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1 Motivation

Investigations of e�ectiveness in intuitionistic model theory can be considered as
a part of classical computable model theory. This is simply because every Kripke
model can be embedded into a classical model in a certain natural way [6]. Hence
any construction of a Kripke model can be considered as a construction of a clas-
sical model. However, e�ectiveness considerations in intuitionistic model theory
show that we can look at computable model theory with a di�erent eye. This can
be seen when one tries to compare e�ective versions of completeness results in
classical model theory and in intuitionistic model theory. In this paper we give
an example which shows that the e�ectiveness of the completeness result in clas-
sical model theory can sharply contrast with the e�ectiveness of completeness
results for some nonclassical logics. The e�ective version of the completeness re-
sult for the classical predicate logic states that any decidable theory has a model
whose full diagram is decidable. Such classical models are called decidable. In
this paper we show that the completeness result, applied to a decidable theory
over the logic with the weak law of excluded middle, produces a Kripke model
for which the forcing (see De�nition 1) is decidable in !-jump of 0. We do not
know if the !{jump is the sharpest bound but we suspect that it is indeed so.

Here we mention some previous results concerning the e�ectiveness of the
completeness theorem in intuitionistic model theory. Gabbay in [3] proved that
for any decidable �nitely axiomatized intuitionistic theory � and any sentence �
not intuitionistically derivable from � , there is a Kripke model of � which does
not force �, such that the underlying partially ordered set is a computable enu-
merable partial ordering, and such that forcing restricted to atomic statements
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is computably enumerable. In [7] a more sophisticated argument proves that any
decidable intuitionistic theory � has a Kripke model M with decidable forcing
such that for all sentences �, � is an intuitionistic consequence of � if and only if
M forces �. The proof in [7] guarantees only that the underlying partial ordering
is a �0

2
{set. However [8] shows that the underlying partial ordering can in fact

be made computable.
We refer the reader to [8] for an elementary introduction to computable

intuitionistic model theory with an emphasis to the e�ectiveness issue of com-
pleteness results.

2 Basic Notions

Kripke Frames and Models. Let L =< P
n0
0
; : : : ; P

nk
k : : : ; c0; c1; : : : > be a

computable language without function symbols. We denote the set of all sen-
tences of L by Sn(L).

A frame is a triple F = (W;�; D) consisting of a non-empty setW; (\states
of knowledge"), a partial order � on W , and a map D from W to a power
set such that v � w implies D(v) � D(w). D is called the domain function:
The partially ordered set (W;�) is called the base of the frame.

We suppose that we are given a mapping V , called a valuation, which assigns
to each pair consisting of a w 2 W and an n{ary predicate symbol P (constant
c) from L, a n{ary relation on D(w) (element of D(w)):

Let L(w) be the extension of the language L obtained by adding to L a
constant (name) ca for each element a 2 D(w). Let A(w) be the set of all
atomic sentences of language L(w) classically true in D(w) under the valuation
V . Suppose that for all v � w the set of all atomic sentences from A(v) is a
subset of A(w). Then the 4{tupleM = (W;�; D; V ) is called a Kripke model
(over frame F ).

De�nition 1. Let (W;�; D; V ) be a Kripke model of language L, w be inW and
� be a sentence from L(w). We give the de�nition of \w forces �" by induction
on the complexity of �.

1. For atomic sentences �, w forces � i� � 2 A(w).
2. w forces �!  i� for all v � w, v forces � implies v forces  .
3. w forces :� i� for all v � w, v does not force �.
4. w forces 8x� i� for all v � w and all constants c 2 L(v), v forces �(c).
5. w forces 9x� i� for some c 2 L(w), w forces �(c).
6. w forces � _  i� w forces � or w forces  .
7. w forces �& i� w forces � and w forces  .

M forces a � if every w 2W forces �. One can prove that if w forces � and
v � w, then v forces �.

Let � be a subset of Sn(L). The closure of � is the set of all sentences which
are intuitionistically deducible from � . A set � of sentences is consistent if the
closure of � does not contain the falsehood ?.

