Type Compability for Extensible Module Types ...

 -- ST(PointerToFigure) = "REF BasicFigureType“ ∧
 -- DT(PointerToFigure) = "REF SquareType“
 PointerToFigure := NEW CircleType;
 -- PointerToFigure points to a variable of
 -- type CircleType
 -- ST(PointerToFigure) = "REF BasicFigureType“ ∧
 -- DT(PointerToFigure) = "REF CircleType“

The set of admissible values of a PTMT “REF MT” can be characterized by:

“REF MT”V = {nil} ∪ {p | p points to V ∧ ST(V) ≥ MT }.

For a variable PV of a PTMT the following condition holds:

PPoly) DT(PV) ≥ ST(PV) is an invariant in the scope of PV.

We define

PNil) ST(nil) ≥ PT and DT(nil) ≥ PT for any PTMT PT.

The variability of the dynamic type of a PTMT variable together with the reimple-
mentation of procedures is the technical basis for polymorphism.
If any PTMT variable PV is initialized with nil in its declaration then DT(PV) ≥
ST(PV) holds after the declaration of PV.
We assume that all pointer values ≠ nil are created by the operation NEW. An ex-
pression “NEW MT” has the following property:

PNew) ST(“NEW MT”) = DT(“NEW MT”) = “REF MT”.

For pointers the only operations are create, copy, and destroy. Therefore, a pointer
value of type “REF MT” always points to a variable of type deref(“REF MT”) = MT.
This gives us the basic property of PTMT variables:

PBasic) PV ≠ nil ⇒ ST(PV↑) = DT(PV↑) = deref(DT(PV))

We use a notation in which the dereferencing of a pointer is indicated explicitly: if
PV is a pointer variable “PV↑” is the variable pointed to by PV.
The rule PBasic is an implication of the rule MVar2 (sect. 5.1), because for any
PTMT variable PV “PV↑” is an MT variable.
As a reminder we remark that despite polymorphism a PTMT variable PV of static
type “REF MT” usually provides only access to the elements of E(MT). A useful
consequence of this rule is that due to MonE all accesses “PV↑.id” are statically safe
independently of the dynamic type of PV. Despite this constraint polymorphism is a
useful mechanism. It allows the aggregation of variables of different (but related)
module types into one data structure as e.g. an array or a linked list. It is furthermore
useful in combination with reimplementation of procedures. Sometimes the term
“redefinition” is used instead of reimplementation, and in some languages such pro-
cedures are called virtual or dynamic procedures. We do not go into further details
here because we assume the reader is familiar with the main concepts of object-
orientation.

133Winkler J.F.H.: Type Compability for Extensible Module Types ...

6.2 Assignment

If we have PTMT variables two forms of assignment have to be distinguished:

a) LHS := RHS; where the type of LHS is a PTMT. This means that the assign-
ment is on the level of pointer types. Therefore, this form of assignment is called
pointer assignment.

b) LHS := RHS; where at least one of LHS and RHS has the form “expr↑” and the
type of expr is a PTMT. This means that the assignment is on the level of module
types and at least one of the operands is a dereferenced pointer whose type is a
PTMT. Therefore, this form of assignment is called deref assignment. If neither
LHS nor RHS has the form “expr↑” we have an assignment of the form which
has been discussed already in sect. 5.2 or a pointer assignment.

For the discussion of assignment it is helpful to distinguish between the state before
the assignment and the state after the assignment. We use the following notation:
LHS is the state of that entity before the assignment and LHS’ is the state after the
assignment.

6.2.1 Pointer Assignment

The discussion in sect. 6.1 means that for pointer assignment for PTMT a more
relaxed rule than for other pointer types applies. Let ST(LHS) and ST(RHS) be
PTMTs. For an assignment of the form:

LHS := RHS;
we have the following rules.

PAss1) Type compatibility: ST(LHS) ≤ DT(RHS)

PAss2) Semantics: Assignment of a copy of the value of the RHS, which
implies DT(LHS’) = DT(RHS).

