
Formal Analysis of the

Kerberos Authentication System

Giampaolo Bella
(Computer Laboratory, University of Cambridge

New Museums Site - Pembroke Street - CB2 3QG Cambridge (UK)
Giampaolo.Bella@cl.cam.ac.uk)

Elvinia Riccobene
(Dipartimento di Matematica, Universit�a di Catania

Viale A.Doria, 6 - I-95125 Catania (ITALY)
riccobene@dipmat.unict.it)

Abstract: The Gurevich's Abstract State Machine formalism is used to specify the
well known Kerberos Authentication System based on the Needham-Schroeder authen-
tication protocol. A complete model of the system is reached through stepwise re�ne-
ments of ASMs, and is used as a basis both to discover the minimum assumptions to
guarantee the correctness of the system and to analyse its security weaknesses. Each
re�ned model comes together with a correctness re�nement theorem.

Key Words: Formal Methods, Security, Protocol speci�cation, Re�nement, Protocol
veri�cation, Key distribution protocol, Gurevich's Abstract State Machine, Kerberos.

Category: C.2.2, D

1 Introduction

When computers were stand-alone entities, security was provided by physical
means: computer rooms were sealed and locked, and punched cards went in one
window with line printer listings out another.

But since the early 1970s, networking brings up the necessity to communicate
securely over an insecure network of computers, where multiple users can gain
access to the network services. Therefore, the ability to accurately identify each
user making a request becomes essential.

In general terms, the problem is how the provider of a service (a \server" in
brief) can determine whether a client's request for the service is to be honoured
or not. A good solution is the server's capability to verify the user's identity. This
process is called authentication and goes through some steps which constitute
what is called an authentication protocol.

Although protocols are generally made up of a few messages sent on the net-
work, they can hide terribly subtle errors. It is not unusual for errors to be discov-
ered on protocols that have been used for years (e.g. see [Lowe 96b]). Protocol er-
rors \. . . are unlikely to be detected in normal operations. The need for techniques
to verify the correctness of such protocols is great . . . " [Needham, Schroeder 78].

A protocol should be correct, i.e. it should allow authorised users from gain-
ing the services they require, and hopefully secure, i.e. it should prevent any
unauthorised user to get access to any service. Unfortunately, unlike the former
notion, security \... is not a simple Boolean predicate" [Anderson 95]. Today,
after thirty years of networking, researchers have proved many properties of

Journal of Universal Computer Science, vol. 3, no. 12 (1997), 1337-1381
submitted: 20/11/96, accepted: 22/6/97, appeared: 28/12/97  Springer Pub. Co.

di�erent protocols, but claims like `this protocol is secure' are still di�cult to
make.

Although errors might arise at the implementation level, when writing the
compilable code for a protocol, the
aws which are more di�cult to detect seem
to be hidden at the design level. To tackle them, the use of formal methods has re-
cently had good results ([Bellare, Rogaway 95], [Burrows et al. 90], [Lowe 96a],
[Bolignano 96], [Paulson 96], etc.). This paper shows how the Gurevich's Ab-
stract State Machine (ASM in brief) formalism can model a complex protocol
like Kerberos, and allow us to reason about its properties.

The Kerberos Authentication System is based on the Needham and Schroeder
authentication protocol, which seems to be secure under the naive assumption
that no session keys may ever be compromised [Needham, Schroeder 78]. The
accidental loss of a session key is supposed to be overcome by the presence
of timestamps [Denning, Sacco 81]. Nevertheless, Kerberos still seems to su�er
from some limitations [Bellovin, Merritt 90], which were partially corrected in
the last version, Version 5, and are highlighted here.

In this paper an abstract model of the complete authentication system is
reached through stepwise re�nement of ASMs, and is used as a basis to discover
the minimum assumptions to guarantee the correctness of the system. The se-
curity of the system is also taken into account by showing how an eavesdropper
might exploit a stolen session key to obtain a resource, despite the addition of
timestamps.

The stepwise re�nement strategy makes it easier to understand a complex
system as Kerberos, because the details are presented step by step. Our for-
malism proves to be suitable to this purpose, due to its versatility. In fact, the
abstraction mechanism built into the notion of ASM allows the systematic use of
strong information hiding and modularisation techniques. Stepwise re�nements
and extensions are straightforwardly achieved by function and module re�ne-
ments.

To our knowledge, this is the �rst attempt to get a formal speci�cation of
the whole Kerberos architecture, and we believe that our work might serve as a
basis for both implementation and further tool-assisted analyses. As a matter of
fact, the work of [Bella, Paulson 97] is based on our speci�cation.

The speci�cation of the whole architecture comes together with the proofs
of correctness under reasonable regularity conditions, and the description of a
real hostile environment. These features make our speci�cation more reliable
than the theoretical work of [Burrows et al. 90] and of [Schumann 97], and more
realistic than the work of [Mitchell et al. 97], which is based on a very idealised
version of Kerberos without timestamps, and su�er from the intrinsic limits of
state enumeration.

The paper is organised as follows. Basic ideas of the operation of Kerberos are
introduced in [Section 2]; [Section 3] brie
y introduces the reader to the Gure-
vich's Abstract State Machine and presents the speci�cation reached through a
sequence of four re�nement steps, starting with a model which directly re
ects
the basic idea of the Kerberos operation, and moving down to a model describ-
ing the complete system. Liveness conditions and proofs of correctness are pre-
sented in [Section 3.4]; [Section 4] concerns the external threats, and [Section 5]
concludes the paper.

1338 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

2 Kerberos

Kerberos [Miller et al. 89] was developed in the mid eighties as part of project
Athena at MIT. It is a distributed authentication system that allows a client {
a process running on behalf of a user { to prove its identity to a server without
sending data across the network that might allow an attacker to subsequently
impersonate that principal.

Rather than building in elaborate, error-prone authentication protocols at
each server, Kerberos provides a centralised authentication server whose function
is to authenticate clients to servers and servers to clients, and provide both
client and server with a secret key that they may use to encrypt/decrypt their
messages.

Based on the [Needham, Schroeder 78] key distribution protocol modi�ed
with the addition of timestamps [Voydock, Kent 83], Kerberos relies exclusively
on private-key (also called conventional) encryption, rather than public-key en-
cryption.

In this paper we refer to the original Kerberos, Version 4 [Miller et al. 89],
which is the most widely used.

2.1 How Kerberos Works

1U 2U

1P

2P

nP

kU

database

Kerberos

Server (TGS)

Authentication

Kerberos

Ticket Granting

Server (KAS)

Kerberos

Kerberos Key Distribution Service

Workstation

EndServer (ES)

EndServer (ES)

EndServer (ES)

2

m

1

Figure 1: Kerberos Authentication Architecture

In [Fig. 1], we can see the complete layout of the Kerberos architecture. It con-
sists of the following parties: the Workstation with a set of processes P1; : : : ; Pn
running on it on behalf of a set of users U1; : : : ; Uk, the Kerberos Key Distri-
bution Service (or Kerberos in brief) and a set of end servers ES1; : : : ;ESm.
The Kerberos Key Distribution Service is in turn composed of two servers, the
Kerberos Authentication Server { KAS { and the Ticket Granting Server { TGS.

Kerberos keeps a database of the clients' and servers' secret keys. A client's
key is the DES-coded version of the password of the user who owns the client.

1339Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

Names (identi�ers) are the only entities exchanged in cleartext on the network,
everything else is encrypted.

The basic idea of the Kerberos authentication scheme is the following: to use
a service, a client must supply the end server which provides that service with a
ticket, previously obtained from Kerberos. A ticket for a service is a string of bits
which has been encrypted using the providing server's private key. That private
key is known only to the server itself and to Kerberos. As a result, the server
can be con�dent that any information found inside the ticket originated from
Kerberos. Since the identity of the client has been declared inside the ticket, the
server that receives a ticket has a Kerberos-authenticated evidence of the client's
identity.

A distinct ticket is needed for each service, but not all the services that a
client might wish to use are known at the beginning of a login session. Therefore,
to overcome the need to save on the workstation the tickets for all the services {
some of which might even never be required { the client obtains a single ticket
from KAS at login time, called authentication ticket, to be used only with TGS.
Whenever the client wishes to use a network service, it asks TGS for a new,
speci�c ticket, called service ticket, to be used with the end server that provides
the service.

To help ensure that an intruder does not steal and reuse another user's ticket,
the client accompanies the ticket with an authenticator, as will be elaborated
later. Tickets and authenticators are the two types of the client's credentials.

Together with the ticket, a client also receives from Kerberos a session key
to share with a server during a communication session. More precisely, a client
receives the authentication key from KAS to communicate with TGS, and the
service key from TGS to communicate with an ES.

Therefore, broadly speaking, Kerberos comprises two orthogonal phases: the
authentication phase, during which KAS provides the client with the authen-
tication ticket and the authentication key; and the authorisation phase, during
which TGS provides the client { already authenticated by KAS { with a service
ticket and a service key to share with an ES.

This short introduction simply aims to give an insight into the complex
mechanisms of the protocol. A complete explanation will be reached through
a sequence of steps in the following section.

3 The Speci�cation

In this section a complete, formal model of the whole authentication system is
reached through a hierarchy of more and more detailed models. Each model is
a distributed Gurevich's Abstract State Machine. The basic de�nitions of this
framework can be found in [Section 3.1], while for the mathematical foundation
we refer to [Gurevich 95, B�orger 95b].

The �rst model, MessagePassing, describes the message exchange layout be-
tween agents and considers only one client process. Elements like tickets and
authenticators are considered as atomic objects provided by monitored func-
tions. It gives the guidelines of the protocol.

Tickets, authenticators and all the abstract functions providing them are re-
�ned in the second model, EncryptionDecryption, by explicit formalisation of the

1340 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

encryption-decryption procedures at the basis of the mechanism to hide infor-
mation. This model contains the bulk of the operational details of the protocol.

The third model, MultipleClients, allows several client processes to run on
the workstation, and �nally, by the fourth model, MultipleEndServers, the de-
scription of the complete system is reached through the consideration of several
network end servers.

Each re�ned model comes together with a re�nement theorem.

3.1 Gurevich's Abstract State Machines

We assume that the reader is familiar with the semantics of the Abstract State
Machine de�ned in [Gurevich 95], and we quote here only the essential de�ni-
tions.

A Gurevich's Abstract State Machine A is de�ned by a program Prog {
consisting of a �nite number of transition rules { and a (class of) initial state(s)
S0. A models the operational behaviour of a real dynamic system S in terms of
state transitions.

A state S is a �rst-order structure over a �xed signature which is also regarded
as the signature of A, representing the instantaneous con�guration of S. The
value of a term t at S is denoted by [t]S .

The basic transition rule is the following function update
f(t1; : : : ; tn) := t

where f is an arbitrary n-ary function and t1; : : : ; tn; t are �rst-order terms. To
�re this rule to a state S evaluate all terms t1; : : : ; tn; t at S and update the
function f to t on parameters t1; : : : ; tn. This produces another state S

0 which
di�ers from S only in the new interpretation of the function f .
Note that no rule can change the signature of A.

There are some rule constructors.

{ The conditional constructor which produces \guarded" transition rules of
the form:

if g then R1 else R2

where g is a ground term (the guard of the rule) and R1, R2 are transition
rules. To �re that new rule to a state S evaluate the guard; if it is true, then
execute R1, otherwise execute R2. The else part may be omitted.

{ The block constructor which produces transition rules of the form:

block

R1

...
Rn

endblock

to apply R1, : : :, Rn simultaneously.
{ The parallel constructor which produces the \parallel" synchronous rule of
form:

var x ranges over U
R(x)

1341Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

where R(x) is a generalised basic transition rule with a variable x ranging
over the universe U . To execute the new rule, execute R(x) for every x 2 U .

We also make use of the following construct to let universes grow:
extend U by x1; : : : ; xn with Updates endextend

where Updates may (and should) depend on the xi and are used to de�ne certain
functions for (some of) the new objects xi of the resulting universe U .

State transitions of A may be in
uenced in two ways: through the rules of
the program Prog, or through the modi�cations of the environment. A function
in the signature of A is called controlled if it is updated by (and only by) a
transition rule in Prog, otherwise, if its values come by modi�cations of the
environment, it is called monitored (see [B�orger, Mearelli 97]). The symbol S�

denotes the reduct of the state S to the controlled functions.
A computation of S is modelled by a �nite or in�nite run % of A as a sequence

S0; S1; : : : ; Sn; : : : of states of A, where S0 is an initial state and each S�n+1 is
obtained from Sn by �ring simultaneously all transition rules of Prog to Sn.

