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Abstract In his work on the information content of English text in 1951, Shannon described a
method of recoding the input text, a technique which has apparently lain dormant for the
ensuing 45 years. Whereas traditional compressors exploit symbol frequencies and symbol
contexts, Shannon’s method adds the concept of “symbol ranking”, as in ‘the next symbol is the
one third most likely in the present context’. While some other recent compressors can be
explained in terms of symbol ranking, few make explicit reference to the concept. This report
describes an implementation of Shannon’s method and shows that it forms the basis of a good
text compressor.
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1. Introduction

In 1951 C.E. Shannon published his classic paper on the information content of
English text, establishing the well-known bounds of 0.6 – 1.3 bits per letter [Shannon
51]. What is perhaps less recognised is the method by which he obtained those results,
and it is that which is used here as the basis of a text compressor.

Shannon actually describes two methods. In both of them a person is asked to predict
letters of a passage of English text. Shannon also shows that the responses to the
predictions are equivalent to the original text and that an “identical twin” or its
mathematical equivalent could be used to recover the original input. In both cases the
person effectively prepares a ranked list of the probable symbols, most probable first,
and presents this list to the comparator.

1. In the first method, the person predicts the letter and is then told “correct”, or is
told the correct answer.

2. In the second method, the person must continue predicting until the correct
answer is obtained. The output is effectively the position of the symbol in the
list, with the sequence of “NO” and the final “YES” responses a unary-coded
representation of that rank or position.

A third method is a hybrid of the two given by Shannon. After some small number of
failures (typically 4 – 6) the response is the correct answer, rather than “NO”. With
some types of coding for the prediction values this may give a more compact code.

This algorithm is actually a transformation or recoding of the original text, with an
output symbol for every input symbol. For his Method 2, Shannon gives the results
reproduced in Table 1.
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The distribution is very highly skewed, being dominated by only one value. This
implies a low symbol entropy, which in turn implies excellent compressibility.

The technique used by Shannon is an example of the little known method of “symbol
ranking”. Statistical compressors usually rely on symbol frequency, to assign shorter
codes to more frequent symbols, and symbol contexts, to restrict the choice of
probable symbols and enhance the symbol frequency encoding. Symbol ranking
simply takes the current context (or any other aid to compression) and, based on that,
prepares a list of all possible symbols, ordered from most likely to least likely. The
recoding of the symbol is its position in the ordered list. The sequence of operations is
then contexts → ranked-list → encoded output. Because of its historical antecedents,
the coding into the ranked list will be called a “Shannon coding”. This is not to be
confused with the well known Shannon variable-length code, which may of course be
used to finally encode the output.

“All that is needed” to implement a compressor is some algorithm which can produce
a symbol list ranked according to the expected probability of occurrence, with a
following statistical compressor.

2. History of symbol ranking compressors

Several compressors can be seen as implementing the methods of symbol ranking, but
with little reference to Shannon’s original work. An early example is the MTF
compressor of [Bentley et al 86], which uses words rather than individual characters
as its basic compression symbols. [Lelewer and Hirschberg 91] describe the use of
self-organising lists to store the contexts in a compressor derived from PPM.

[Howard and Vitter 93] also follow PPM in developing a compressor, but one which
explicitly ranks symbols and emits the rank. They show that ranking avoids the need
for escape codes to move between orders, and also describe an efficient “time-stamp”
exclusion mechanism. Much of their paper is devoted to the final encoder, using
combinations of quasi-arithmetic coding and Rice codes. Their final compressor has
compression approaching that of PPMC, but is considerably faster.

A more important recent example is the “block sorting” technique (or “Burrows-
Wheeler Transform — BWT) described recently by [Burrows and Wheeler 94], and
extended by [Wheeler 95] and [Fenwick 96a, Fenwick 96b]. It uses a context
dependent permutation of the input text to bring together similar contexts and
therefore the relatively few symbols which appear in each of those contexts. A Move-
To-Front transformation then ranks the symbols according to their recency of
occurrence. Overall, the result is very similar to what is obtained here, except that the
input is permuted in block sorting, whereas here it is processed in its natural order.