The type compatibility rule PAss1 allows for ST(LHS) > ST(RHS). In this case a
dynamic check is necessary to guarantee the safety of the assignment, i.e. PPoly
cannot be guaranteed statically.
Some typed object-oriented languages (e.g. Borland Pascal with Objects, Eiffel,
Oberon) use the type compatibility rule:

PAss3) ST(LHS) ≤ ST(RHS)

instead of PAss1. PAss3 is stronger than PAss1 and guarantees PPoly statically. For
the moment we do not include parameters which are treated in sect. 6.3. Therefore,
PPoly can only be affected by the declaration and by assignment.

PROPOSITION 1: If PAss2 and PAss3 hold and any PTMT variable PV is initialized
with nil, then PPoly is a static property in programs using declaration and as-
signment.

PROOF: The proof is by induction on the sequence of operations manipulating one
specific pointer value p. Such a sequence begins either with the declaration of

134 Winkler J.F.H.: Type Compability for Extensible Module Types ...

PV, with an assignment of the form “PV := NEW MT;” or with an assignment of
the form “PV := nil;”. The other elements of the sequence all have the form “PV1
:= PV2;” where p is the value of PV2. For any assignment “PV := RHS” we have
ST(PV) = ST(PV’).

1) DT(PV) ≥ ST(PV) holds after the declaration (see sect. 6.1).
2) Let the assignment have the form “PV := nil;”. By PAss2 we have DT(PV’) =

DT(nil). By PNil we have DT(nil) ≥ ST(PV) = ST(PV’). Therefore, DT(PV’) ≥
ST(PV’) holds after the assignment.

3) Let the assignment have the form “PV := NEW MT;”. By definition of NEW we
have DT(“NEW MT”) = ST(“NEW MT”) = “REF MT”. By PAss2 we have
DT(PV’) = DT(“NEW MT”) = “REF MT”. By PAss3 we have ST(“NEW MT”)
≥ ST(PV) = ST(PV’). It follows that “REF MT” = DT(PV’) ≥ ST(PV’).

4) Let the assignment have the form “PV1 := PV2;”. We assume DT(PV2) ≥
ST(PV2) holds before the assignment. By PAss2 and PAss3 we have DT(PV1’) =
DT(PV2) ≥ ST(PV2) ≥ ST(PV1) = ST(PV1’). þ

The rules PAss2, PAss3 and MonE ensure that pointer assignments and access to
external entities of module variables pointed to by pointer variables are statically safe
if only assignments are performed. The case of parameters will be discussed in sect.
6.3.
Object CHILL and Simula use a more relaxed type compatibility rule for pointer
assignment:

PAss4) [ST(LHS) ≥ ST(RHS) ∨ ST(LHS) ≤ ST(RHS)] ∧
ST(LHS) ≤ DT(RHS).

For PAss4 a dynamic check is necessary if ST(LHS) > ST(RHS).
Rule PAss3 is essentially the same as MAss1. But there is a big difference between
these two forms of assignment:
 • a variable VMT of a module type has always the same type ST(VMT), i.e.

DT(VMT) = ST(VMT) is an invariant during the lifetime of VMT.
 • a variable VPMT of a PTMT is polymorphic which leads to the weaker invariant

DT(VPMT) ≥ ST(VPMT). This means that, as has been described in sect. 6.1,
VPMT may point to variables of different module types. This observation is im-
portant for deref assignment.

6.2.2 Deref Assignment

A deref assignment is actually an assignment for module types, i.e. MAss1 and
MAss2 must hold.
The most general form of a deref assignment is

PVL↑ := PVR↑;

where both PVL and PVR are of type PTMT. We assume PVL and PVR are both ≠
nil, since otherwise the attempt to execute the statement will result in an error. As a
consequence of MAss1 we obtain:

135Winkler J.F.H.: Type Compability for Extensible Module Types ...

ST(PVL↑) ≤ ST(PVR↑) ≡ [PBasic]
deref(DT(PVL)) ≤ deref(DT(PVR)) ≡ [PDer]
DT(PVL) ≤ DT(PVR).

Even if we require ST(PVL) = ST(PVR) the deref assignment is not statically safe:

VAR PVL, PVR: REF BasicFigureType;
PVL := NEW CircleType;
PVR := NEW BasicFigureType;
PVL↑ := PVR ↑; -- DT(PVL) > DT(PVR)!
PVR := NEW SquareType;
PVL↑ := PVR ↑; -- DT(PVL) and DT(PVR) are
 -- not related at all!