In a distributed Gurevich's Abstract State Machine A, multiple autonomous
agents cooperatively model a concurrent computation of a system S. Each agent
a executes its own single-agent program Prog(a) as speci�ed by the module asso-
ciated with a by the function Mod. More precisely, an agent a has a partial view
View(a; S) of a given global state S as de�ned by its sub-vocabulary Fun(a) (i.e.
the function names occurring in Prog(a)) and it can make a move at S by �r-
ing Prog(a) at View(a; S) and changing S accordingly. The underlying semantic
model ensures that the order in which the agents of A perform their operations
is always such that no con
icts between the update sets computed for distinct
agents can arise. The global program Prog is the union of all single-agent pro-
grams.

Self does not belong to Fun(a) for any agent a and is a special nullary
function name which is di�erently interpreted by di�erent agents (an agent a
interprets Self as a) and allows an agent to identify itself among other agents.
It cannot be the subject of an update instruction and is used to parameterise
the agent's speci�c functions.

A sequential run of a distributed Gurevich's Abstract State machine A is a
(�nite or in�nite) sequence S0; S1; : : : ; Sn; : : : of states of A, where S0 is an initial
state and every S�n+1 is obtained from Sn by executing a move of an agent.

The partially ordered run, de�ned in [Gurevich 95], is the most general de�-
nition of run for a distributed ASM. In order to prove properties on a partially
ordered run, the attention may be restricted to a linearisation of it, which is, in
turn, a sequential run (see [Gurevich 95] for more explanations).

In the context of a distributed ASM, the functions are better classi�ed from
a speci�c agent's point of view. For an agent a, a function can be controlled
if updated by (and only by) a rule in Prog (a), and monitored if updated non
deterministically by (and only by) its external environment (i.e. by some other
agent than a or by the environment of the whole distributed system). A function
is called interaction if updated by rules of Prog (a) and by the environment; such
functions do not occur in our speci�cation of Kerberos.

On a generic term t we use the abbreviations de�ned (t) for t 6= undef, un-
de�ned (t) for t = undef, clear (t) for t := undef. Incidentally, recall that f(t) =
undef if t = undef.

1342 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

3.2 The MessagePassing Model

We start with a simpli�ed version of the system, which is depicted in [Fig.2].
The processes running on the workstation are formalised by a client agent C.

EndServer (ES)database

Kerberos

Kerberos

Kerberos

Ticket Granting

Server (TGS)

Authentication

Server (KAS)

Kerberos Key Distribution Service

Client (C)

Figure 2: Basic Kerberos Authentication Scheme

The aim of this model is formalising the layout of message exchange between
agents. Tickets and authenticators are considered as atomic objects without any
insight of how they are built or of their components.

This model shows how the two phases of Kerberos are instances of the Need-
ham and Schroeder private-key protocol modi�ed with the addition of times-
tamps: the authentication phase involves KAS as a trusted third party and C
and TGS as principals, skips the �nal handshake between the principals, and
uses identi�ers and timestamps as nonces; the authorisation phase regards TGS
as a trusted third party and C and ES as principals, and makes use of authen-
ticators and timestamps as nonces.

In the sequel we use small italics letters for a function name, except when we
use a CompoundName. We use the capital initial when a function represents an
agent's private information. We use the slanted font for the names of macros.

3.2.1 Global Signature

The most abstract model is a distributed ASM made up of four modules, one
for each of the agents sitting on the network: the client C, the Kerberos Authen-
tication Server KAS, the Ticket Granting Server TGS, the end server ES. We
then de�ne the universe AGENT = fC, KAS, TGS, ESg.

Our agents send messages over the network. This leads to the de�nition of
the universe MESSAGE and of the functions

sender, receiver : MESSAGE �! AGENT
MESSAGE contains messages of two types: compound messages (concatenation
of data) and messages encrypted by a key. We denote the former by fX;X 0g,

1343Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

the latter as fX;X 0gkey . To know the message type we use the function
type : MESSAGE �! fcleartext, encrypted g

Our rules use guards of the form X ReceiveFrom Y : mssg as abbreviation for
`sender (mssg) = Y & receiver (mssg) = X & type (mssg) = cleartext ', while
X ReceiveFrom Y : CryptedMssg abbreviates `sender (CryptedMssg) = Y & re-
ceiver (CryptedMssg) = X & type (CryptedMssg) = encrypted '. The following
macro:

X SendTo Y : mssg
� extend MESSAGE by mssg with

sender (mssg) := X
receiver (mssg) := Y
type (mssg) := cleartext

endextend

allows to perform the communication between two agents. It creates a new cleart-
ext message, given its sender and receiver, by extending the universeMESSAGE.
A similar macro builds an encrypted message, replacing mssg with CryptedMssg
and cleartext with encrypted.
We often use clear (mssg) and clear (CryptedMssg) to empty a communication
channel from the message.

Each agent operates strictly sequentially, so that each module is a sequential
ASM which executes its rules as soon as they become applicable (i.e. when the
guards of the rules have true interpretation in the current state). The sequential
operation is formalised using the function

mode : AGENT �! fReadyToSend, ReadyToReceive, ReadyToStartg
In ReadyToSend mode, an agent is going to send a message, while in Ready-
ToReceive mode, an agent is able to receive a message and eventually store the
information it contains. Only after the possible handshake and the mutual au-
thentication with ES, C is ReadyToStart the communication with it. We often
write mode for mode (Self) when the agent Self is uniquely determined from the
context.

The agents must be synchronized with each other, so we have a unique clock
for all of them and the nullary function name CT giving the current time of
the clock. If REAL is the set of the real numbers, CT is a real-valued function
of real time. As an integrity constraint on CT, we require that the value of CT
increases monotonically to the limit 1.

Keys, tickets and authenticators are atomic objects belonging to the universes
KEY, TICKET and AUTH respectively. The unary function

K : AGENT �! KEY
yields the agents' private key known only to the agent itself and saved in the
Kerberos database, to which only KAS and TGS have access. The monitored
predicate expired (Key), Key : KEY, is true if Key has expired.

Keys, tickets and authenticators are sent inside messages. To extract them
we use the functions

ExtractKey : MESSAGE �! KEY
ExtractTicket : MESSAGE �! TICKET
ExtractAuth : MESSAGE �! AUTH

1344 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

3.2.2 Local Signature

Each agent has to save session keys and sealed tickets on its own private locations,
so we de�ne

K (C,S,Self): KEY and Ticket (C,S,Self): TICKET
respectively, being S 2 fTGS;ESg. We omit for brevity the argument Self in
the module of Self { recall that each agent a interprets Self as a {, so we
write K(C; S) for the session key shared by C and S, and Ticket (C; S) for the
credential used by C to authenticate ifself to S.

We call a client authenticated if it has got an authentication ticket and an
authentication key, and we de�ne in the signature Fun(C) of C

authenticated � de�ned (Ticket (C,TGS,C)) & de�ned (K (C,TGS,C))
Similarly, we call a client authorised if it has got a service ticket and a service
key, so that in Fun(C)

authorised � de�ned (Ticket (C,ES,C)) & de�ned (K (C,ES,C))
Auth (C,Key): AUTH yields the client's authenticator sealed with key Key.

The client builds it every time it wishes to contact a server by the function
BuildAuth : fC g � KEY �! AUTH

From the other side, ES uses the function
ExtractTs : AUTH �! REAL

to extract a timestamp from a given authenticator.
To build keys and tickets we introduce for the agents KAS and TGS the

functions
ProvideKey : fC g �fTGS;ESg �! KEY
ProvideTicket : fC g �fTGS;ESg �! TICKET

To improve security, Kerberos provides the servers with a procedure to vali-
date the client and the client with a mechanism to check for the authenticity of
an expected message. In the modules of TGS and ES, this validity procedure is
abstractly formalised by the predicate

SuccValid (C, Ticket, Auth)
which is true if C is successfully validated by way of its credentials Ticket :
TICKET and Auth: AUTH. The client follows a di�erent procedure. Whenever
it sends a message, it keeps some useful information and uses it later to verify
the authenticity of the reply. Therefore, we introduce the function

mark : REAL [AGENT �REAL
to keep such information and the predicate

CheckValid (CryptedMssg, mark)
which is true if C believes that CryptedMssg : MESSAGE is recent according to
the data saved in mark.

When receiving a(n encrypted) message from KAS, not only must C check
for the validity of that message, but it must also control whether it is able to open
the message by its password coded using the standard Unix one-way encryption
algorithm (which should equal the client's private key saved in the Kerberos
database). This prevents a bogus user from stealing data. Such a test on the
password is made by the predicate

CheckPassword (CryptedMssg, CodePsw (C))
being CryptedMssg :MESSAGE and CodePsw (C): KEY the function that yields
the coded client's password.

We formalise the existing network services by means of the universe SER-
VICE, which is supposed at this level to contain as elements the services that

1345Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

can be provided by ES. The monitored function RequiredService (C): SERVICE
represents the client's request for a service.

For some network services, C is required to check the authenticity of the re-
ply from ES { the predicate RequiredMutualAuthentication (RequiredService (C))
would be true. C performs this test by the predicate

MutualAuthentication (CryptedMssg, mark)
which is true if C successfully authenticates ES. This is still abstract at this
level.

3.2.3 Module Speci�cations

The full program is listed in [Fig.3]. Each of the four agents has its own program
and in any state the function Mod is de�ned as Mod (A) = A MODULE, A 2
AGENT. For convenience's sake, in every rule of the A MODULE we use the
agent name A, which must be read as Self.

Authentication Phase

C MODULE Authentication

RequireAuthentication
GetAuthentication
RevokeAuthentication

KAS MODULE

KasReply
� block

CheckIdentity
ProvideAuthentication

endblock

RevokeAuthentication

Authorisation Phase

C MODULE Authorisation

RequireAuthorisation
NegotiateService
� block

GetAuthorisation
ShowAuthorisation

endblock

MutualAuthentication
RevokeAuthorisation

TGS MODULE

TgsReply
� block

CheckAuthentication
ProvideAuthorisation

endblock

RevokeAuthorisation

ES MODULE

Handshake
� block

CheckAuthorisation
ProvideHandshake

endblock

Figure 3: The Program

The C MODULE is divided into two subprograms C MODULE Authen-

tication and C MODULE Authorisation to emphasise that C is an active

1346 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

party during both phases.
We now examine each rule in detail. Variables mssg and CryptedMssg range

over MESSAGE.

Authentication Phase

To become authenticated, C sends a message containing its identi�er, the TGS
identi�er and the current time to KAS. It also stores information that will be
later used to check the validity of the KAS reply.

RequireAuthentication rule of C MODULE Authentication

if :authenticated & mode = ReadyToSend
then

C SendTo KAS : fC, TGS, CTg
mark := hTGS,CT i
mode := ReadyToReceive

The following KasReply rule describes the KAS operation when it is in-
vocated for authentication. As soon as KAS receives a message from C, it
checks whether C is legitimate by looking up if K(C) is de�ned in the Kerberos
database (CheckIdentity rule). If C is legitimate, KAS generates a random ses-
sion key to be used by C as an authentication key, and an authentication ticket
that C will use as a credential with TGS. Ticket and key, along with the TGS
identi�er and the current time, are then sent to C inside a message encrypted
by the client's key (ProvideAuthentication rule).

KasReply rule of KAS MODULE

block

[CheckIdentity rule]
if mode = ReadyToReceive & KAS ReceiveFrom C : mssg & de�ned (K(C))
then

clear (mssg)
mode := ReadyToSend

[ProvideAuthentication rule]
if mode = ReadyToSend
then

if de�ned (K (C,TGS)) & de�ned (Ticket (C,TGS))
then
KAS SendTo C : fK (C,TGS), Ticket (C,TGS), TGS, CTgK(C)

mode := ReadyToReceive
else
K(C; TGS) := ProvideKey(C; TGS)
Ticket(C; TGS) := ProvideTicket(C; TGS)

endblock

Hence, C receives the KAS reply. If the test on the password succeeds and
the message is considered recent, C extracts from the message the authentication
key and the authentication ticket, and saves its own copies.

1347Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

GetAuthentication rule of C MODULE Authentication

if :authenticated & mode = ReadyToReceive
& C ReceiveFrom KAS : CryptedMssg
& CheckPassword (CryptedMssg, CodePsw (C))
& CheckValid (CryptedMssg, mark)

then
K(C; TGS) := ExtractKey (CryptedMssg)
Ticket(C; TGS) := ExtractTicket (CryptedMssg)
clear (CryptedMssg)
mode := ReadyToSend

This ends the Authentication Phase.