[Fenwick 96b] shows that block sorting is a symbol-ranking compressor, with the

Guesses, or symbol ranking 1 2 3 4 5 > 5
Probability  79% 8% 3% 2% 2% 5%

Table 1. Shannon’s original prediction statistics
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Move-To-Front list acting as a good estimate of symbol ranking. In collecting
together similar contexts, the preceding sort phase also brings together the symbol
rankings of those contexts; because the contexts are similar so are the ranking lists
and the list for one symbol is usually a good prediction of that for the next symbol.

More importantly, the initial transformations of the block-sorting compressor and the
symbol recoding of the new method both produce highly skewed symbol
distributions. Methods which were developed for the efficient coding of the block
sorting compressors are applicable to the new method as well. It will be seen that the
frequency distributions of the recoded symbols are very similar for the two cases.

In comparison with PPM, the other major family of context-dependent compressors,
the major differences are that here there is no attempt to assign probabilities to
explicit symbols in each context and no need to use an escape symbol to move
between context orders.

3. The algorithm

[Bloom 96a] has recently produced a family of compressors based on the one simple
observation that the longest earlier context which matches the current context is an
excellent predictor of the next symbol. His compressors follow Shannon’s first
method in that he flags a prediction as “correct” or “incorrect” and follows an
incorrect flag by the correct symbol. His compressors differ in their manner of
encoding the flags and of presenting the correct symbol, with some giving moderate
compression at very high speeds and others giving exceedingly good compression (as
good as any reported) albeit with slower performance.

His method is essentially one of statistical sampling. The most recent matching
context acts as a randomly chosen context when the whole file is considered, although
probably biased by recency or locality effects. Thus while his method does not
guarantee to deliver the most probable symbol, it is quite likely to deliver it or, failing
that, will deliver one of the other more probable symbols.

The algorithm presented here extends Bloom’s method to offer possible symbols in
the approximate order of the probability of their occurring in the present context.
Although based on probabilistic sampling it is completely deterministic and is equally
applicable to both compression and decompression. The visible technique is exactly
that of Shannon’s second method—symbols are offered as candidates in the order of
their estimated likelihood and the number of unsuccessful offers is encoded. The
algorithm proceeds in several different stages —

1. The preceding data is searched for the longest string matching the current context
(the most-recently decoded symbols). The symbol immediately following this
string is offered as the most probable candidate. So far this is precisely Bloom’s
algorithm. The search may be terminated as soon as strings match to some
predetermined length, or order, or the search may proceed to an unlimited match
length (unbounded order).

2. If the first offer is rejected, the search continues at the original order, looking for
more matches which are not followed by the first-offered symbol. The first such
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following match is the second offered symbol. If that suggestion is rejected, the
search continues along earlier contexts of the same order. As the search proceeds,
symbols which have been rejected are added to the exclusion list as candidates
which are known to be unacceptable.

3. When all available contexts have been searched at an order, the order is reduced
by one and the search repeated over the whole of the preceding text, from most
recent to oldest. Matches followed by an excluded symbol are ignored and any
offered symbol is added to the exclusion list.

4. When the order has dropped to zero, the remaining alphabet is searched, again
with exclusions. This copy of the alphabet is kept in a Move To Front list,
rearranged according to all converted symbols to give some preference to the
more recent symbols.

The algorithm described was originally developed as a “proof of concept” rather than
a production-level compressor. It works well on smaller and more compressible files
but is slow and gives poor results on larger or less compressible files where there is
more text to search and more samples are likely to be rejected. Section 8 describes
improvements which bring its speed more into line with accepted statistical
compressors.

The decompression algorithm is the obvious converse. An initial statistical decoder
recovers the sequence of symbol ranks and the symbol prediction mechanism is then
called, rejecting as many estimates as indicated by the rank.

4. Implementation

The context-analysis algorithm is implemented using techniques derived from sliding-
window LZ-77 parsing and with a fast string-matcher similar to that devised by
Gutmann [Fenwick 95].