The only condition making a deref assignment statically safe under PPoly is

PAss5) max(ST(PVL)) = { ST(PVR) }

PROPOSITION 2: If PAss2 and PAss5 hold, then the deref statement
“PVL↑ := PVR↑” is statically safe under PPoly.

PROOF: Since the right hand side of PAss5 consists of a singleton set, ST(PVR) is the
only leaf in the subtree whose root is ST(PVL). Therefore this tree consists just of the
path from ST(PVL) to ST(PVR). If ST(PVR) is maximal PPoly implies DT(PVR) =
ST(PVR). If we assume DT(PVL) > DT(PVR) this means that DT(PVL) > ST(PVR)
which contradicts the fact that ST(PVR) is maximal. Therefore DT(PVL) ≤
DT(PVR) must hold and according to PBasic ST(PVL↑) ≤ ST(PVR↑), i.e. MAss1
holds. þ

PAss5 is a very strong restriction, but if it is not used a dynamic check is necessary,
i.e. PAss5 is also necessary. This can be seen at the minimal derivation tree, which
has one minimal node MT1 and more than one maximal nodes MT2 and MT3:
MT1 ≤ MT2 ∧ MT1 ≤ MT3 ∧ ¬(MT2 ≤ MT3) ∧ ¬(MT3 ≤ MT2). If ST(PVL)
= “REF MT1” ∧ ST(PVR) = “REF MT2” then DT(PVL) = “REF MT3” means
that the deref assignment is not safe because MT3 may contain a component not
contained in MT2.
On the other hand, a deref assignment is never safe if the two types are not on the
same path. Therefore,

PAss6) ST(PVL) and ST(PVR) are on the same path

could be a minimal requirement to be checked statically. This rule is used in Object
CHILL.

6.3 Parameters

6.3.1 Value Parameters
For a value parameter of a PTMT the same observations as for module types apply:
the value parameter is a local variable and the association between the formal pa-
rameter FVP and the actual parameter AVP is an assignment “FVP := AVP;”.
Therefore, the same rules as for pointer assignment can be used.

136 Winkler J.F.H.: Type Compability for Extensible Module Types ...

6.3.2 Reference Parameters

In sect. 5.3.2 it is shown that ST(FRP) = ST(ARP) must hold, due to the alias rela-
tion between FRP and ARP. This rule is used in Borland Pascal with Objects, C++,
Oberon, and Object CHILL.
It is easy to give examples where weaker rules lead to illegal situations. One such
example is given in [CCJ 93: 151].

6.3.3 PPoly as a Static Property

If for assignment to formal parameters the same rules hold as for variables PPoly is a
static property.

PROPOSITION 3: If PAss2 and PAss3 hold and all PTMT variables PV are initialized
with nil, then PPoly is a static property in programs using declaration, assign-
ment, value parameters, and reference parameters.

PROOF: The proof is by induction on the sequence S of operations manipulating one
specific pointer value p.
1) Value parameter: an FVP is essentially a PTMT variable and the association with

the AVP is essentially an assignment. Therefore, all possible steps of S involving
an FVP are already covered by the proof of Prop.1.

2) Reference parameter: an FRP is essentially a PTMT variable and the association
with the ARP is essentially aliasing. Since the proof of Prop.1 does not rely on
the fact that there is only one identifier for a variable all possible steps of S in-
volving an FRP are already covered by the proof of Prop.1. þ

6.4 Function Result

In strongly typed procedural languages a function behaves very much in the same
way as a variable, where the result type of the function corresponds to the type of the
variable. Therefore functions should be treated in the same way as variables.

7 Behavior in Different Languages

When discussing real languages we have to distinguish between the language defini-
tion and a compiler (or interpreter) for the language.

137Winkler J.F.H.: Type Compability for Extensible Module Types ...

7.1 Languages

The tables 1 and 2 contain the compatibility rules for the languages Borland Pascal
with Objects (BPO), C++, Oberon, and Object CHILL (OC) as they are given in the
language definitions.