Authorisation Phase

When a client is authenticated, it may wish to access some network services.
Such a situation is formalised by de�ned (RequiredService (C)), abbreviated as
RequiredService. This starts the authorisation phase.

C must initially get a service key and a service ticket from TGS to contact
ES, the server able to perform the required service. C builds an authenticator
sealed with its authentication key, and sends it to TGS along with its authentica-
tion ticket and the ES identi�er. It also stores the ES identi�er and the current
time to verify later the TGS reply. The authenticator is erased because it is to
be used only once.

RequireAuthorisation rule of C MODULE Authorisation

if authenticated & RequiredService & :authorised & mode = ReadyToSend
then

if de�ned (Auth (C, K (C,TGS)))
then
C SendTo TGS : fAuth (C, K (C,TGS)), Ticket (C,TGS), ESg
mark := hES, CT i
clear (Auth (C, K (C,TGS)))
mode := ReadyToReceive

else
Auth (C, K (C,TGS)) := BuildAuth (C, K (C,TGS))

Rule TgsReply concerns how TGS deals with the client's request for a ser-
vice. If C is validated by the ticket and the authenticator received inside the
message, TGS saves its own copy of the authentication key (CheckAuthenti-
cation rule), and begins the creation of a reply. It builds an authorisation key
and an authorisation ticket to be sent to C along with the ES identi�er and
the current time. The message is sealed with the authentication key. If such au-
thorisation credentials have been already de�ned { i.e. C has already required
the service in the past { and have still not expired, TGS does not de�ne new
ones. The authentication key is always deleted from memory because TGS gets
it every time from the received message (ProvideAuthorisation rule).

1348 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

TgsReply rule of TGS MODULE

block

[CheckAuthentication rule]
if mode = ReadyToReceive & TGS ReceiveFrom C : mssg

& SuccValid (C, ExtractTicket (mssg), ExtractAuth (mssg))
then

K(C; TGS) := ExtractKey (mssg)
clear (mssg)
mode := ReadyToSend

[ProvideAuthorisation rule]
if mode = ReadyToSend
then

if de�ned (K (C,ES)) & de�ned (Ticket (C,ES))
then
TGS SendTo C : fK (C,ES), Ticket (C,ES), ES, CTgK(C;TGS)

clear (K(C; TGS))
mode := ReadyToReceive

else
K(C;ES) := ProvideKey(C;ES)
Ticket(C;ES) := ProvideTicket(C; ES)

endblock

C veri�es the authenticity of the TGS reply and saves its own copies of the
authorisation credentials. Incidentally, the authorisation ticket remains indeci-
pherable to C because it is sealed with the ES private key (GetAuthorisation
rule). The authorisation ticket along with a new authenticator sealed with the
authorisation key is what C then sends ES. If the required service requires the
mutual authentication, then C stores information, by mark, to be used later for
the test and gets mode ReadyToReceive the handshake signal from ES, otherwise
it takes mode ReadyToStart the communication with ES (ShowAuthorisation
rule).

NegotiateService rule of C MODULE Authorisation

block

[GetAuthorisation rule]
if authenticated & RequiredService & :authorised

& mode = ReadyToReceive & C ReceiveFrom TGS : CryptedMssg
&CheckValid (CryptedMssg, mark)

then
K(C;ES) := ExtractKey (CryptedMssg)
Ticket(C;ES) := ExtractTicket (CryptedMssg)
clear (CryptedMssg)
mode := ReadyToSend

[ShowAuthorisation rule]
if authenticated & RequiredService & authorised

& mode = ReadyToSend
then

if de�ned (Auth (C, K (C,ES)))
then
C SendTo ES : fAuth (C, K (C,ES)),Ticket (C,ES) g
clear (Auth (C, K (C,ES)))
if RequiredMutualAuthentication (RequiredService (C))

1349Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

then
mark := hCT i
mode := ReadyToReceive

else
mode := ReadyToStart

else
Auth (C, K (C,ES)) := BuildAuth (C, K (C,ES))

endblock

Rule Handshake explains how ES manages the service requests. If the
client's credentials check out, it saves its own copy of the authorisation key.
From now on, C and ES share the same session key (CheckAuthorisation
rule), as will be proved later. If the client's service request requires the mutual
authentication, then ES replies the client with the handshake function, i.e. the
timestamp of the authenticator incremented by one, encrypted by the authori-
sation key (ProvideHandshake rule).

Handshake rule of ES MODULE

block

[CheckAuthorisation rule]
if mode = ReadyToReceive & ES ReceiveFrom C : mssg

& SuccValid (C, ExtractTicket (mssg), ExtractAuth (mssg))
then

K(C;ES) := ExtractKey (mssg)
clear (mssg)
mode := ReadyToSend

[ProvideHandshake rule]
if mode = ReadyToSend
then

if RequiredMutualAuthentication (RequiredService (C))
then
ES SendTo C : fExtractTs (ExtractAuth (mssg)) + 1gK(C;ES)

mode := ReadyToReceive

endblock

On reception of the handshake signal from ES, C performs the mutual au-
thentication test. If it succeeds, C becomes ReadyToStart the expected commu-
nication with ES (MutualAuthentication rule).

MutualAuthentication rule of C MODULE Authorisation

if authenticated & RequiredService & authorised
& mode = ReadyToReceive & C ReceiveFrom ES : CryptedMssg
& RequiredMutualAuthentication (RequiredService (C))
& MutualAuthentication (CryptedMssg, mark)

then
clear (CryptedMssg)
mode := ReadyToStart

This ends the authorisation phase of Kerberos.

We are not interested in describing how the communication between C and

1350 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

ES carries on after the handshake, because this does not belong to Kerberos.
Nevertheless, our speci�cation has to be completed by the following two rules
which drive the deletion of the expired session keys and tickets.

RevokeAuthentication rule of C MODULE Authentication and KAS MODULE

if expired (K (C,TGS))
then

K (C,TGS) := undef
Ticket (C,TGS) := undef

RevokeAuthorisation rule of C MODULE Authorisation and TGS MODULE

if expired (K (C,ES))
then

K (C,ES) := undef
Ticket (C,ES) := undef

We have now speci�ed the message passing layout of Kerberos. Those entities
requiring knowledge of the encryption mechanism have been left abstract and
they are treated in the next section.

3.3 The EncryptionDecryption Model

The abstract objects of the previous model are here re�ned through explicit
formalisation of the encryption-decryption procedures that serve to build the
client's credentials.

3.3.1 Signature Re�nement

Kerberos allows the communication between parties by way of encrypted mes-
sages and compound messages of encrypted data. Encryption-decryption pro-
cedures use the Data Encryption Standard (DES). We formalise them by the
functions

encrypt : DATA � KEY �! CRYPTDATA
decrypt : CRYPTDATA � KEY �! DATA

such that

decrypt(encrypt(t; k); k0) =

�
t if k = k0

undef if k 6= k0

DATA is the set of any type of data (structured or not) in cleartext, CRYPT-
DATA is the set of encrypted data. We consider MESSAGE as union of a
subset of DATA and a subset of CRYPTDATA. Encrypted messages of the
form fX;X 0gkey are now formally de�ned by encrypt (fX,X' g, key). Universes
TICKET and AUTH are both subsets of CRYPTDATA.

An element ofMESSAGE may be a cleartext record { if sent by the client { or
a sealed record { if sent by a server { of data, some of which can be encrypted. To
read the data stored inside an encrypted message, �rst this has to be decrypted
by the right key, and then data can be obtained as projections on the �elds of
the record. We thus de�ne the following functions

key (mssg): KEY, ticket (mssg): TICKET, auth (mssg): AUTH
yielding the corresponding �elds of the record mssg = fkey, ticket, authg.

1351Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

Once the actual mechanism to get information from a message is known, we
can re�ne the abstract functions used for that purpose in [Section 3.2.1]. Recall
that Fun (a) denotes the set of function names occurring in the program of the
agent a.

In the sequel of the section, S denotes an element of fTGS, ESg.
ExtractKey was used to get a session key from a message. This operation

consists now of di�erent steps whether it is performed by C or by S, so we
distinguish two cases. C receives the session key from a server inside an encrypted
message, so that in Fun (C)

ExtractKey (CryptedMssg) = key (decrypt (CryptedMssg, K))
where K is the key that was used to create CryptedMssg. S gets the session key
from the ticket found inside the (cleartext) message received from C. This ticket
is encrypted by the server's private key. Thus, in Fun (S)

ExtractKey (mssg) = key (decrypt (ticket (mssg), K (S)))
(The key function on tickets is explained below).

Also to extract a ticket from a message, C and S follow di�erent steps. S
simply receives the ticket as a component of a message in cleartext from C, so
that in Fun (S) the re�nement of ExtractTicket is just the function rewriting

ExtractTicket (mssg) = ticket (mssg)
By contrast, C receives the ticket inside an encrypted message, so that in Fun (C)

ExtractTicket (CryptedMssg) = ticket (decrypt (CryptedMssg, K))
where K is the key that was used to create CryptedMssg.

Servers are the only parties that receive authenticators, which are always sent
by C as components of cleartext messages; as a consequence, ExtractAuth (mssg)
is just rewritten as auth (mssg).

We now explicitly formalise the internal structure of tickets and authenti-
cators, which have been considered so far as atomic objects of the universes
TICKET and AUTH respectively.

A ticket is good for a single client C and a single server S. It is a record of
the form

fC, S, address (C), K (C, S), ts, lifetimegK(S)

It contains the client's name and network address, the server's name, the session
key between client and server, a timestamp and the lifetime of the key. This
information is encrypted with the server's secret key. Once the client gets this
ticket, it can use it several times to access the server, up until the ticket expires.
The client cannot decrypt the ticket (it does not know the server's secret key),
but it can present it to the server in its encrypted form. Thus, no one listening
on the network can read or modify the ticket as it passes through the commu-
nication channels. The structure of the ticket brings the case for the de�nition
of a universe ADDRESS of network addresses and of a function address (C):
ADDRESS. To extract the components of a ticket Ticket (C,S): TICKET after
decryption, we introduce the functions

client (Ticket): AGENT, server (Ticket): AGENT,
address (Ticket): ADDRESS, key (Ticket): KEY,
ts (Ticket): REAL, lifetime (Ticket): REAL

yielding the corresponding �elds of Ticket = fclient, server, address, key, ts,
lifetimeg = decrypt (Ticket (C,S), K (S)).

The function ProvideTicket is re�ned as follows:
ProvideTicket (C,S) = encrypt (fC,S,address (C),K (C,S),ts,lifetime g, K (S))

1352 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

The session keys are randomly generated by Kerberos. Recall that CT is the
current time. The function

random : fC g � fTGS;ESg � TIME �! KEY
yields a random number and re�nes the function ProvideKey as follows:

ProvideKey (C,S) = random (C,S,CT)
Each session key expires after a predetermined lifetime, which is usually of the
order of several (eight) hours for authentication keys, and of some minutes for
authorisation keys. This leads to the de�nition of the parameters

AuthLife: REAL, upper bound on the lifetime of an authentication key;
ServLife: REAL, upper bound on the lifetime of a service key.

Although the value of the lifetime might di�er from ticket to ticket, only the two
upper bounds described above are commonly used.

Since session keys are sent inside tickets, tickets have in practice the same
lifetimes as keys. So, when we say that a ticket has not expired (or also a ticket
is fresh), we mean that the key it contains has not expired. We re�ne accordingly
the predicate expired as follows:
expired (K (C,S)) �
CT - ts (decrypt (Ticket (C,S), K (S))) > lifetime (decrypt (Ticket (C,S), K (S)))
the lifetime on the right being AuthLife if S = TGS, ServLife if S = ES. This
re�nement of expired updates only Fun (KAS) and Fun (TGS) because KAS
and TGS are the only agents having access to the components of the tickets
they have built. Thus, in Fun (C) expired is a monitored predicate which is true
on a key K if and only if the copy of K saved in the memory of the server that
generates it, has expired. Such a di�erentiation comes from a lack of detail in
[Miller et al. 89], which is better explained in the next section.

Each time C wishes to contact S, it generates an authenticator that contains
its own name and address and a timestamp, sealed with the session key:

fC, address (C), tsgK(C;S)

To extract the components, we introduce the functions
client (Auth): AGENT, address (Auth): ADDRESS, ts (Auth): REAL

yielding the corresponding �elds of
Auth = fclient, address, tsg = decrypt (Auth (C,K (C,S)), K (C,S)).