Computability Theory. We �x a standard e�ective enumeration�X
0
; �

X
1
; : : :

of all computable partial functions with oracle X . We call number n an index of
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�
X
n . We assume that the reader knows basic facts about the arithmetical hierar-

chy, the jump operator and Turing degrees. 0n is the n{th jump of computable
degree 0. 0! is the degree of the set f(x; i)jx 2 0ig. The degree 01 is denoted by
00. We refer to Soare [13] for the basic computability theory.

Intermediate Logics and Completeness. If we add the schema � _ :�
to intuitionistic predicate logic IPL, then we obtain full classical predicate logic
CPL. The logic QJ is obtained by adding the schema for the weak law of
excluded middle

:�
_
::�

to IPL and taking the closure. This logic is closed under substitution and intu-
itionistic deduction.

De�nition 2. A logic S is complete for a class K of Kripke frames if the
following two conditions hold:

1. All Kripke models over frames from K force all formulas from S.
2. For any � 2 Sn(L) if � is not provable in S, then there is a Kripke model
M over a Kripke frame in K such that M does not force �.

It is known that the classical predicate logic is complete for the class of
antichain frames; The intuitionistic predicate logic IPL is complete for the
class of tree frames; The logic QJ is complete for the class of directed frames;
For proofs of these and other results and surveys of the subject, see [2] [6] [12]
[4] [5] [8].

3 Extensions of Theories

We �x a language L and a logic S. When a sentence � is intuitionistically de-
ducible in logic S, we simply say that � is deducible or S{deducible and write
`S �.

De�nition 3. 1. A theory T is a pair (�;�), where � and � are sets of
sentences. We set lT = � and rT = �.

2. A Kripke model M is adequate for T if for all sentences �, � is deducible
from lT if and only if M forces �.

T = (�;�) is inconsistent if there exist �1, : : :, �n 2 � and �1, : : :, �m 2 �
such that �1& : : :&�n ! �1_: : :_�m is S{deducible. T = (�;�) is consistent
if it is not inconsistent.

Proposition4. Let T = (�;�) be a consistent theory. Then there exists a theory
T = (� 0

; �
0) such that (� 0

; �
0) is consistent, � 0

S
�

0 = Sn(L), and � � �
0 and

� � �.

Proof. Let �0; �1; : : : be a list of all sentences of the language L. We construct
a sequence (�0; �0); (�1; �1); : : : of theories such that

1. For all i 2 !, �i � �i+1, �i � �i+1,
2. For all i 2 !, (�i; �i) is consistent,
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3.
S
i(�i
S
�i) = Sn(L).

We build this sequence by stages.
Stage 0. Put (�0; �0) = T0 = (�;�).
Stage n+ 1. Take �n. We have two cases.
Case 1. The theory (�n; �n

S
f�ng) is consistent. Then put �n+1 = �n and

�n+1 = �n

S
f�ng.

Case 2. (�n; �n

S
f�ng) is inconsistent. Then put �n+1 = �n

S
f�ng and

�n+1 = �n.
This ends the construction.
It is not hard to show that T = (� 0

; �
0) is the desired theory. 2

De�nition 5. A theory T = (�;�) is complete if it is consistent and Sn(L) =
�
S
�.

We also say that T = (� 0
; �

0) extends T = (�;�) if � � �
0 and � � �

0.
Thus, we have the following

Corollary 6. Every consistent theory has a complete extension in the same lan-
guage. 2

De�nition 7. A proper subset � of Sn(L) is prime if the following conditions
are satis�ed:

1. � is closed under deduction in S.
2. For all �; � 2 Sn(L) if � _ � 2 � , then either � 2 � or � 2 � .

For any subset X � Sn(L) let �X be the complement of X in Sn(L), that is
�X = Sn(L) nX . It is not hard to see that the following proposition is true.

Proposition8. A set � � Sn(L) is prime if and only if the theory (�; �̂ ) is
complete. 2

De�nition 9. We say that a set � of sentences is �{consistent if T = (�;�)
is consistent. When � = f�g, then �{consistent set is called �{consistent.