MTAssign PTMTAssign DerefAssign

BPO ST(LHS) ≤ ST(RHS) ST(LHS) ≤ ST(RHS) DT(LHS) ≤ DT(RHS)

C++ ST(LHS) ≤ ST(RHS) ST(LHS) ≤ ST(RHS) DT(LHS) ≤ DT(RHS)

Oberon ST(LHS) ≤ ST(RHS) ST(LHS) ≤ ST(RHS) DT(LHS) ≤ DT(RHS)

OC ST(LHS) = ST(RHS) [ST(LHS) ≤ ST(RHS) ∨ DT(LHS) = DT(RHS)
ST(LHS) ≥ ST(RHS)] ∧
ST(LHS) ≤ DT(RHS)

Table 1. Compatibility Rules for Assignments

ValMTPar RefMTPar ValPTMTPar RefPTMTPar

BPO ST(FVP) ≤ ST(AVP) ST(FRP) ≤ ST(ARP) ST(FVP) ≤ ST(AVP) ST(FRP) = ST(ARP)

C++ ST(FVP) ≤ ST(AVP) ST(FRP) ≤ ST(ARP) ST(FVP) ≤ ST(AVP) ST(FRP) = ST(ARP)

Ober. ST(FVP) ≤ ST(AVP) ST(FRP) ≤ ST(ARP) ST(FVP) ≤ ST(AVP) ST(FRP) = ST(ARP)

OC ST(FVP) = ST(AVP) ST(FRP) = ST(ARP) ST(FVP) ≤ ST(AVP) ST(FRP) = ST(ARP)

Table 2. Compatibility Rules for Parameters

BPO, C++, and Oberon define the same rules for MTAssign and for PTMTAssign.
OC differs in both cases; MTAssign being more restrictive and PTMTAssign being
more liberal. For DerefAssign the situation is different because this form of assign-
ment is not explicitly mentioned in the language definitions. Since a DerefAssign is
essentially an assignment on the level of module values Table 1 contains the rules for
MTAssign in the column for DerefAssign but taking PBasic into account. We may
stress that this is our own interpretation, the language definitions just do not answer
this question explicitly.
Table 2 shows furthermore that BPO, C++, and Oberon use two different compati-
bility rules for reference parameters:

a) if the type of the formal paramter is a MT the rule ST(FRP) ≤ ST(ARP) is used;
b) if the type of the formal parameter is a PTMT the rule ST(FRP) = ST(ARP) is

used (which is also used for all other types).

As has already been mentioned in sect. 5.3.2 the compatibility rule for RefPTMTPar
is not fully compatible with the alias relation between FRP and ARP. The reason for
this erroneous rule seems to be that reference parameters are mistaken for pointers

138 Winkler J.F.H.: Type Compability for Extensible Module Types ...

(“Reference parameters (in Pascal and Modula called VAR-parameters) are consid-
ered as local pointers to which a reference to the actual parameter is assigned ini-
tially. It follows that the same relaxation holds for both value and reference parame-
ters.” [Wir 88a: 209]). The alias relation is in fact implemented very similar to a
pointer but on language level it has a different meaning.

7.2 Compilers

The behavior of compilers for these four languages is given in Table 3. It shows that
the behavior of some of these compilers differs from the corresponding language
definitions.

BPO: the compiler used is Borland Pascal with Objects V7.0 running under Win-
dows 3.1 (case 33 could only be executed under MS DOS 6.0). All checks
that looked as if they could be useful were activated.
When using a deref assignment several assignments, which are illegal if the
assignment is done directly, are executed (cases 11, 12, 15, 16). Other as-
signments, which are legally executed if the assignment is done directly, are
flagged at compile time (cases 17, 18).
In the case of a RefMTPar case 35 shows the problems discussed in sect.
5.3.2. The test program contains the assignments “LocalVariable := Parame-
ter;” and “Parameter := LocalVariable;”. They are both executed without any
warnings.

Oberon BPO C++ OC

La Co La Co La Co La Co

MTAss
1 L = R + + + + + + + +
2 L < R + + + + + + - cte
3 L > R - cte - cte - cte - cte
4 L s R - cte - cte - cte - cte

PTMTAss
5 L = R R = r + + + + + + + +
5a R < r + + + + + + + +
6 L < R R = r + + + + + + + +
7 L > R R = r - cte - cte - cte - rte
7a L = r - cte - cte - cte + +
8 L s R R = r - cte - cte - cte - cte

Table 3. Behavior of Compilers
Continued on next page

139Winkler J.F.H.: Type Compability for Extensible Module Types ...