Therefore, the function ExtractTs is rewritten by ts.
The function BuildAuth is re�ned as follows:
BuildAuth (C, K (C,S)) = encrypt (fC, address (C), CT g, K (C,S))

Authenticators expire after a short time of a few minutes [Miller et al. 89],
so that we introduce the suitable parameter

DeltaAuth: REAL, upper bound on the lifetime of an authenticator.
On reception of a message from C, S has to authenticate C using as creden-

tials the ticket and the authenticator found inside the message. S decrypts the
ticket using its private key and uses the session key found inside the ticket to
decrypt the authenticator. If the client's name and network address in the ticket
match those in the authenticator, the timestamp in the ticket has not expired,
the network address in the authenticator matches that of the sender, and the
timestamp in the authenticator is su�ciently recent, then the request is taken
as legitimate. ES also makes sure that the authenticator is not a reply of an old
one by checking that the timestamp it contains has never been received before
inside any authenticator. For this purpose, ES keeps a list of the timestamps
of the authenticators received from C in TimeStamp: REAL�, updated by the
function

1353Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

append : REAL � REAL� �! REAL�

This test is formally speci�ed by the predicate SuccValid (C,Ticket, Auth), Ti-
cket : TICKET and Auth: AUTH, now re�ned as follows (between square brack-
ets the test by ES only):

SuccValid (C,Ticket, Auth)
� de�ned (ticket)

& de�ned (auth)
& client (ticket) = client (auth)
& address (ticket) = address (auth) = address (C)
& (CT - ts(ticket)) � lifetime(ticket)
& (CT - ts(auth)) � DeltaAuth
[& ts(auth) 62 TimeStamp]

where ticket = decrypt (Ticket,K (Self))
and auth = decrypt (Auth, key (decrypt (Ticket,K (Self)))).

At the other end of the communication, C performs some tests on the received
messages as well; they are now reconsidered in turn.

C checks that the message received from KAS and TGS is recent by the
predicate CheckValid (CryptedMssg, mark) which is true when CryptedMssg is
recent. We need now to formalise this concept of \recent message" which is not
stated more precisely in [Miller et al. 89]'s informal description. Our model as-
sumes the underlying communication protocol to be reliable (if agent X sends
agent Y message mssg, Y receives mssg with no alterations). Without loss of
generality, the model also assumes the transmission of a message to be instan-
taneous and formalises it as an atomic operation by extension of the universe
MESSAGE; as a matter of facts, for any transmission both sender and receiver
are simultaneously de�ned. Otherwise, further assumptions on the time of de-
livery over the network would have been needed, which go well beyond the aims
of the paper. By contrast, we are interested in modelling the time of reaction of
a server, i.e. how long a server does take to reply to a message, and we de�ne

dr: REAL, upper bound on the time of reaction of a server.
Therefore, we call recent the reply to a message if it has been issued within time
dr from the issue of the original message. In the light of these considerations,
CheckValid can be re�ned as follows:

CheckValid (CryptedMssg, mark)
� ts (decrypt (CryptedMssg, K)) - ts (mark) < dr

where K is the client's coded password or its authentication key according to
whether the CryptedMssg has been received from KAS or TGS.

The test on the password, abstractly speci�ed by the predicate CheckPass-
word (CryptedMssg, CodePsw (C)), consists in checking if the coded password of
the client can decrypt the message received from KAS. Therefore,

CheckPassword (CryptedMssg, CodePsw (C))
� de�ned (decrypt (CryptedMssg, code (AskPsw (C))))

where code (AskPsw (C)): KEY yields the coded version, using the standard
Unix one-way encryption algorithm, of the client's password in cleartext given
by the monitored function AskPsw.

1354 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

The mutual authentication test performed by C after the handshake with
ES, consists in checking the value of the handshake function sent by ES. Thus,

MutualAuthentication (CryptedMssg, mark)
� ts (decrypt (CryptedMssg, K (C,ES))) = ts (mark) + 1

3.3.2 Module Re�nement

Some of the actions that were done atomically by abstract functions in the
previous model are now carried out in more than one step. So, we now comment
on those (sub)rules that involve new de�nitions. The new, complete program
can be found in the next section.

Both rule ProvideAuthentication and rule ProvideAuthorisation com-
prise a further step because the ticket can be built only after the creation of the
session key that it has to include. The lifetime of the session key inside the mes-
sages sent to C in both the rules seems redundant information to the authors.
In fact, it is not clear in [Miller et al. 89] how C might use such information to
check the expiration time of a session key. This is why expired is still a monitored
predicate in Fun (C).

The test on the password in rule GetAuthentication is done in more than
one step. As soon as C receives the KAS reply, it prompts the user for the
password (in cleartext) { recall that C formalises a process running on behalf of
a user { by the monitored function AskPsw. If the password is right, its coded
version code (password) matches the client's private key used by KAS to encrypt
the message, and can serve successfully for decryption. The user password is then
erased to prevent possible leaks.

The last remark concerns the re�nements of rule RevokeAuthentication
and of ruleRevokeAuthorisation. They remain unchanged in the module of C,
whereas they are re�ned in the modules of KAS and TGS by the new de�nition
of the predicate expired. The reason of this di�erentiation is that only these two
servers know, and therefore can control, the lifetimes of the session keys.

The following theorem expresses the re�nement correctness.

Theorem 1 (Re�nement) The runs of the `MessagePassing' model and the
runs of the `EncryptionDecryption' model are in one-to-one correspondence.

The proof is trivial. It is su�cient to verify that re�ned functions take the
same value as the corresponding abstract functions and homonymous rules model
the same agent behaviour. 2

Remark. By the Thoeorem 1, the re�ned model `EncryptionDecryption' is a
correct implementation of the `MessagePassing' model.

3.3.3 The Program

Variables mssg and CryptedMssg range over MESSAGE.

Authentication Phase

C MODULE Authentication

1355Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

RequireAuthentication rule

if :authenticated & mode = ReadyToSend
then

C SendTo KAS : fC, TGS, CTg
mark := hTGS,CT i
mode := ReadyToReceive

GetAuthentication rule

if :authenticated & mode = ReadyToReceive
& C ReceiveFrom KAS : CryptedMssg

then
if de�ned (password)
then

if de�ned (decrypt (CryptedMssg, code (password)))
& CheckValid (CryptedMssg, mark)

then
K(C; TGS) := key (decrypt (CryptedMssg, code (password)))
Ticket(C; TGS) := ticket (decrypt (CryptedMssg, code (password)))
clear (password)
clear (CryptedMssg)
mode := ReadyToSend

else
password := AskPsw (C)

RevokeAuthentication rule

if expired (K (C,TGS))
then

K (C,TGS) := undef
Ticket (C,TGS) := undef

KAS MODULE

KasReply rule

block

[CheckIdentity rule]
if mode = ReadyToReceive & KAS ReceiveFrom C : mssg & de�ned(K(C))
then

clear (mssg)
mode := ReadyToSend

[ProvideAuthentication rule]
if mode = ReadyToSend
then

if de�ned (K (C,TGS))
then

if de�ned (Ticket (C,TGS))
then
KAS SendTo C :
encrypt (fK (C,TGS),Ticket (C,TGS),TGS,CT,AuthLife g, K(C))

mode := ReadyToReceive
else

Ticket(C; TGS) :=
encrypt (fC,TGS,address (C),K (C,TGS),CT,AuthLife g, K (TGS))

else
K(C; TGS) := random (C, TGS, CT)

endblock

1356 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

RevokeAuthentication rule

if (CT � ts (decrypt (Ticket (C,TGS), K (TGS)))) > AuthLife
then

K (C,TGS) := undef
Ticket (C,TGS) := undef

Authorisation Phase

C MODULE Authorisation

RequireAuthorisation rule

if authenticated & RequiredService & :authorised & mode = ReadyToSend
then

if de�ned (Auth (C, K (C,TGS)))
then
C SendTo TGS : fAuth (C, K (C,TGS)), Ticket (C,TGS), ESg
mark := hES, CT i
clear (Auth (C, K (C,TGS)))
mode := ReadyToReceive

else
Auth (C, K (C,TGS)) := encrypt (fC, address (C), CT g, K (C,TGS))

NegotiateService rule

block

[GetAuthorisation rule]
if authenticated & RequiredService & :authorised

& mode = ReadyToReceive & C ReceiveFrom TGS : CryptedMssg
& CheckValid (CryptedMssg, mark)

then
K(C;ES) := key (decrypt (CryptedMssg, K (C,TGS)))
Ticket(C;ES) := ticket (decrypt (CryptedMssg, K (C,TGS)))
clear (CryptedMssg)
mode := ReadyToSend

[ShowAuthorisation rule]
if authenticated & RequiredService & authorised

& mode = ReadyToSend
then

if de�ned (Auth (C, K (C,ES)))
then
C SendTo ES : fAuth (C, K (C,ES)),Ticket (C,ES) g
clear (Auth (C, K (C,ES)))
if RequiredMutualAuthentication (RequiredService (C))
then

mark := hCT i
mode := ReadyToReceive

else
mode := ReadyToStart

else
Auth (C, K (C,ES)) := encrypt (fC, address(C), CT g, K (C,ES))

endblock

1357Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

MutualAuthentication rule

if authenticated & RequiredService & authorised
& mode = ReadyToReceive & C ReceiveFrom ES : CryptedMssg
& RequiredMutualAuthentication (RequiredService (C))
& MutualAuthentication (CryptedMssg, mark)

then
clear (CryptedMssg)
mode := ReadyToStart

RevokeAuthorisation rule

if expired (K (C,ES))
then

K (C,ES) := undef
Ticket (C,ES) := undef

TGS MODULE

TgsReply rule

block

[CheckAuthentication rule]
if mode = ReadyToReceive & TGS ReceiveFrom C : mssg

& SuccValid (C, ticket (mssg), auth (mssg))
then

K(C; TGS) := key (decrypt (ticket (mssg), K (TGS)))
clear (mssg)
mode := ReadyToSend

[ProvideAuthorisation rule]
if mode = ReadyToSend
then

if de�ned (K (C,ES))
then

if de�ned (Ticket (C,ES))
then
TGS SendTo C :
encrypt (fK (C,ES),Ticket (C,ES),ES,CT,ServLife g, K(C; TGS))

clear (K(C,TGS))
mode := ReadyToReceive

else
Ticket(C;ES) :=
encrypt (fC,ES,address (C),K (C,ES),CT,ServLife g, K (ES))

else
K(C;ES) := random (C, ES, CT)

endblock

RevokeAuthorisation rule

if (CT � ts (decrypt (Ticket (C,ES), K (ES)))) > ServLife
then

K (C,ES) := undef
Ticket (C,ES) := undef

ES MODULE

1358 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

Handshake rule

block

[CheckAuthorisation rule]
if mode = ReadyToReceive & ES ReceiveFrom C : mssg

& SuccValid (C, ticket (mssg), auth (mssg))
then

K(C;ES) := key (decrypt (ticket (mssg), K (ES)))
clear (mssg)
mode := ReadyToSend

[ProvideHandshake rule]
if mode = ReadyToSend
then

if RequiredMutualAuthentication (RequiredService (C))
then
ES SendTo C :

encrypt (fts (decrypt (auth (mssg), K (C,ES))) + 1g, K (C,ES))
TimeStamp :=

append (ts (decrypt (auth (mssg), K (C,ES))), TimeStamp)
mode := ReadyToReceive

endblock

3.4 Correctness

The aim of this section is showing that the Kerberos Authentication System is
correct, i.e. it allows a client to obtain a session key for the required service. All
of the correctness properties are proved over runs called regular, de�ned below.

The correct operation of Kerberos relies on the existence of certain conditions,
some to hold in any state, some to characterise the starting up environment,
others to guarantee that the system can work as it is meant to do. We call them
global, initial and working, respectively.

3.4.1 Global Conditions

Kerberos assumes the external condition that each agent is provided with a
private key known only to the agent itself and saved in the Kerberos database.
At the speci�cation level, this gives rise to the following global condition to hold
in any state:

G1. de�ned (K(C)) & de�ned (K(TGS)) & de�ned (K(ES))

KAS does not have its own key because it communicates with C using the client's
private key K(C).

The condition that a client can not be authorised if not authenticated also
must hold as global condition in any state:

G2. :authenticated (C) �! :authorised (C)

1359Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

3.4.2 Initial Conditions

A set of initial conditions is formalised below for each of the two phases of the
protocol. The second set di�ers from the �rst in the existence of an authentication
ticket and an authentication key for C and in the presence of an external request
for a service. Either I1 or I2 must hold in any initial state.