Exclusion is handled by the method of Howard and Vitter, using a table of the
contexts in which each symbol was last offered. When a symbol is first considered as
a candidate, its current context is compared against that in the table; if the two match
the symbol has been already considered within this context and must be excluded. The
context of a non-excluded symbol is then saved before the symbol is offered.  The
table contains the position of the last context symbol and is indexed by the test
symbol.

4.1 Finding the initial offering
The context discovery mechanism uses a fast string comparison technique similar to
one initially designed for LZ-77 compressors. The known text is saved in a wrap-
round sliding window buffer, with pairs of “similar” digraphs linked as a list to
facilitate fast traversal; the lists are accessed via a hash table on the last two symbols.
The mechanism is shown in Figure 2.

Assume at some stage that we know a context which matches “curr context” to some
length and have linked to the next possible context (“prev context”).
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• The rightmost (most recent) symbols of the two contexts probably match because
they share the same hash value.

• As we wish to extend the match to find a longer context we first test the symbol
beyond the known best order. If this differs the context cannot possibly extend.
Choosing this symbol also uses one which is less correlated with the most recent
symbols.

• Having confirmed that the extension symbols match, we compare two symbols
near the midpoint of the two contexts, as a further quick filter on the contexts. On
some files it is better to compare low probability symbols at about the midpoint,
but it is usually simpler to use the actual midpoint.

• Finally we do a complete string comparison, from the most recent symbols, for as
long as the contexts match. If this extends the contexts the test context becomes the
best-known and its order is saved as the best order.

Experience is that 50% of the possible contexts are eliminated by the first, extension,
test and that fewer than 10% survive the midpoint comparison and need a full string
compare.

From this string comparison algorithm we find the longest preceding context which
matches the most recent context; the symbol following that context is offered as the
first choice. We also enter this symbol in the exclusion table in case a longer search is
needed.

4.2 Continuing within the order and to lower orders
The algorithm for continuing the search is similar in spirit but different in detail. The
search is now at a known order, with the initial test on the end-symbol of the context,
not on the one beyond the end, and the comparison never extending outside the limits
defined by the current order. At an early stage of the tests, and certainly before the
complete string comparison, the following symbol is tested against the exclusion
table. The next symbol with a matching context and which is not excluded is offered
as the next candidate symbol.

Figure 2. The Gutmann LZ-77 context scan.

older symbols
next symbol

prev context curr context

1. Compare next 
symbols

2. Compare mid 
symbols

3. Compare all 
symbols, 
and extend
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When the oldest available context has been tested at a particular order, the order is
reduced by one and the search repeated from newest to oldest. At no stage is the order
actually released to the coding mechanism. All that is released is the possible
symbols, in the expected order of likelihood.

4.3 Handling order–1 contexts 
With two symbols used in forming the hash value, the above methods do not work for
order–1 contexts. These are handled by a completely different mechanism. For each
context (or most recent symbol) there is a series of links along the buffer, linking
occurrences of that symbol, but bypassing occurrences where the following symbol
has been seen already in that list.

For tracing an order–1 context the appropriate list is selected according to the context
symbol and its list traversed. The next symbol which is not excluded is offered as the
next candidate (the list structure automatically maintains order–1 exclusions.) The

technique is illustrated in Figure 3.

Two lists are shown, for the context symbols “i” and “s”. (The lists for “p” and “m”
add nothing to the explanation.) In order from the rightmost (most recent) symbol, the
“i” list links occurrences followed by, in order “•”, “p” and “s”. The leftmost “i” of
the string is followed by an “s”. This symbol has already been seen and is therefore
bypassed. The “s” list similarly bypasses the leftmost two “s”s, both of whose
following symbols have been already seen.

Whenever a new context is created the list is traced to find the occurrence of its
following symbol. The list is then altered to bypass that older occurrence because it
has been superseded by the more recent occurrence. This implements exclusion within
the list and also limits the length to be searched.