Deref Assignment
9 L = R l↑ = r↑ + + + + + + + +
10 l↑ < r↑ + + + + + + - rte
11 l↑ > r↑ - rte - + - + - rte
12 l↑ s r↑ - rte - + - + - rte

13 L < R l↑ = r↑ + rte + + + + + +
14 l↑ < r↑ + + + + + + - rte
15 l↑ > r↑ - rte - + - + - rte
16 l↑ s r↑ - rte - + - + - rte

17 L > R l↑ = r↑ + cte + cte + cte + +
18 l↑ < r↑ + cte + cte + cte - rte
19 l↑ > r↑ - cte - cte - cte - rte
20 l↑ s r↑ - cte - cte - cte - rte

21 L s R l↑ = r↑ - cte - cte - cte - cte
22 l↑ < r↑ - cte - cte - cte - cte
23 l↑ > r↑ - cte - cte - cte - cte
24 l↑ s r↑ - cte - cte - cte - cte

ValMTPar
25 F = A + + + + + + + +
26 F > A - cte - cte - cte - cte
27 F < A + + + + + + - cte
28 F s A - cte - cte - cte - cte

ValPTMTPar
29 F = A A = a + + + + + + + +
29a A < a + + + + + + + +

30 F > A A = a - cte - cte - cte - rte
30a F = a - cte - cte - cte + +
30b F < a - cte - cte - cte + +

31 F < A A = a + + + + + + + +

32 F s A A = a - cte - cte - cte - cte

RefMTPar
33 F = A + + + + + + + +
34 F > A - cte - cte - cte - cte
35 F < A + + (rte) + + + + - cte
36 F s A - cte - cte - cte - cte

Table 3. Behavior of Compilers
Continued on next page

140 Winkler J.F.H.: Type Compability for Extensible Module Types ...

RefPTMTPar
37 F = A A = a + + + + + + + +
37a A < a + + + + + + + +
38 F > A A = a - cte - cte - cte - cte
39 F < A A = a - cte - cte - + - cte
40 F s A A = a - cte - cte - cte - cte

Abbreviations used in Table 3:

La: Language definition; Co: Compiler behavior

L: ST(LHS); R: ST(RHS); l: DT(LHS); r: DT(RHS); s: sibling

A: ST(actual parameter); F: ST(formal parameter); a: DT(actual parameter)

+ : legal / successfully executed; - : illegal;
cte: compile time error; rte: runtime error

Table 3 (cont’d.). Behavior of Compilers

C++: the compiler used is Borland C++ V4.0 and V3.1 running under Windows 3.1
(the executable cases where executed under V3.1). All checks that looked as if
they could be useful were activated.
When using a deref assignment several assignments, which are illegal if the
assignment is done directly, are executed (cases 11, 12, 15, 16). Other as-
signments, which are legally executed if the assignment is done directly, are
flagged at compile time (cases 17, 18).
In the case of a RefMTPar case 35 shows the problems discussed in sect.
5.3.2. The test program contains the assignments “LocalVariable := Parame-
ter;” and “Parameter := LocalVariable;”. They are both executed without any
warnings.
In the case of a RefPTMTPar case 39, which is illegal in the language defini-
tion and which is illegal if the assignment is done directly, is executed with-
out any warnings

Oberon: the compiler used is Oberon (TM) System 3 V1.2 (Compiler NW 1.8.91 /
ARD 5.93) running under MS DOS 6.0.
For deref assignment illegal cases are caught either at compile time or at
runtime. Case 13, which is legal, results in program abortion (TRAP 19).
Other assignments, which are legally executed if the assignment is done di-
rectly, are flagged at compile time (cases 17, 18).
In the case of a RefMTPar case 35 shows the problems discussed in sect.
5.3.2. The test program contains the assignments “LocalVariable := Parame-
ter;” and “Parameter := LocalVariable;”. Parameter association is executed
without warning. The program is aborted when attempting to execute
“Parameter := LocalVariable;” (TRAP 19).

141Winkler J.F.H.: Type Compability for Extensible Module Types ...

OC: the compiler used is Object-CHILL V3.01 running under OS/2 2.1. The gen-
eration of runtime checks for module types and PTMT was activated. The
compiler and the generated programs comply with the language definition.