I1. [Authentication phase]
{ Ticket (C,TGS,Self) = undef, Self 2 fC, KAS g
{ K (C,TGS,Self) = undef, Self 2 fC, KAS g
{ mode (C) = ReadyToSend
{ mode (KAS) = ReadyToReceive
{ sender (X) = receiver (X) = undef, 8X 2 MESSAGE

I2. [Authorisation phase]
{ Ticket (C,TGS,Self) 6= undef, Self 2 fC, KAS g
{ Ticket (C,ES,Self) = undef, Self 2 fC, TGS g
{ K (C,TGS,Self) 6= undef, Self 2 fC, KAS g
{ K (C,ES,Self) = undef, Self 2 fC, TGS g
{ mode (C) = ReadyToSend
{ mode (Self) = ReadyToReceive, Self 2 fTGS,ES g
{ sender (X) = receiver (X) = undef, 8X 2 MESSAGE
{ RequiredService(C) 6= undef

By the global condition G2, a client is not authorised in any state satisfying
conditions I1.

3.4.3 Working Conditions

Not all the runs starting from a state which satis�es a set of initial conditions,
are guaranteed to end successfully { in some of those runs the client might be
unable to gain authentication or authorisation. Intuitively, suppose the coded
version of the client's password does not match the client's key saved in the
Kerberos database, then the protocol would block. Suppose the agents are not
synchronized: a server could take as fresh the client's credentials (tickets and
authenticators) when they are not; or, if a server's reply is too slow, a client
could reject it as an intruder's faked message. Obviously, the protocol is never
likely to work properly in any of such situations.

This brings up the necessity to guarantee some minimal conditions on our
model, that we call working conditions, to exclude undesirable situations like
those described above. Each condition is �rst informally introduced and then
formally described.

The operation of Kerberos relies on the use of timestamps, so the clock system
must be reliable.

W1. [Monotonicity of the clock]
The values of CT at states S0; S1; S2; : : : form a strictly increasing sequence.
If there is a �nal state, then CT =1 in the �nal state.

The client is provided with regular identi�er and password.

1360 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

W2. [Password correctness]
The client's key saved in the Kerberos database matches the coded version
of the client's password: K (C) = code(AskPsw(C)).

A server always replies to a message of the client within time dr.

W3. [Upper bound on a server's reaction time]
Let S 2 fKAS,TGSg, m 2 MESSAGE, i 2 N . If C sends m to S at
state Si { i.e. [sender (m) = C]Si+1 & [receiver (m) = S]Si+1 { then S
replies by a message m0 within time dr { i.e. there exist m0 2 MESSAGE,
j 2 N , j > i, such that [sender (m0) = S]Sj+1 & [receiver (m0) = C]Sj+1 &
([CT]Sj � [CT]Si � dr).

Any of the client's requests has to be honoured by the appropriate server, i.e.
both TGS and ES must receive authenticators and tickets that have not expired:

W4. [Validity of the client's credentials]
Let term be a credential of the client's (ticket or authenticator) and let t
be the timestamp of term; it is t = [CT]Si for some state Si, i 2 N . If S
receives a message m containing term from C at some state Sj , j > i {
i.e. [sender (m) = C]Sj & [receiver (m) = S]Sj { then the following relation
holds:

[CT]Sj � [CT]Si � �

where

� =

(
DeltaAuth if term = Auth (C, K (C,S)), S 2 fTGS;ESg
AuthLife if term = Ticket (C, TGS)
ServLife if term = Ticket (C, ES)

Note that these four conditions are the minimum necessary to guarantee the
application of the complete sequence of rules to simulate a complete execution
of Kerberos.

3.4.4 Regular Runs

We can take advantage of the fact that agents of our ASM �res only one rule at
a time, therefore for our purposes we can consider sequential runs of distributed
ASMs as de�ned in [Section 3.1].

De�nition 1. An authentication (authorisation) regular run is any sequential
run of our distributed ASM such that

(i) global conditions G1 and G2 hold;
(ii) the initial state satis�es initial conditions I1 (I2);
(iii) working conditions W1 to W4 hold.

1361Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

3.4.5 Proof of Correctness

We now prove two correctness theorems stating that the system works as it
is supposed to do: a legitimate client can authenticate itself to KAS, and an
authenticated client requiring a service can obtain from TGS a session key to
start the communication with ES.

Theorem 2 (Authentication Phase Correctness)
At some state of any authentication regular run, a client becomes authenticated.

Proof. We aim to show that exists n 2 N such that [authenticated = true]Sn .
Let S0 be the initial state satisfying the initial conditions I1. In S0, C is not

authenticated, so that we have the following transition:

S0 �! S1 by RequireAuthentication

Integrity constraint G1 allows the transition

S1 �! S2 by CheckIdentity

and then, through the transitions

S2 �! S3 �! S4 �! S5 by ProvideAuthentications

KAS builds and sends C the authentication ticket and the session key. Conditions
W2 and W3 (with i = 0, j = 4, m = fC; TGS;CTg, m0 = encrypt (fK (C,TGS),
Ticket (C,TGS), TGS, ts, AuthLifeg, K(C))) allow the transitions

S5 �! S6 �! S7 by GetAuthentications

In S7 we have

[de�ned (Ticket (C,TGS,C))]S7 , [de�ned (K (C,TGS,C))]S7

which translates into the conclusion. 2

Theorem 3 (Authorisation Phase Correctness) At some state of any au-
thorisation regular run, an authenticated client shares a session key with the end
server and is ReadyToStart the communication with it.

Proof. Let Sk0 , be the initial state of the authorisation phase satisfying condi-
tions I2. The thesis is proved through the following intermediate results:

(i) there exists a state Sh, h > k0, such that an authenticated client C is autho-
rised in Sh, i.e. [authorised = true]Sh ;

(ii) there exists a state Si, i > h, such that an authorised client C:
{ shares a private session key with ES, i.e. [de�ned (K (C,ES,C)) & de-
�ned (K (C,ES,ES)) & K (C,ES,C) = K (C,ES,ES)]Si , and

{ is ReadyToStart the communication with ES, i.e. [mode (C) = ReadyTo-
Start]Si .

1362 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

Initial and working conditions let the following regular run exist:

Sk0 �! Sk0+1 �! Sk0+2 by RequireAuthorisations
Sk0+2 �! Sk0+3 by CheckAuthentication

Sk0+3 �! Sk0+4 �! Sk0+5 �! Sk0+6 by ProvideAuthorisations
Sk0+6 �! Sk0+7 by GetAuthorisation

Sk0+7 �! Sk0+8 �! Sk0+9 by ShowAuthorisations
Sk0+9 �! Sk0+10 by CheckAuthorisation

Rule CheckAuthentication �res to Sk0+2 because guard SuccValid (C, ti-
cket (mssg), auth (mssg)) checks out as follows. Its �rst four conditions holds
by construction of the run and constraint G1. Condition W4 guarantees the
validity of the ticket for term = Ticket (C,TGS), S = TGS, j = k0 + 2, m
= fAuth (C,K (C,TGS)), Ticket (C,TGS), ESg and i = h, h < k0 such that
[de�ned (Ticket (C,TGS,KAS))]Sh+1& [unde�ned (Ticket (C,TGS,KAS))]Sh . For
the same values of S, j and m, condition W4 also guarantees the validity of the
authenticator for term = Auth (C,K (C,TGS)) and i = k0.

RuleGetAuthorisation �res to Sk0+6 thanks to working condition W3, tak-
ing i = k0 + 1, j = k0 + 5, m = fAuth (C,K (C,TGS)), Ticket (C,TGS), ESg, m0

= encrypt (fK (C,ES), Ticket (C,ES), ES, ts, ServLifeg, K(C; TGS)). In Sk0+7

holds
[de�ned (Ticket (C,ES,C))]Sk0+7 & [de�ned (K (C,ES,C))]Sk0+7 ,

that is [authorised = true]Sk0+7 , which proves (i) for h = k0 + 7.

Firing of rule ProvideAuthorisation to Sk0+3 builds what is going to
be a service key for the communication session between C and ES. Let Ser-
viceKey = [K (C,ES,TGS)]Sk0+4 . The �re of rule GetAuthorisation causes

[de�ned (K (C,ES,C))]Sk0+7 and the �re of rule CheckAuthorisation gives rise

to [de�ned (K (C,ES,ES))]Sk0+10 . It is straightforward to verify that, by construc-
tion of the run,

[K (C ;ES ;C)]Sk0+10 = [K (C ;ES ;ES)]Sk0+10 = ServiceKey (1)

and that these two locations will not be updated on the same run.
If the mutual authentication is not required for the service, then by rule

ShowAuthorisation �red to Sk0+9, C has taken mode ReadyToStart. Since the
location mode (C) is not updated through the transition from Sk0+9 to Sk0+10,
(ii) is proved for i = k0 + 10.

If the mutual authentication is required, then the run continues with the
transitions:

Sk0+10 �! Sk0+11 by ProvideHandshake
Sk0+11 �! Sk0+12 by MutualAuthentication

Rule CheckAuthorisation �res to Sk0+9, thus starting the handshake be-
tween C and ES, because SuccValid (C, ticket (mssg), auth (mssg)) checks out as
follows. Its �rst four conditions holds by construction of the run and constraint
G1. Condition W4 guarantees the validity of the ticket for term = Ticket (C,ES),
S = ES, j = k0 + 9, m = fAuth (C,K (C,ES)), Ticket (C,ES)g, i = k0 + 4, and
the validity of the authenticator for term = Auth (C,K (C,ES)), i = k0 + 7.

1363Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

Rule MutualAuthentication �res to Sk0+11 because the mutual authenti-
cation test succeeds by construction of the run.

At state Sk0+12, [mode (C) = ReadyToStart]Sk0+12 holds. The relation (1) is
still true because it involves locations which are not updated by the transitions
from Sk0+10 to Sk0+12. Therefore, (ii) is proved for j = k0 + 12. 2

3.5 The MultipleClients Model

We now go back to the real Kerberos System depicted in [Fig.1].
We have considered so far the interaction between a single client C and

a single end server ES. In the real environment there are more than one user
logging in on a workstation to access a certain number of network services. First,
in this section we re�ne C by the processes running on a workstation, and then
in [Section 3.6] we describe how to get a program that allows several end servers.

3.5.1 Signature Re�nement

The real system is a network of hosts. For convenience, we make no di�erence
between the host itself and its daemon process, so that we de�ne the universe
DAEMON = fKAS, TGS, ES, WSg. WS represents the workstation on which
users login and eventually require services.

We call legitimate a user who is provided with an account on the workstation,
so he owns a network identi�er and a private password. The universe USER
represents the identi�ers of the legitimate users.

Each user may own a certain number of processes running on the workstation.
This leads to the universe PROCESS and to the function

owner : PROCESS �! USER
yielding the identi�er of the owner of a given process.

Any process (either one owned by a user, or a daemon process) is an agent
with its own operation mode, so we rede�ne the universe AGENT as DAEMON
[PROCESS. The agent WS is special because it is able to create new agents
in PROCESS by importing reserve elements. More precisely, WS creates a new
login process agent every time a user tries to login on the workstation, and a
service process agent every time an authenticated user requires a service.

A login process has to authenticate itself (on behalf of its owner) with KAS,
thus working as the `old' agent C during the authentication phase. A service
process is born authenticated (it might be envisaged as the child process of a login
process already authenticated) and has to get authorisation from TGS to start
the communication with ES ; so it works as the `old' C during the authorisation
phase. Therefore, the `old' C MODULE is now divided into two modules: the
LP MODULE for the operation of login processes, and the SP MODULE for
the operation of service processes.

If U 2 USER, the monitored predicate RequireLogin (U) is true when the
user U wants to login, and U is associated to its login process P by the function

login : USER �! PROCESS
The following implication must hold in any state

(owner (P) = U &Mod(P) = LP MODULE) �! login(U) = P
A service process is created for any user's request of a network service. The fol-
lowing functions

1364 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

task : PROCESS �! SERVICE
process : USER � SERVICE �! PROCESS

yield respectively the task associated to a given service process, and the service
process associated to a given user's request. They have to be thought as one
another's inverse in the sense that

task (process (U,RequiredService (U))) = RequiredService (U)
which we put as a constraint. Therefore, in any state there holds
task (P) = RequiredService (U) ! de�ned (process (U,RequiredService (U)).

To keep track of the process to which the server has to reply, we de�ne the func-
tion P : DAEMON �! PROCESS
and we abbreviate P (Self) by P.