5. The statistical coder.

Two arithmetic coders have been used in producing the following results. The first is
a simple “Order-0” coder which just adapts to the symbol frequencies without regard
to context. It must however resolve mutually contradictory requirements.

• The coder must handle an alphabet of about 256 symbols

m i s s i s s i p p i •

i

s

Figure 3. Illustration of order-1 context handling
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• The symbol frequencies cover a range of about 4 orders of magnitude,
requiring a maximum count of some tens of thousands and a similar ratio
between the maximum count and the increment for each symbol.

• The considerable local variation of symbol statistics requires a very “agile”
coder, which in turn requires a low ratio of maximum count to increment and
a small alphabet.

These conflicts are resolved with a “structured” coder [Fenwick 96b], in which a first-
level coding model handles rank values in approximately octave groups {0, 1, 2…3,
4…7, 8…15, …, 128…255}. Most groups have second-level models to encode
symbols within the groups. The first-level model has only nine symbols and the first
few second-level models are similarly small to allow fast adaptation to local changes
in frequencies.

If the ranks had frequencies proportional to rank–1 the groups would have equal
loadings. Even though the actual variation is closer to rank–2, the structure seems
close to optimum.

6. Compression Results 

Results for the compressor are shown in Table 2, tested on the Calgary compression
corpus1. All of these results include two techniques developed for block sorting
compression.

• The input text is subject to run compression, with runs of length 6 or greater
being replaced by the initial 6 symbols and then a length count coded into
following symbols. This is intended primarily to increase the speed of encoding
files such as PIC, which have many long runs and compress very slowly. A
threshold of 6 means that most files are not affected. This run compression does
improve the compression of PIC by about 10%.

• The output of the Shannon coder has a preponderance of 0’s (first prediction
correct) and most of these occur in runs. These are run-length encoded using a
method due to Wheeler [Wheeler 95, Fenwick 96b] to give a small improvement
in the compression of all files.

The block sorting compressor is used as a comparison because of its close relationship
to the new symbol ranking compressor. Both are “symbol ranking” compressors, but
block sorting permutes the input file whereas the symbol ranking compressor works
on the file in natural order.

The rightmost columns are for various versions of the new “symbol ranking”
compressor.

1. 64 K buffer, Order-0, maxorder=20. The sliding window buffer is 64 Kbytes
long (the most recent 65,536 bytes enter into context determination), the output
is encoded with a simple order-0 arithmetic coder, and the maximum context

1 The files of the Calgary compression corpus are available by anonymous FTP from 
ftp.cpsc.ucalgary.ca: /pub/projects/text.compression.corpus/ 
textcompression.corpus.tar.Z
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order is 20. This is intended as a reference version of the new symbol ranking
compressor.

2. 1024 K buffer, Order-0, maxorder=20. The buffer size is now adequate to
hold the largest files and allows contexts from the whole file rather than just the
most recent 64 K bytes. As compared with the previous column, the
improvement is up to 8% for the larger files. (Many of the smaller files fit,
completely or nearly, into the smaller buffer and show little or no benefit from
the larger buffer. The initial run-encoding of PIC transforms it into a file of
little more than 100 Kbyte and it behaves here as medium-sized file.)

3. 64 K buffer, structured, maxorder=20. The coder has been replaced by the
“structured model” described above in Section 5.

4. 1024 K buffer, structured, maxorder=20. This case combines the benefits of
the larger file for more context information and the improved final coder.

A test with a 64 K buffer, structured coder, and maxorder=10 gave somewhat
somewhat faster operation, but slightly poorer compression than the similar one with
maximum order = 20 (2.59 bit/byte).

The results are generally similar to those with block sorting, which is of course to be
expected from the similarity of the two methods. In general the new compressor
seems to be better on the object files and the more compressible text files, while block
sorting is better on most text files and much better on GEO.