8 Comparison with Other Work

Work on typing for object-oriented languages (OOL) has often been based on typing
for functional programming (FP) [Bru 93; CCH 89; CL 94; CL 95; CP 93] or on
constructive logic [Car 93]. The type systems studied in these approaches usually
deal with the types of simple and higher order functions. Practical OOL do mostly
not support higher order functions in general but contain other elements which are
not covered by the approaches based on FP, as e.g. assignment and pointers. There-
fore, the approach of this paper and the approaches based on FP overlap only par-
tially. Similar differences are also observed in [CCH 89a]. The very comprehensive
paper [Car 93] contains also a number of those concepts used in practical OOL. The
paper [LW 93] is based on a “proof-theoretic” approach instead of a “model-
theoretic”, on which the majority of work an typing is based. [LW 93] has a focus on
assertions and does neither treat reference parameters nor pointers. Similarly, [PS
94] deals neither with reference parameters nor with pointers (in the sense that
pointer level and the level of dereferenced pointers are distinguished).

In this paper we deal with four aspects:

a) typing of extensible module types (EMT)
b) typing of assignment for EMTs
c) typing of value and reference parameters whose types are EMTs
d) typing of pointer types whose base types are EMTs

a) Typing of EMT is usually well covered by work on typing. In this paper we repeat
the definitions to make the paper self contained. In comparison to [Car 93] EMT
are very similar to a combination of record types and interfaces. This is typical
for current programming languages as e.g. C++ or Object CHILL. Java, on the
other hand, distinguishes between interface types and module types (actually
called “class” types) [GJS 96]. Another difference is that the types of the compo-
nents are not taken into account when defining MT1 ≤ MT2 whereas they are in
[Car 93]. This reflects the definition of MT1 ≤ MT2 as of MT2 being an exten-
sion of MT1 [Wir 88a]. If MT2 is obtained by adding components to the compo-
nent set of MT1 then the common components of MT1 and MT2 are necessarily
the same. This again reflects current practice. The approach of [Car 93] describes
therefore a richer set of typing facilities whereas this paper is more focused on the
facilities of languages currently in use.

b) Assignment is typically avoided in FP. [Car 93] also covers assignment, but it
seems in a more limited form than in OOL, because the typing of the assignment
is given by the rule “var(A) := A”. In OOL assignment often includes projection
when the type of the RHS is an extension of the type of the LHS.

142 Winkler J.F.H.: Type Compability for Extensible Module Types ...

c) Reference parameters are usually not needed in approaches based on FP because
there are no variables. In OOL reference parameters are local variables which
may be read and updated. [Car 93] discusses IN and OUT parameters. Since an
IN parameter may have a VAR component the question of reference parameters
arises indirectly and is solved in the same way as in this paper: (A<:B) ∧ (B<:A)
⇒ var(A) <: var(B).

d) Pointer and pointer types are not used in FP and they are also not treated in [Car
93]. Even in the area of practical OOL this question has not been discussed very
thoroughly. The combination of polymorphism of pointers and the dereferencing
of such pointers leads to problems as shown in this paper.

9 Discussion

9.1 Reference Parameters

The survey of the type compatibility rules in the four languages shows that three of
them (BPO, C++, Oberon) have a rule for reference parameters of module type
which may lead to situations with undefined behavior. The technical properties and
consequences of this rule are:

a) the rule interferes with the homogeneity of the language. In those three languages
assignments between module variables are statically safe. The rule for reference
parameters of module type makes assignments involving such parameters stati-
cally unsafe. Such parameters are conceptually conceived as variables but differ
in their properties from other variables.

b) more important is the fact that the statically declared type of a reference parame-
ter of module type is no longer a static property; due to the aliasing the actual
type may be different for different calls.

In C++ a special kind of values is used to realize the effect of reference parameters;
these values are called references. When used as a formal parameter a reference to a
module type is converted to “a reference to the base class sub-object of the derived
class object” [ES 90: 38, 49]. No precise definition of the sub-object is given. The
compiler does obviously not generate any code for this conversion. Therefore, this
sub-object is a sort of hybrid: the external interface is that of the basic type and the
behavior is that of the derived type of the ARP. It is therefore possible to manipulate
data components defined only in a derived type by calling a procedure which is re-
implemented in the derived type and which manipulates such components. This has
been validated by a corresponding experiment with the Borland C++ compiler. In
order to produce a consistent sub-object the compiler should generate code to alter
the pointer to the type descriptor such that it points temporarily to the descriptor of
the base type.