The functionMod associates KAS to KAS MODULE, TGS to TGS MODU-
LE, ES to ES MODULE, WS to WS MODULE, a login process P to LP MO-
DULE, a service process P to SP MODULE.

Because AGENT has di�erent elements at this level, some de�nitions of
functions need to be reconsidered.

The unary function K yielding all the private keys saved in the Kerberos
database, is rede�ned as

K : DAEMON [USER �! KEY.
The functions mark and TimeStamp, the predicates authenticated and au-

thorised are now parameterised by P 2 PROCESS.
The functions ProvideTicket, BuildAuth, random, address, Ticket, Auth, the

3-ary function K and predicate SuccValid are now de�ned on PROCESS instead
of on C. Functions ProvideTicket and BuildAuth are re�ned as follows:

ProvideTicket (P,S) =
encrypt (fowner (P), S, address (P), K (P,S), ts, lifetime g, K (S))

BuildAuth (P, K (P,S)) = encrypt (fowner (P), address (P), CT g, K (P,S))

Functions RequiredService and AskPsw are rede�ned on USER. Note that the
function mode is not de�ned on WS. The functions not mentioned here remain
unchanged.

3.5.2 Module Re�nement

Intuitively, each agent P 2 PROCESS works as the agent C in the authentication
phase if it is a login process, or as C in the authorisation phase if it is a service
process. However, in the previous model we made no distinction between an
agent and its identi�er.

We now distinguish a process running on the workstation from its user's iden-
ti�er. Thus, the C MODULE Authentication becomes the LP MODULE
and the C MODULE Authorisation becomes the SP MODULE replacing
the occurrences of C by P, except those having the meaning of user's identi�er.
That is, C has to be replaced by owner (P) when it occurs as argument of the
function AskPsw, or inside authenticators, or inside the message sent to KAS.
The condition de�ned (RequiredService (C)) (abbreviated as RequiredService) no
longer occurs among the guards of the rules of the SP MODULE because we no
longer need distinguish the authentication phase from the authorisation phase
of a client, due to the de�nition of separate modules for a login process and a
service process.

1365Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

KAS MODULE, TGS MODULE, ES MODULE need the occurrences of C
to be replaced by P except those having the meaning of user's identi�er, i.e.
occurring as an argument of the unary function K or inside tickets, according
to the function re�nements.

Rules CheckIdentity, CheckAuthentication and CheckAuthorisation
contain now an update of the form P := sender (mssg) to keep track of the
process to which the server has to reply. It was not needed at the previous level,
where servers only interacted with C.

WS MODULE is new and describes the actions of the workstation as an in-
terface between a legitimate user and Kerberos. By rule CreateLoginProcess,
it creates a new login process (agent) per each external request for login. Each
login process has to go through the authentication with KAS, so its Mod func-
tion is updated to LP MODULE. By rule CreateServiceProcess, WS creates
a new service process (agent) per each user's request for a service. The new
agent is created if the user is already authenticated, i.e. if its login process is
still authenticated. Incidentally, the predicate authenticated is interactively up-
datable for WS. Each service process inherits the authentication ticket and the
authentication key from the (parent) login process, and then has to go through
the authorisation with TGS before beginning the communication with ES. Its
Mod function is therefore updated to SP MODULE. The SP MODULE also
contains the RevokeAuthentication rule because a service process loses its
authentication when the authentication key expires.

The complete program is listed in [Section 3.5.4].

Given a process P , we denote by A(P) the ASM restricted to the agents
involved in a computation of P (i.e. P, KAS, TGS and ES).

Theorem 4 (Re�nement)
Let P be a login (service) process. The runs in A(P) are in one-to-one cor-
respondence with the runs in the authentication (authorisation) phase of the
'EncryptionDecryption' model.

It is straightforward to verify that rules of LP MODULE (SP MODULE)
model the same agent behavour as the homonymous rules of C MODULE in the
authentication (authorisation) phase. 2

Remark. By the Theorem 4 we can state that each login (service) process in the
`MultipleClients' model implements correctly the operation of the client agent in
the authentication (authorisation) phase of the 'EncryptionDecryption' model.

3.5.3 Correctness Analysis

In the light of the previous re�nement theorem, we must suitably reformulate
the global, initial and working conditions, and the de�nition of regular run of
[Section 3.4]. In fact, having re�ned the agent C by the concept of workstation
with users and processes, all conditions previously de�ned on C must be ascribed
to the right agents.

Let us �x an element P of PROCESS ; recall the de�nition of A(P) from the
previous section.

1366 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

De�nition 2. A (sequential) run of P is a sequence %
P

= S0; S1; : : : ; Sk; : : :

of states of A(P) such that, for each positive k, S�k+1 is obtained from Sk by

executing one rule r(k) of A(P) at Sk.

Note that %
P
uniquely determines rules r(k) and each rule uniquely determines

the agent whose program contains the rule.
It is straightforward to verify that each run %

P
is a linearization of a partially

ordered run of A, and is sequential in the sense of sequential runs of distributed
ASM as de�ned in [Section 3.1]. Therefore, to prove correctness properties of the
whole model, it is enough to reason on the linearization %

P
.

The following global conditions hold in any state of A(P):

G10: 8U 2 USER de�ned (K(U)) & de�ned (K(TGS)) & de�ned (K(ES))
G20: :authenticated (P) �! :authorised (P)

I1 or I2 now hold on A(P) according with Mod (P) = LP MODULE or
Mod (P) = SP MODULE respectively (C must be replaced by P or owner (P)
according to the function re�nements of [Section 3.5.1] andRequiredService (C) 6=
undef by task (P) 6= undef). Therefore:

I10: [Initial conditions of a login process]
{ Ticket (P,TGS,Self) = undef, Self 2 fP, KAS g
{ K (P,TGS,Self) = undef, Self 2 fP, KAS g
{ mode (P) = ReadyToSend
{ mode (KAS) = ReadyToReceive
{ sender (X) 6= P & receiver (X) 6= P, 8X 2 MESSAGE

I20: [Initial conditions of a service process]
{ Ticket (P,TGS,Self) 6= undef, Self 2 fP, KAS g
{ Ticket (P,ES,Self) = undef, Self 2 fP, TGS g
{ K (P,TGS,Self) 6= undef, Self 2 fP, KAS g
{ K (P,ES,Self) = undef, Self 2 fP, TGS g
{ mode (P) = ReadyToSend
{ mode (Self) = ReadyToReceive, Self 2 fTGS,ES g
{ sender (X) 6= P & receiver (X) 6= P, X 2 MESSAGE
{ task(P) 6= undef

The working conditions can be stated on any P 2 PROCESS, replacing C
by P or owner (P) according to the function re�nements of [Section 3.5.1].

De�nition 3. A run %
P

of a login (service) process P is called regular if it
satis�es the following conditions:

(i) global conditions G10 and G20 hold;
(ii) the initial state satis�es initial conditions I10 (I20);
(iii) working conditions W1 to W4 hold in any state of %

P
.

Corollary 1 (Correctness)
(i) At some state of any regular run %

P
of a login process, P becomes authenti-

cated.
(ii) At some state of any regular run %

P
of a service process, P shares a session

key with the end server and is ReadyToStart the communication with it.

1367Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

Proof. Correctness Theorem 2 and Re�nement Theorem 4 applied to the login
process P proves (i). Correctness Theorem 3 and Re�nement Theorem 4 applied
to the service process P proves (ii). 2

De�nition 4. A run % in A is called regular if the following conditions are
satis�ed:

(i) the initial state satis�es the following conditions:
{ 9 U 2 USER: RequiredLogin(U) 6= undef &
8 P 2 PROCESS : :(owner(P) = U)

{ mode (Self) = ReadyToReceive, Self 2 fKAS,TGS,ES g
{ sender (X) = receiver (X) = undef, 8X 2 MESSAGE

(ii) 8P 2 PROCESS, all runs %
P
are regular.

As a consequence of the corollary, it is easy to prove the following main result.

Theorem 5 (Main Theorem) At some state of any regular run, a legitimate
user requiring a service shares a session key with the end server providing that
service and is ReadyToStart the communication with it.

Proof. Let U 2 USER be the legitimate user satisfying the �rst of the initial
conditions holding in the initial state S0. We have to show that there exists a
state Sk, k > 0, and a process P 2 PROCESS such that the following relation
holds in Sk:

Mod(P) = SP MODULE& owner(P) = U &mode(P) = ReadyToStart (2)

By initial conditions only the rule CreateLoginProcess can �re in S0, and
a login process P1 of owner U is created. On P1 conditions I10 hold, so by
the part (i) of Corollary 1, at some state Sh, h > 0, holds authenticated (P1).
This condition, together with the hypothesis RequiredService(U) 6= undef, allows
ruleCreateServiceProcess to �re. A service process P2 already authenticated,
with owner U and task RequiredService(U), is created. In the current state initial
conditions I20 hold on P2, so the part (ii) of Corollary 1 proves the (2) taking P
as P2. 2

Remark. The theorems above show that the `MultipleClients' model is an
e�ective extension of the `EncryptionDecryption' model for the presence of the
agent WS to capture every external request for login or for a network service.

3.5.4 The Program

Variable P ranges over PROCESS, variables mssg and CryptedMssg range over
MESSAGE.

Authentication Phase

WS MODULE

1368 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

CreateLoginProcess rule

var U ranges over USER
if RequiredLogin (U) & unde�ned (login (U))
then

extend PROCESS by P with
Mod (P) := LP MODULE
owner (P) := U
mode (P) := ReadyToSend
K (P,TGS) := undef
Ticket (P,TGS) := undef
K (P,ES) := undef
Ticket (P,ES) := undef

CreateServiceProcess rule

var U ranges over USER
if RequiredService (U) & authenticated (login(U))
& unde�ned (process (U, RequiredService (U)))
then

extend PROCESS by P with
Mod (P) := SP MODULE
owner (P) := U
task (P) := RequiredService (U)
mode (P) := ReadyToSend
K (P,TGS) := K (login (U),TGS))
Ticket (P,TGS) := Ticket (login (U),TGS))
K (P,ES) := undef
Ticket (P,ES) := undef

LP MODULE

RequireAuthentication rule

if :authenticated (P) & mode (P) = ReadyToSend
then

P SendTo KAS : fowner (P), TGS, CTg
mark (P) := hTGS,CT i
mode (P) := ReadyToReceive

GetAuthentication rule

if :authenticated (P) & mode (P) = ReadyToReceive
& P ReceiveFrom KAS : CryptedMssg

then
if de�ned (password (P))
then

if de�ned (decrypt (CryptedMssg, code (password (P))))
& CheckValid (CryptedMssg, mark (P))

then
K(P; TGS) := key (decrypt (CryptedMssg, code (password (P))))
Ticket(P; TGS) := ticket (decrypt (CryptedMssg, code (password (P))))
clear (password (P))
clear (CryptedMssg)
mode (P) := ReadyToSend

else
password (P) := AskPsw (owner (P))

1369Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

RevokeAuthentication rule

if expired (K (P,TGS))
then

K (P,TGS) := undef
Ticket (P,TGS) := undef

KAS MODULE

KasReply rule

block

[CheckIdentity rule]
if mode = ReadyToReceive & KAS ReceiveFrom P : mssg

& de�ned (K (owner (P)))
then

P := sender (mssg)
clear (mssg)
mode := ReadyToSend

[ProvideAuthentication rule]
if mode = ReadyToSend
then

if de�ned (K (P,TGS))
then

if de�ned (Ticket (P,TGS))
then
KAS SendTo P :
encrypt (fK (P,TGS),Ticket (P,TGS),TGS,CT,AuthLife g,

K (owner (P))
clear (P)
mode := ReadyToReceive

else
Ticket(P; TGS) :=
encrypt (fowner (P),TGS,address (P),K (P,TGS),CT,AuthLife g,

K (TGS))
else
K(P; TGS) := random (P, TGS, CT)

endblock

RevokeAuthentication rule

if (CT � ts (decrypt (Ticket (P,TGS), K (TGS)))) > AuthLife
then

K (P,TGS) := undef
Ticket (P,TGS) := undef

Authorisation Phase

SP MODULE

RequireAuthorisation rule

if authenticated (P) & :authorised (P)
& mode (P) = ReadyToSend

then

1370 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

if de�ned (Auth (P, K (P,TGS)))
then
P SendTo TGS : fAuth (P, K (P,TGS)), Ticket (P,TGS), ESg
mark (P) := hES, CT i
clear (Auth (P, K (P,TGS)))
mode (P) := ReadyToReceive

else
Auth (P, K (P,TGS)) := encrypt (fowner (P), address (P), CT g, K (P,TGS))