File Block 
Sort, 

Order-0

Block 
Sort, 

structured

64 K buffer 
Order-0 

maxorder=20

1024 K buffer 
Order-0 

maxorder=20

64 K buffer 
structured 

maxorder=20

1024 K buffer 
structured 

maxorder=20

BIB 2.31 1.95 2.31 2.26 2.27 2.22

BOOK1 2.52 2.39 3.06 2.85 3.03 2.82

BOOK2 2.20 2.04 2.52 2.35 2.48 2.32

GEO 4.81 4.50 5.72 5.71 5.51 5.49

NEWS 2.68 2.50 2.89 2.66 2.84 2.62

OBJ1 4.23 3.87 3.94 3.94 3.79 3.79

OBJ2 2.71 2.46 2.63 2.50 2.55 2.43

PAPER1 2.61 2.46 2.63 2.63 2.59 2.59

PAPER2 2.57 2.41 2.72 2.71 2.69 2.68

PIC 0.92 0.77 0.84 0.83 0.84 0.82

PROGC 2.67 2.49 2.60 2.60 2.55 2.55

PROGL 1.84 1.72 1.74 1.74 1.70 1.70

PROGP 1.82 1.70 1.73 1.73 1.69 1.69

TRANS 1.60 1.50 1.54 1.51 1.50 1.48

Average 2.53 2.34 2.63 2.57 2.57 2.51

Table 2. Results in compressing the Calgary Corpus, values in bits/byte
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The difference probably arises from the sampling symbol predictor in the symbol
ranking compressor. While it works well for compressible files where there is little
doubt as to the correct symbol, for less compressible files there tend to be more
“reasonable” symbols and a correspondingly greater chance of making a poor
prediction.

7. Use of fixed codes

An interesting comparison is to replace the final statistical compressor with a much
simpler equivalent to compare both the compression performance and the
compression speed. The chosen code is the [Elias 75] γ code which is simple to
generate and generally matched to the symbol distributions found here. The γ code for
an integer has the data bits in reverse order (least-significant first), with most
preceded by a “flag” bit of 0. The final bit (the most-significant 1) is omitted but has a
flag of 1. A rearrangement of the bits gives the γ' code, which has the normal binary
representation of the integer, preceded by a 0 for each bit after the most-significant 1.
The prefix is therefore a unary coding of the length. A bias of 1 is needed to allow a
value of 0 to be represented.

The “structured” model was replaced by a simple order-0 model without run-encoding
of the symbol ranks. (Input run-encoding was retained as it has no effect on the final
coding and accelerates compression of some files.) Both coders are then handling
values of 0–256 (256 symbols plus End-Of-File). The removal of run-encoding gives
rather poorer compression on many files, even with the arithmetic coder.

  Order 0 Arith    Elias Gamma     BZIP    BZIP     GZIP    GZIP
File sec bit/byte sec bit/byte sec bit/byte sec bit/byte
bib 63.6 2.49 61.6 2.51 1.5 1.95 0.6 2.51
geo 142.0 5.86 139.7 6.48 1.8 4.48 1.9 5.34
obj1 3.9 4.11 3.5 4.45 0.3 3.87 0.2 3.83
paper1 17.6 2.75 16.6 2.74 0.6 2.46 0.3 2.79
paper2 51.3 2.80 49.7 2.78 1.1 2.42 0.5 2.89
progc 10.3 2.73 9.6 2.75 0.4 2.50 0.2 2.68
progl 32.4 1.89 31.2 2.03 0.8 1.72 0.5 1.81
progp 18.6 1.84 17.8 2.04 0.5 1.71 0.5 1.82
trans 33.8 1.68 32.2 1.97 1.1 1.50 0.4 1.62
total 374 362 8.1 5.1
Avg 2.91 3.08 2.51 0.57 2.81

Table 3. Results with γ coding, and other compressors

The tests were run on a HP 755 workstation, for the smaller files of the Calgary
Corpus and with a sliding window of 512k. The γ code is about 3% faster than the
arithmetic code showing that the relatively slow arithmetic coder contributes little to
the overall time. Most of the effort is in finding the contexts and sampling their
predicted symbols. The text files are handled well by the γ code, being within 2.5% of
the arithmetic code. GEO and OBJ1 (less compressible) and TRANS (more
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compressible) are poorly matched to the Elias code. Also shown in Table 3 are
comparable figures for BZIP (a block-sorting compressor) and GZIP (a reference high
performance compressor, at level-9 compression). The relative speeds with arithmetic
and γ codes are in line with the author’s experience with compressors such as BZIP.
The impression was that time in BZIP is about equally divided between the initial
analysis and the final coding. The difference between the arithmetic and γ codes is
comparable to half the time for BZIP, given the probable timing resolution.