143Winkler J.F.H.: Type Compability for Extensible Module Types ...

9.2 Deref Assignment

It seems that up to now not all ramifications of the deref assignment have been seen.
Table II suggests that BPO, C++, and Oberon use statically the same rule as for
pointer assignment: ST(LHS) ≤ ST(RHS). Oberon, which does runtime checks, traps
the erroneous cases (and one legal one (# 13)) at runtime. BPO and C++ (Borland)
do not recognize the erroneous cases which are possible if only ST(LHS) ≤ ST(RHS)
is checked at compile time.

10 References

ANS 83 ANSI / IEEE 770 X3.97-1983: American National Standard Pascal Computer
Programming Language. IEEE, New York, 1983

Bor 93 Borland GmbH: Borland Pascal mit Objekten 7.0 - Programmierhandbuch. Lan-
gen, 1993

Bru 93 Bruce, Kim B.: Safe Type Checking in a Statically-Typed Object-Oriented Pro-
gramming Language. 20th POPL 1993, pp. 285..298

Car 93 Cardelli, Luca: Typeful Programming. SRC Research Report 45, Jan 1, 1993, DEC
SRC Palo Alto. (Earlier Version in: Neuhold, E.J.; Paul, M. (eds): Formal De-
scription of Programming Concepts. Springer, 1991)

CCH 89 Cook, William; Hill, Walt; Canning, Peter: Inheritance is not Subtyping. Report
STL-89-17, Hewlett-Packard Laboratories, Palo Alto

CCH 89a Canning, Peter S.; Cook, William, R.; Hill, Walter L.; Olthoff, Walter G.: Inter-
faces for Strongly-Typed Object-Oriented Programming. OOPSLA’89, SIGPLAN
Notices 24,10 (1989) 457..467

CCJ 93 Lee, Joon-Kyung; Jo, Chang-Hyun; Lee, Dong-Gill; Choi, Wan; Choi, Go-Bong;
Lee, Chung-Kun: An Efficient Implementation of Type-Test and Type-Guard for
an Object-Oriented Switching System. Infocom’93, Bombay 25-27 Nov. 1993,
148-155

CDG 92 Cardelli, Luca; Donahue, James; Glassman, Lucille; Jordan, Mick; Kalsow, Bill;
Nelson, Greg: Modula-3 Language Definition. SIGPLAN Not. 27,8 (1992) 15 .. 42

CG 89 Carriero, Nicholas; Gelernter, David: Linda in Context. CACM 32,4 (1989)
444..458

CHI 96 CHILL Homepage: http://www1.informatik.uni-jena.de/languages/chill/chill.htm

CL 94 Chambers, Craig; Leavens, Gary T.: Typechecking and Modules for Multi-
Methods. OOPSLA’94, SIGPLAN Not. 29.10(1994) 1..15

CL 95 Castagna, Guiseppe; Leavens, Gary T.: Foundations of Object-Oriented Languages
- 2nd Workshop Report - SIGPLAN Notices 30, 2 (1995) 5..11

CP 93 Caseau, Yves; Perron, Laurent: Attaching Second-Order Types to Methods in an
Object-Oriented Language. ECOOP’93, Springer 1993, LNCS 707, pp. 142..160

CW 96 Werther, Ben; Conway, Damian: A Modest Proposal: C++ Resyntaxed. SIGPLAN
Notices 31, 11 (1996) 74..82

DW 92 Winkler, Jürgen F.H.; Dießl, Georg: Object CHILL - An Object-Oriented Lan-
guage for Systems Implementation. ACM Computer Science Conference’92, 139-
147

144 Winkler J.F.H.: Type Compability for Extensible Module Types ...

ES 90 Ellis, Margaret A.; Straustrup, Bjarne: The Annotated C Reference Manual. Addi-
son-Wesley, 1990. 0-201-51459-1

GJS 96 Gosling, James; Joy, Bill; Steele, Guy: The Java™ Language Specification. Addi-
son-Wesley, 1996. 0-201-63451-1

GW 92 Günther, W., Wackerbarth, G.: Designing ISDN Call Processing Software by
Using Object-Oriented Techniques. Int. Switching Symp. 1992, Yokohama,
Vol.1, p.174-178