NegotiateService rule

block

[GetAuthorisation rule]
if authenticated (P) & :authorised (P)

& mode (P) = ReadyToReceive & P ReceiveFrom TGS : CryptedMssg
& CheckValid (CryptedMssg, mark (P))

then
K(P; ES) := key (decrypt (CryptedMssg, K (P,TGS)))
Ticket(P; ES) := ticket (decrypt (CryptedMssg, K (P,TGS)))
clear (CryptedMssg)
mode (P) := ReadyToSend

[ShowAuthorisation rule]
if authenticated (P) & authorised (P)

& mode (P) = ReadyToSend
then

if de�ned (Auth (P, K (P,ES)))
then
P SendTo ES : fAuth (P, K (P,ES)),Ticket (P,ES) g
clear (Auth (P, K (P,ES)))
if RequiredMutualAuthentication (task (P))
then

mark (P) := hCT i
mode (P) := ReadyToReceive

else
mode (P) := ReadyToStart

else
Auth (P, K (P,ES)) := encrypt (fowner (P),address(P),CT g, K (P,ES))

endblock

MutualAuthentication rule

if authenticated (P) & authorised (P)
& mode (P) = ReadyToReceive & P ReceiveFrom ES : CryptedMssg
& RequiredMutualAuthentication (task (P))
& MutualAuthentication (CryptedMssg, mark (P))

then
clear (CryptedMssg)
mode (P) := ReadyToStart

RevokeAuthentication rule

if expired (K (P,TGS))
then

K (P,TGS) := undef
Ticket (P,TGS) := undef

1371Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

RevokeAuthorisation rule

if expired (K (P,ES))
then

K (P,ES) := undef
Ticket (P,ES) := undef

TGS MODULE

TgsReply rule

block

[CheckAuthentication rule]
if mode = ReadyToReceive & TGS ReceiveFrom P : mssg

& SuccValid (P, ticket (mssg), auth (mssg))
then

K(P; TGS) := key (decrypt (ticket (mssg), K (TGS)))
P := sender (mssg)
clear (mssg)
mode := ReadyToSend

[ProvideAuthorisation rule]
if mode = ReadyToSend
then

if de�ned (K (P,ES))
then

if de�ned (Ticket (P,ES))
then
TGS SendTo P :
encrypt (fK (P,ES),Ticket (P,ES),ES,CT,ServLife g, K(P; TGS))

clear (K(P,TGS))
clear (P)
mode := ReadyToReceive

else
Ticket(P; ES) :=
encrypt (fowner (P),ES,address (P),K (P,ES),CT,ServLife g,

K (ES))
else
K(P;ES) := random (P, ES, CT)

endblock

RevokeAuthorisation rule

if (CT � ts (decrypt (Ticket (P,ES), K (ES)))) > ServLife
then

K (P,ES) := undef
Ticket (P,ES) := undef

ES MODULE

Handshake rule

block

[CheckAuthorisation rule]
if mode = ReadyToReceive & ES ReceiveFrom P : mssg

& SuccValid (P, ticket (mssg), auth (mssg))

1372 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

then
K(P; ES) := key (decrypt (ticket (mssg), K (ES)))
P := sender (mssg)
clear (mssg)
mode := ReadyToSend

[ProvideHandshake rule]
if mode = ReadyToSend
then

if RequiredMutualAuthentication (task (P))
then
ES SendTo P :

encrypt (fts (decrypt(auth (mssg), K (P,ES))) + 1g, K (P,ES))
TimeStamp (P) :=

append (ts (decrypt (auth (mssg), K (P,ES))), TimeStamp (P))
clear (P)
mode := ReadyToReceive

endblock

3.6 The MultipleEndServers Model

Consider the complete system with a certain number of end servers, each pro-
viding a di�erent network service [Fig.1]. We create an agent for each end server,
and de�ne a universe SERVER of end servers to extend the universe DAEMON
and therefore AGENT.

To address the end server that provides one particular service, we de�ne the
function

server : SERVICE �! SERVER
where SERVICE has been extended to the whole set of network services.

Those operations concerning the binding to a client performed by each agent
in SERVER may be formalised by the ES MODULE, so that we de�ne Mod (S)
= ES MODULE for all S 2 SERVER. All of the conditions stated till now about
ES must be extended to all elements of SERVER.

Therefore, the complete speci�cation comes out from the program in [Section
3.5.4] after the following modi�cations:

1. in SP MODULE replace each occurrence of ES by server (task (P));
2. in TGS MODULE add the update `ES := EndServer (mssg)' to ruleCheck-
Authentication and the update `clear (ES)' (below clear (P)) to rule Pro-
videAuthorisation.

The function EndServer (mssg): SERVICE yields the projection on the third
�eld of the record mssg received as message from a (service) process.

As with servers KAS and TGS, we make no distinction between the host end
server and its daemon process. As a consequence, by server (service) we mean
either the end server identi�er or its daemon process, that gives sense to update
(1).

Given an end server ES, we denote by A(ES) the restriction of the current
ASM with SERVER = fESg.

Theorem 6 (Re�nement) The runs in A(ES) and in the `MultipleClients'
model are in one-to-one correspondence.

1373Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

It is straightforward to verify that the ES MODULE at both levels model
the same agent behaviour. 2

Remark. Theorem 6 shows that the `MultipleEndServers' model is a general-
ization of the `MultipleClients model'.

As a Corollary of Theorem 6, the Main Theorem 5 stated in [Section 3.5.2]
holds in the `MultipleEndServers' model. The proof will consider regular runs
involving the agent server (task (P)) such that owner (P) = U & Mod (P) =
SP MODULE in the role of ES.

4 External Threats

This section takes into account the threats coming from the environment in
which the Kerberos Authentication System has to work, i.e. a modern network
of computers.

Today a computer network must be considered a hostile environment in the
sense that eavesdroppers are able to listen to the connection between two parties,
thus stealing valuable information. In this context, we use the term spy to refer
to a network user whose target is accessing a network resource without using
her identity, i.e. user identi�er and password. For a complete treatment of the
concept of spy, see [Voydock, Kent 83].

4.1 The spy

To specify a spy's operation, �rst of all one has to answer the following questions.
How does a spy work? What can a spy learn by observing the network tra�c?
How can a spy wish to get services she is not allowed to?

Broadly speaking, the problem of how to model a spy is not trivial at
all. Many have tried to formalise an even more powerful spy than she could
ever be in reality, in order to have better assurances that the protocol may
be considered safe in practice. This approach might work well, but could also,
e.g., cause overloading problems to state-enumeration methods (as pointed out
in [Lowe 96a, Paulson 96]), or prove to be unplausible. On the other hand, many
have taken into account too weak, unrealistic attackers. A tradeo� is needed.

The following capabilities seem the most reasonable [Bellovin, Merritt 90]. A
spy can control all of the tra�c over the network (which translates into the
total access to the universe MESSAGE); modify her workstation address
in the form of that where the user is logged in; exploit the accidental loss
of a session key with TGS (model 1), or of a session key with an end server
(model 2). Thus, we analyse two di�erent models of a spy, which are given as
non-destructive spies, i.e. they do not alter the messages sent on the network
but simply steal the information they contain. In fact, considering destructive
spies would simply make the description longer { the atomic transmission of a
message would become the task of a new agent formalising the message-passing
interface { without adding to the analysis of the spy's potentialities.

Remark. There is no need to analyse a spy who is able to intercept the
messages sent on the network but unable to steal any session key. Such a spy
would never gain any service because, should she reply intercepted tickets or

1374 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

authenticators, she could not handle the servers' encrypted reply.

We formalise the spy as a new element SPY of AGENT and we extend
on SPY all of the functions de�ned for elements of PROCESS. We impose
owner (SPY) = SPY so that SPY is seen as a service process running on be-
half of the spy.

The stolen session key is denoted by Kstolen: KEY which is a monitored
function, since we are not concerned about how SPY gets hold of it. She might
exploit an accidental loss by a legitimate user, or even pay money for it, or
something else.

SPY starts to operate as soon as she intercepts a message that she can de-
crypt by Kstolen. The monitored function mssgstolen: MESSAGE yields the mes-
sage containing an authenticator that can be decrypted by Kstolen. This function
formalises the interception of a message by SPY. We impose the following in-
tegrity constraints :

C1. if de�ned(Kstolen), then Kstolen = K(P; S) for some P 2 PROCESS and
S 2 fTGSg[SERVER;

C2. if de�ned(Kstolen) & de�ned (mssgstolen) & Kstolen = K(P; S) for some P 2
PROCESS and S 2 fTGSg[SERVER, then sender (mssgstolen) = P & re-
ceiver (mssgstolen) = S & de�ned (decrypt (auth (mssgstolen), Kstolen));

C3. if de�ned(Kstolen) & Kstolen = K(P; S) for some P 2 PROCESS and S
2 fTGSg[SERVER, then K (SPY,S) = Kstolen;

C4. if de�ned(Kstolen) &Kstolen = K(P; S) for some P 2 PROCESS & S 2
SERVER, then server (task (SPY)) = server (task (P)).

In the sequel we abbreviate server (task (SPY)) by ES.
The two models sketched above are speci�ed by the new modules SPY MO-

DULE1 and SPY MODULE2 respectively. They must be added, in turn, to the
program of the MultipleEndServers model.

4.1.1 The �rst model of spy

This spy is able to intercept the messages sent on the network and to exploit a
stolen session key with TGS. Thus, by constraint C3 we have K(SPY,TGS) =
Kstolen = K(P,TGS), being P the service process to which the session key was
issued.

This is obviously the most powerful model, since that kind of session key has
a lifetime of hours and is used every time a user wishes to access a service.

To model this agent, we de�ne Mod (SPY) = SPY MODULE1 [see Fig. 4].
The following rule RequireAuthorisation describes how SPY impersonates an
(authenticated) service process during the request for authorisation to TGS.

SPY controls the connection between the worstation and TGS. When she
gets a message she can decrypt using the stolen key, she extracts and saves its
components. Note that the second update allows authenticated (SPY) = true
(StealAuthentication rule).

After that, SPY exploits the stolen key to de�ne a faked authenticator by re-
freshing the current time, and sends TGS an apparently legal message (FakeAu-
thentication rule).

Note that the existence of two authenticators that di�er only in the times-
tamps is perfectly admissible because they could have been issued by the same

1375Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

SPY MODULE1

RequireAuthorisation
� block

StealAuthentication
FakeAuthentication

endblock

NegotiateService
� block

GetAuthorisation
ShowAuthorisation

endblock

MutualAuthentication
RevokeAuthentication
RevokeAuthorisation

Figure 4: The program for the �rst model of SPY

user at di�erent times. Therefore, they will pass the control on TGS.
RequireAuthorisation rule of SPY MODULE1

block

[StealAuthentication rule]
if mode = ReadyToReceive & de�ned (K (SPY,TGS))

& de�ned (mssgstolen)
then

Auth (SPY, K (SPY,TGS)) := auth (mssgstolen)
Ticket (SPY,TGS) := ticket (mssgstolen)
clear (mssgstolen)
mode := ReadyToSend

[FakeAuthentication rule]
if mode = ReadyToSend
then

if de�ned (FakedAuth)
then
SPY SendTo TGS : fTicket (SPY,TGS),FakedAuth,server (task (SPY))g
mark (SPY) := hserver (task (SPY)), CT i
mode = ReadyToReceive

else
FakedAuth :=
encrypt (fclient (StolenAuth),address (StolenAuth),CTg, K (SPY,TGS))

where StolenAuth = decrypt (Auth (SPY, K (SPY,TGS)), K (SPY,TGS))

endblock

Rules NegotiateService, MutualAuthentication, RevokeAuthorisa-
tion and RevokeAuthentication of SP MODULE rewritten with P updated
to SPY complete the module.

Incidentally, it has to be observed that the proof of correctness Corollary 1
and Theorem 5 are not a�ected from the extension by SPY, because SPY MO-

1376 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

DULE1 is an actual non-destructive program (the same will apply to SPY MO-
DULE2). In fact its only interaction with the external environment is by the
macro SendTo which simply extends the universe MESSAGE without altering
its previous contents.

To analyse the spy's potentialities, it is enough to restrict our attention to
run involving the agents SPY, TGS and ES. Let A(SPY) be the restriction of
the whole ASM A to those three agents. Note that the agents of A(SPY) can
�re one rule at a time, thus we simply consider sequential run.