A “punctured” variant of the γ code gives better performance on GEO [Fenwick 96c].
The bits are still written in reverse order, least-significant first, but the 1’s and only
the 1’s are followed a flag bit which is 1 after the most-significant 1 (the last data bit)
and 0 elsewhere. Small values are slightly longer but larger ones require an average of
only 75% of the bits of a normal γ code. The lengths are a good match to the rank
distribution for GEO and the punctured code improves its compression by about 7%.

8. Acceleration of the Compressor

From Section 7 it is clear that most of the execution time is spent in parsing the input,
searching the window to analyse the contexts and determine likely symbols for
offering as candidates. The analysis is very similar to that performed by PPM except
that PPM needs explicit symbol probabilities, whereas here we need only a ranked
order of symbol probabilities. Howard and Vitter based their compressor on a
conventional PPM trie data structure, whereas the approach here is superficially quite
different. A great deal of time is spent in searching the window for contexts and
usually rejecting that context because its following symbol is excluded. As high-
ranked symbols may occur with a likelihood of less than 0.1%, hundreds or thousands
of contexts and symbols may be rejected for each that is even offered as a candidate.
Although the frequency of such action is quite low, its cost is high and the final effect
is significant.

In this section we address the speed of the parsing step as this is obviously the main
limitation on compression speed. The scheme as described so far uses a set of three
parallel arrays

1. The input text itself.

2. A series of links between digraphs with the same hashing value, used to
accelerate traversal of the first array.

3. A series of links, one for each symbol value, which are sensitive to the
following symbol. Each link bypasses cases where the following symbol has
been already seen, to handle order-1 with exclusion.

Several attempts were made to accelerate the searching. All are mentioned here,
including one which was less successful.

1.  Trigraph links. The list of “hashed digraphs” is supplemented by lists of true
trigraphs. The window scan starts using the digraph list, but as soon as the
contexts extend to order-3, control is transferred to the trigraph list. This
change reduces the number of tests needed at high context orders and
approximately doubles the overall speed compared with the original.
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2.  Order-5 contexts. The order-3 list is supplemented with an order-5 list,
handled in a similar fashion, with the order of this list chosen by experiment.
The order-5 list gives a further 30–40% improvement over the order-3 list.

3.  Order-2 exclusions. An order-2 exclusion list, similar to the order-1 list, was
an obvious possibility. The costs of building the list outweighed its benefits; it
slowed execution by about 5% and was abandoned.

4.  Fast rank-0 prediction. Much of the output consists of a series of rank-0
predictions and most of these are seen to “lock on” to a context which extends
by one as each symbol is processed. If the last symbol was handled at rank-0,
we can eliminate context searching by just looking at the symbol following the
last context and predicting that as the next symbol. This works as long as the
context order is less than the maximum. Consider the case where the input
contains “…the word is …” and, more recently “…a word can…” and
the text to be matched is “…the word can…” with a maximum context order
of 6. The initial context is the first phrase, but the context will transfer to the
second phrase as soon as “ word ” has been processed, with no external
indication of the change. The simple fast prediction, locked to the first context,
would predict “is” instead of the correct “can”. To avoid continuing with the
wrong context, fast prediction must be inhibited as soon as the context order
reaches its maximum. For most files about half of the fast rank-0 predictions
are correct and the average speed benefit is about 10%.