Har 92 Harbinson, Samuel P.: Modula-3. Prentice Hall, 1992. 0-13-596404-0

KMP 69 Wijngaarden, A. van (Ed.); Mailloux, B. J.; Peck, J. E. L.; Koster, C. H. A.: Re-
port on the Algorithmic Language ALGOL 68. Num. Math. 14 (1969) 79-218

LW 93 Liskov, Barbara; Wing, Jeanette M.: A New Definition of the Subtype Relation.
ECOOP’93, Springer 1993, LNCS 707, pp. 118..141

Mey 92 Meyer, Bertrand: Eiffel: the Language. Prentice Hall, 1992. 0-13-247925-7

OMG 93 OMG: The Common Object Request Broker: Architecture and Specification. Re-
vision 1.2, Draft 29 December 1993

PS 94 Palsberg, Jens; Schwartzbach, Michael I.: Static typing for object-oriented pro-
gramming. Science of Computer Programming 23 (1994) 19..53

Rec 93 Recommendation Z.200 (11/93) - CCITT High Level Language (CHILL). ITU,
Geneva, 1993. See also: ISO/IEC 9496:1995 CCITT high level language (CHILL)

Ref 83 Reference Manual for the Ada Programming Language. ANSI / MIL-STD 1815 A,
1983. Springer, LNCS 155, 1983.

RW 92 Reiser, Martin; Wirth, Niklaus: Programming in Oberon. ACM Press and Addi-
son-Wesley, 1992. 0-201-56543-9

Seb 93 Sebesta, Robert W.: Concepts of Programming Languages. The Benjamin / Cum-
mings Publ. Comp., Redwood City, 2nd ed. 1993. 0-8053-7130-3

ST 85 Tremblay, Jean-Paul; Sorenson, Paul G.: The Theory and Practice of Compiler
Writing. McGraw-Hill, 1985. 0-07-065161-2

Win 92 Winkler, Jürgen F.H.: Objectivism: “CLASS” considered harmful. CACM 35,8
(1992) 128-130

Wir 88a Wirth, N.: Type Extensions. ACM TOPLAS 10, 2 (1988) 204-214

Wir 88b Wirth, Niklaus: Programming in Modula-2. Springer, Berlin etc., 1988.
3-540-15078-1

Acknowledgments

I am very grateful to S. Kauer, D. Schmelz, H. Toparkus, J. Waldmann, and the referees for
very helpful comments on earlier drafts of this paper. I also thank T. Brandl for doing the
experiments with the Object CHILL compiler.

Appendix: Collected Definitions

MonE) MTd ≥ MTb => E(MTd) ⊇ E(MTb)

MonV) MTd ≥ MTb => V(MTd) ⊇ V(MTb)

145Winkler J.F.H.: Type Compability for Extensible Module Types ...

POrd) “REF MT1” ≥ “REF MT2” :⇔ MT1 ≥ MT2.

MVar1) ST(MV) = MT for VAR MV: MT;

MVar2) ST(MV) = DT(MV) is an invariant during the lifetime of MV.

MAss1) Type compatibility for MT assignment: ST(LHS) ≤ ST(RHS)

MAss2) Semantics: Assignment of corresponding variable components; this is
called a projection because V(ST(LHS)) ⊂ V(ST(RHS)) is possible. This
rule guarantees that MVar2 holds.

Ref1) FRP is a variable of type MT and not a reference or pointer; in this aspect
it is similar to a value parameter.

Ref2) FRP is a new (additional) name for the variable identified by ARP, i.e. the
connection between FRP and ARP is much more close than for a value
parameter. One consequence of this property is that anywhere in the inter-
section of the scopes of FRP and ARP FRP can be replaced with ARP, or
equivalently FRP=ARP is an invariant in this intersection.

PPoly) DT(PV) ≥ ST(PV) is an invariant in the scope of PV.

PNil) ST(nil) ≥ PT and DT(nil) ≥ PT for any PTMT PT.

PNew) ST(“NEW MT”) = DT(“NEW MT”) = “REF MT”.

PBasic) PV ≠ nil ⇒ ST(PV↑) = DT(PV↑) = deref(DT(PV))

146 Winkler J.F.H.: Type Compability for Extensible Module Types ...