De�nition 5. A (sequential) run of SPY is a sequence %
SPY

= S0; S1; : : : ; Sk; : : :

of states of A(SPY) such that, for each positive k, S�k+1 is obtained from Sk by

executing one rule of A(SPY) at Sk.

The working condition W3 can be stated for SPY (replacing P by SPY) in
A(SPY) because it concerns the right operation of the servers.

De�nition 6. A run %
SPY

of SPY is called regular if the following conditions
hold:

(i) the initial state conditions are:
{ mode (Self) = ReadyToReceive, Self 2 fSPY; TGS;ESg;
{ de�ned (Kstolen) and Kstolen = K (P,TGS), for some P 2 PROCESS;
{ address (SPY) = address (P) such that Kstolen = K (P,TGS), P 2 PRO-
CESS;

{ task (SPY) 6= undef;
{ sender(X) 6= SPY ^ receiver(X) 6= SPY, 8X 2 MESSAGE;
{ de�ned(mssgstolen) and de�ned (decrypt (auth (mssgstolen), Kstolen)).

(ii) working conditions W1 and W3 hold at any state of %
SPY

.

When SPY intercepts a message containing the authenticator she can decrypt
by Kstolen and a ticket still fresh { i.e. Kstolen is still fresh { if she is quick enough
to forward the ticket to TGS and to fake the authenticator, she will get the
authorisation credentials from TGS. This is formalised by the following

Theorem 7 Let %
SPY

be a regular run of SPY. Let t be the timestamp of the
stolen ticket and t0 the timestamp of the faked authenticator. If [CT]S0 < t +
AuthLife, and TGS receives a message from SPY at some state Si, i > 0, such
that [CT]Si < min(t+AuthLife; t0 +DeltaLife), then
(i) authorised (SPY) holds at some state;
(ii) if the authorised SPY satis�es the working condition W4 with the required
end server, then she shares a session key with that end server and is ReadyToStart
the communication with it.

Proof. To prove the part (i) we have to show that SPY is able to get from TGS
a service ticket and a service key; after that the proof of (ii) trivially follows
the same pattern as in the part (ii) of the Corollary 1 { replacing each rule in
SP MODULE by the corresponding one in SPY MODULE1 { starting from the
application of rule ShowAuthorisation.

By initial conditions the guards of rule StealAuthentication hold in S0, so
that SPY stores authenticator and ticket contained in the stolen message. Having
learnt from it, by rule FakeAuthentication he fakes the stolen authenticator

1377Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

using Kstolen, and sends TGS a message of the expected form. In the current
state, the guards of rule TgsReply holds because macro SuccValid checks out
by hypothesis on [CT]Si and constraint about the function address. Hence, TGS
builds a service ticket and a service key for SPY that it considers a legitimate,
authenticated process. SPY gets hold of them by rule GetAuthorisation. 2

4.1.2 The second model of spy

In addition controlling the network, this spy owns a stolen session key with an
end server. By constraint C3 we have K(SPY,ES) = Kstolen = K(P,ES) and,
by C4, ES = server (task (P)), being P the process to which the session key
was issued. We de�ne Mod (SPY) = SPY MODULE2. Once SPY has stolen a

SPY MODULE2

RequireAuthorisation
� block

StealAuthentication
FakeAuthentication

endblock

MutualAuthentication
RevokeAuthorisation

Figure 5: The program for the second model of SPY

message containing the service ticket and the service authenticator that she can
decrypt, she can gain the service for which the session key was issued only if she
is able to fake the authenticator within the validity time of the ticket. Although
this time is short, the target is still reasonable because the check within a large
number of messages to �nd the one that can be decrypted by a given key, may
be real-time computed.

Once again, a good way to fake the authenticator is updating the timestamp
thanks to the stolen session key, and then sending ES a message of the expected
form. This is described in the following rule.

RequireAuthorisation rule of SPY MODULE2

block

[StealAuthentication rule]
if mode = ReadyToReceive & de�ned (K (SPY,ES))

& de�ned (mssgstolen)
then

Auth (SPY, K (SPY,ES)) := auth (mssgstolen)
Ticket (SPY,ES) := ticket (mssgstolen)
clear (mssgstolen)
mode := ReadyToSend

1378 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

[FakeAuthentication]
if mode = ReadyToSend
then

if de�ned (FakedAuth)
then
SPY SendTo ES : fTicket (SPY,ES), FakedAuthg
mark (SPY) := hCT i
mode = ReadyToReceive

else
FakedAuth :=
encrypt (fclient (StolenAuth), address (StolenAuth), CTg, K (SPY,ES))

where StolenAuth = decrypt (Auth (SPY, K (SPY,ES)), K (SPY,ES))

endblock

Let now A(SPY) be the restriction of the whole ASM to the agents SPY
and ES. The previous de�nition of a (sequential) run %

SPY
of SPY is still valid.

The working condition W3 can be stated for SPY in A(SPY).

De�nition 7. A run %
SPY

of SPY is called regular if the following conditions
hold:

(i) the initial state conditions are:
{ mode (Self) = ReadyToReceive, Self 2 fSPY;ESg;
{ de�ned(Kstolen) and Kstolen = K (P,ES), P 2 PROCESS, and ES = ser-
ver (task (P));

{ address (SPY) = address (P) such that Kstolen = K (P,ES), P 2 PRO-
CESS;

{ sender(X) 6= SPY ^ receiver(X) 6= SPY, 8X 2 MESSAGE;
{ de�ned(mssgstolen) and de�ned(decrypt(auth(mssgstolen), Kstolen)).

(ii) working conditions W1 and W3 hold at any state of %
SPY

.

When SPY intercepts a message containing the authenticator that she can
decrypt by Kstolen and a ticket still fresh { i.e. Kstolen is still fresh { if she is quick
enough to forward the ticket to ES and to fake the authenticator, she will get
the handshake from ES. This is formalised by the following

Theorem 8 Let %
SPY

be a regular run of SPY. Let t be the timestamp of the
stolen ticket and t0 the timestamp of the faked authenticator. If [CT]S0 < t +
ServLife and ES receives a message from SPY at some state Si, i > 0, such
that [CT]Si < min(t+ServLife; t0+DeltaLife), then SPY can share a session
key with ES and get mode ReadyToStart the communication.

Proof. By initial conditions the guards of rule StealAuthentication hold in
S0, so that SPY stores authenticator and ticket from the stolen message, and by
rule FakeAuthentication sends ES a message of the expected form, containing
the faked authenticator. Rule Handshake �res to the current state because
SuccValid checks out by the hypothesis on [CT]Si and the condition on the
function address, in such a way that ES starts the handshake with SPY if the
mutual authentication is required or simply saves the session key. The possible
application of the MutualAuthentication rule ends the proof. 2

1379Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

5 Conclusion

We have provided a complete analysis of the Kerberos Authentication System.
The �nal ASM model has been reached through stepwise re�nements. The �rst
model directly re
ects the guidelines of the Kerberos operation. The last one
describes the complete system with each legitimate user able to require all the
existing network resources.

Throughout this sequence of models, the ASM formalism has proved to be
particularly suitable to the stepwise re�nement strategy which usually makes it
easier to understand complex systems, allowing to discover technical details step
by step.

Our models have been used to discover the minimum assumptions to guar-
antee the correctness of the system. Each model ends with a re�nement theorem
which extends the correctness properties proved at the previous level. The last
model may be extended in turn by two di�erent models formalising the possi-
ble actions of an eavesdropper. This has shown some weaknesses of the system
security.

Our proofs are traditional (not formalised) mathematical proofs and are not
to be considered in opposition to machine-assisted proofs but as a possible guide-
line to be used within a speci�c proof system.

Acknowledgements. The authors are grateful to Egon B�orger for his in-
valuable suggestions and constant encouragement. Rosario Gennaro pointed out
the basic layout of Kerberos. Rebecca Marshall generously revised part of the
paper. Roger Needham suggested few improvements.

The �rst author would also like to thank the Fondazione Bonino-Pulejo
(Messina-ITALY) and The British Council (Rome-ITALY) for funding his Ph.D.

The second author has been partially supported by the INTAS project.

References

[Abadi, Needham 96] Abadi, M., Needham, R.: \Prudent engineering practice for cryp-
tographic protocols"; IEEE Transactions on Software Engineering (1996), 22(1),
6-15.

[Anderson 95] Anderson, R.: \Why cryptosystems fail"; Communications of the ACM
(1994), 37(11), 32-40.

[Bella, Paulson 97] Bella, G., Paulson, L.C.: \Using Isabelle to Prove Properties of
the Kerberos Authentication System"; in Proc. DIMACS Workshop on Design and
Formal Veri�cation of Security Protocols (1997).

[Bellare, Rogaway 95] Bellare, M., Rogaway, P.: \Provably Secure Session Key Distri-
bution { The Three Party Case"; Proc. STOCS 1995, ACM Press (1995), 57-66.

[Bellovin, Merritt 90] Bellovin, S.M., Merritt, M.: \Limitations of the Kerberos au-
thentication system"; Computer Comm. Review (1990), 20(5), 119-132.

[Bolignano 96] Bolignano, D.: \An approach to the formal veri�cation of cryptographic
protocols"; in Third ACM Conference on Computer and Communication Security,
ACM Press (1996), 106-118.

[B�orger 95a] B�orger, E.: \Speci�cation and Validation Methods", Oxford University
Press (1994).

[B�orger 95b] B�orger, E.: \Why Use Evolving Algebras for Hardware and Software En-
gineering?"; in M. Bartosek, J. Staudek, J. Wiedermann (Eds.): Proc. SOFSEM'95,
Springer LNCS 1012 (1995), 236-271.

1380 Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

[B�orger, Mearelli 97] B�orger, E., Mearelli, L.: \Integrating ASMs into the Software
Development Life Cycle"; in J.UCS (1997), 3(5), 603-665.

[Burrows et al. 90] Burrows, M., Abadi, M., Needham, R.: \A Logic for Authentica-
tion"; ACM Transaction on Computer Systems, 8,1(1990), 18-35.

[Denning, Sacco 81] Denning, D.E., Sacco, G.M.: \Timestamps in key distribution pro-
tocols"; Comm. of ACM (1981), 24(8), 533-536.

[Gurevich 95] Gurevich, Y.: \Evolving Algebras 1993: Lipari Guide"; in E. B�orger
(Ed.): Speci�cation and Validation Methods, Oxford University Press (1995).

[Lowe 96a] Lowe, G.: \SPLICEnAS: A case study in using to detect errors in security
protocols"; Technical Report, Oxford University Computing Laboratory (1996).

[Lowe 96b] Lowe, G.: \Breaking and �xing the Needham-Schroeder public-key protocol
using CSP and FDR"; in T. Margaria and B. Ste�en (Eds.): Tools and Algorithms
for the Construction and Analysis of Systems (1996), Second International Work-
shop, TACAS '96, LNCS 1055, 147-166.

[Miller et al. 89] Miller, S.P., Neuman, J.I., Schiller, J.I., Saltzer, J.H.: \Kerberos Au-
thentication and Authorisation System"; Project Athena Techical Plan, Section
E.2.1, MIT (1989), 1-36.

[Mitchell et al. 97] Mitchell, J.C., Mitchell, M., Stern, U.: \Automated Analysis of
Cryptographic Protocols Using Murphi"; IEEE Symposium on Security and Privacy
(1997), 141-151.

[Needham, Schroeder 78] Needham, R., Schroeder, M.: \Using encryption for authen-
tication in large networks of computers"; Communication of the ACM, 21,12 (1978),
993-999.

[Neuman, Ts'o 94] Neuman, B.C., Ts'o, T: \Kerberos: An authentication service for
computer network"; IEEE Communication Magazine, 32,9 (1994), 33-39.

[Paulson 96] Paulson, L.C.: \Proving properties of security protocols by induction";
Technical Report No.409, Cambridge University Computer Laboratory (1996).

[Schumann 97] Schumann, J.: \Automatic Veri�cation of Cryptographic Protocols
with Setheo", in Proc. CADE97 Workshop of Automated Theorem Proving in Soft-
ware Engineering (1997).

[Stalling 95] Stalling, W.S.: \Network and Internetwork Security Principles and Prac-
tice", Prentice Hall (1995).

[Stevens 90] Stevens, W.R.: \UNIX Network Programming", PTR Prentice Hall
(1990).

[Voydock, Kent 83] Voydock, V.L., Kent, S.T.: \Security mechanisms in high-level net-
work protocols"; Computing Surveys 15 (1983), 135-171.

1381Bella G., Riccobene E.: Formal Analysis of the Kerberos Authentication System