Elias PPMZ
File bit / 

byte
old 
time

new 
time

fast 
Rank-0

bit / 
byte

time 
secs

bib 2.51 61.6 19.2 16.3 1.80 9.1
geo 6.48 139.7 40.6 40.0 4.64 20.7
obj1 4.45 3.5 2.8 2.7 3.72 11.1
paper1 2.74 16.6 6.3 5.2 2.29 3.3
paper2 2.78 49.7 12.4 11.3 2.29 6.2
progc 2.75 9.6 4.3 3.8 2.32 2.5
progl 2.03 31.2 9.6 8.2 1.52 5.8
progp 2.04 17.8 7.5 6.2 1.57 4.7
trans 1.97 32.2 13.2 11.4 1.28 6.2

TOTAL 362 116 105 70

Table 4. Compression speeds on smaller Corpus files

The lists are all stored as 16-bit displacements back to the earlier element of the list. If
the window is larger than 64 K bytes and the displacement exceeds 65,535 that
particular list is assumed to have ended; older elements are forgotten. Each input
symbol needs one byte to store its own value and 4 16-bit link values, to a total of 9
bytes per data byte.

Table 4 gives the speed with these changes, for the smaller corpus files, showing the
previous time, the time with order-5 contexts, and the time with fast rank-0 prediction,
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all with the Elias γ  coding. Overall, these changes reduce the running time to about
30% of the original, bringing it much closer to that of other good compressors.
Included in Table 4 are values for the PPMZ compressor of [Bloom 96b], the best one
known to the author, with all times measured on a HP-755. The symbol ranking
compressor is generally about half as fast as PPMZ, but may be considerably faster on
some large files. PPMZ has a running time of some hours on the file PIC, but under 2
minutes with the sliding window parser.

9. Block sorting, symbol ranking and PPM. 

While block sorting (BWT) and symbol ranking compression may be regarded as
generally equivalent, they do give slightly different results. Figure 4 shows the
frequencies of the symbol ranks for the file PAPER1 using the two methods. At this
scale the two are essentially identical, except for minor differences for ranks beyond
about 16 where the symbol probabilities are quite low.

Until now we have used 0-origin numbering for the ranks with the most frequent
being rank-0. For this section it is more convenient to use 1-origin numbering, starting
from rank-1, because it allows taking logarithms of the ranks.

128643216842

symbol ranking
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1k
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1

100k
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1k
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10

1
128643216842

BlockSort

Figure 4. Frequencies of different code ranks for block sorting and symbol ranking
compression.

More detail can be seen in Table 5 which shows the relative frequencies of symbol
ranks for the two compressors, for the relative frequencies greater than about 1%. The
more-probable values (ranks 1, 2 and 3) are slightly more frequent with symbol-
ranking compression; this lowers the skewness of the distribution and degrades the
compression slightly.
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Table 5. Frequencies of different code ranks for block sorting and symbol ranking
compression.

Rank 0 1 2 3 4 5 6 7 8 9

BlockSort 58.3% 11.3% 5.5% 3.7% 2.8% 2.3% 1.8% 1.6% 1.4% 1.3%

symbol ranking 58.9% 11.6% 5.8% 3.8% 2.7% 2.0% 1.6% 1.4% 1.2% 1.1%

The symbol frequencies of Figure 4 very nearly follow a power law (freq(n) = n–2 ).
The exponent is close to 2 for most text files, is higher for more compressible files
and lower for less compressible files. The Elias γ code is optimum for an inverse
square distribution and the punctured γ code for n–1.5. The Rice codes used by
[Howard and Vitter 93] are however much better for exponential distributions (freq(n)
= x –n) and are ill-suited to a power law distribution of symbol frequencies.

Another effect which is not visible from these results comes from the locality effects
of block sorting. Block sorting collects together similar contexts and emits the
symbols from those contexts in sequence. Because the contexts are similar so are their
symbol rankings and ranking frequencies. A suitable final coder can adapt to the local
statistics of the contexts. Block sorting (or Burrows-Wheeler Transform) combines a
very efficient context analysis in its initial sort phase with a good running
approximation to symbol ranks and rank frequencies, even with no knowledge of the
actual contexts.

The symbol ranking compressor by comparison must switch between quite different
contexts for successive symbols and cannot adapt to any of them. This is probably the
major reason for the difference in the results. When this paper was first prepared, the
author intended to investigate symbol ranking compressors based on explicit context
dictionaries and some other techniques which would have allowed coding models for
individual contexts. While these worked, they gave no advantage in speed or
compression over that described here and are accordingly ignored.

Symbol ranking initially seemed to have the great advantage over PPM that it avoids
escapes to lower-order contexts and the calculation of escape probabilities. Recent
advances in PPM compression, as in the PPMZ compressor of [Bloom 96b], have
largely overcome the problems of escape probability. Of more importance though is
that symbol ranking codes just the ranks; the probabilities must be derived from the
rank frequencies and these probabilities strictly belong to individual contexts rather
than averaged over all contexts. Explicit probabilities are available with some parsers,
but using them directly without deriving symbol ranks leads directly to PPM!

10. The prediction process 

Some output from an actual encoding of a version of this paper is shown in Figure 5.
There is a 2-symbol overlap between the two sequences. The actual text is written in
bold face, with the output value just below it (this is the number of wrong estimates
for the symbol). Above each symbol are the predictions for that symbol, with the first
always at the top. The eighth and subsequent bad estimates are replaced by a single ⊗ .
Below the output code is the order at which that code is determined, often with an
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obvious relation to the preceding text.

What is not so easily conveyed is the way that the order changes during prediction.
For example, in predicting the final “e” of “Shannon code”, the unsuccessful “i” is
predicted at order 11, but the next prediction (successful) is at order 4, with no
external indication of the change in order.

4 c i t
W a s p v

t t s i
F i 1 c g
3 r b c l a
E s d l r p
H p a r b d
A ⊗ ⊗ n ⊗ o ’ r

text T h e  o u t p u t  o f  t h e  S h a n n o n  c o

output 8 0 0 0 17 0 0 0 0 0 0 10 4 0 0 0 0 0 50 1 0 0 0 0 0 1 7 0

order 2 3 4 5 4 5 6 7 8 9 10 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 8 9

v f k
i l – t s
g d o “ - l g
a s “ s d , c t
p . f t c a r d . v d i
d  a d l c s l s s x s p n t
r i , a i b p v f e i  n ⊗ y ⊗ s b

text c o d e r  h a s  a p r e p o n d e r a n c e  o f

output 7 0 0 1 5 1 5 0 0 0 2 2 7 0 0 4 3 3 0 2 3 9 6 12 0 1 3 0

order 8 9 10 4 3 3 4 5 6 7 5 4 4 5 6 4 3 2 3 2 2 3 2 2 3 4 4 5

Figure 5.  Illustration of coder symbol prediction

While there is often some difficulty in establishing a symbol, the correct text then
often proceeds with no trouble for several symbols. A human predictor would get “of”
with little difficulty, and should also get “Shannon” almost immediately from the
overall theme. Again, the latter part of “preponderance” should be predictable (there
is no other reasonable word “prepon…”) The prediction is often almost eerily like that
expected from a person, but with a limited vocabulary and largely ignorant of idiom.
(This text, of about 21,000 bytes, compresses to 2.77 bit/byte.)

83Fenwick P.: Symbol Ranking Text Compression with Shannon Recodings



11. Final Comments

The algorithm described here was initially intended to illustrate the principle of
symbol ranking compression and to test the feasibility of extending Bloom’s LZP
techniques to higher symbol ranks. To that extent it is quite successful and, with the
enhancements described in Section 8, runs at a reasonable speed for a statistical
compressor, though not at the speeds or compression of good PPM implementations.

The present work on symbol ranking arose from consideration of the block sorting
(BWT) compressor with a view to overcoming perceived disadvantages in the block-
sorting algorithm. The discussion in Section 9 though shows that these disadvantages
were more apparent than real and that the BWT algorithm is a very efficient
implementation of symbol ranking.

Symbol ranking is best seen as an historically important technique which relates
several apparently disparate compression methods and underlies the operation of
some new and powerful recent compressors such as those of Burrows & Wheeler and
of Bloom.
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