De�nition 10. A theory T = (�;�) is computable if the deductive closure of
� in logic S and the set � are computable.

Proposition11. Suppose that T = (�;�) is a computable consistent theory and
� is �nite. Then T has a complete computable extension.

Proof. Let T = (�;�) be a computable consistent theory with � �nite. Let
� = f�1; : : : ; �ng be a �nite set of sentences. Then by the deduction theorem
�
S
� proves � if and only if � proves &n

i=1�i ! �. It follows that the closure
of �

S
� is also computable. Therefore for �nite subsets �1; �2 � Sn(L), the

theory (�
S
�1; �

S
�2) is computable. Since � is �nite and the closure of �

is computable, the construction of the proof of Proposition 4 can be carried out
e�ectively. The extension (� 0

; �
0) obtained in the construction is a computable

theory. 2
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Corollary 12. Any consistent theory T = (�;�) computable in X with � �nite
has a complete extension computable in X. 2

Let C be an in�nite set of symbols, called constants, such that L
T
C = ;.

Put L(C) = L
S
C.

De�nition 13. Let L be a language. A theory T = (�;�) is saturated if
T = (�;�) is consistent, � is prime, and for every formula 9x�(x), the condition
9x�(x) 2 � implies that �(c) 2 � for some constant c.

Proposition14. Every consistent theory T = (�;�) of the language L can be
extended to a saturated theory T = (� 0

; �
0) of the language L(C).

Proof. Let �0; �1; : : : be a list of all sentences of the language L(C). We con-
struct a sequence (�0; �0); (�1; �1); : : : of theories by stages.

Stage 0. Put (�0; �0) = T = (�;�).
Stage n + 1. Suppose that Tn = (�n; �n) has been constructed. Take �n.

We have three cases.
Case 1. The theory (�n; �n

S
f�ng) is consistent. Then simply put �n+1 = �n

and �n+1 = �n

S
f�ng.

Case 2. The theory (�n; �n

S
f�ng) is inconsistent and �n is not of the form

9x�(x). Then put �n+1 = �n

S
f�ng and �n+1 = �n.

Case 3. The theory (�n; �n

S
f�ng) is inconsistent and �n is of the form

9x�(x). Then put �n+1 = �n

S
f�n; �(c)g and �n+1 = �n, where c is the �rst

constant in C not used in the previous stages.
This ends the construction.
Put � 0 =

S
n �n and �0 =

S
n�n. Since at each stage �n 2 �n+1

S
�n+1,

we see that Sn(L(C)) = �
0
S
�

0. The theory T 0 = (� 0
; �

0) is consistent and
saturated. 2

Immediate corollaries are the following e�ective versions of the result above:

Proposition15. If T = (�;�) is a computable consistent theory with �nite �,
then there exists a computable saturated extension T

0 = (� 0
; �

0) of T = (�;�)
in the expansion L(C). 2

Corollary 16. If T = (�;�) is computable in X and is a consistent theory with
�nite �, then there exists a computable in X saturated extension T 0 = (� 0

; �
0)

of T = (�;�) in the expansion L(C). 2

4 Decidable Kripke Models

We begin by de�ning the notion of decidable frame and Kripke model.

De�nition 17. Let X be a set of natural numbers. A frame (W;�; D) is de-
cidable in X if the relation w 2 W&w1 � w2&x 2 D(w) is computable in X .
If X is computable, then the frame is called decidable.
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De�nition 18. AKripkemodel (W;�; D; V ) over a decidableX frame (W;�; D)
is X{decidable if the set

f(w;�(c1; : : : ; cn)) j w 2 W;�(c1; : : : ; cn) 2 Sn(L(w)); w forces �(c1; : : : ; cn)g

is computable in X . If X is computable, then the Kripke model is called decid-
able.

The below theorem is from [8] whose proof will be needed later.

Theorem19. Any computable theory (�;?) has a decidable model M such that
for all � 2 Sn(L), � is deducible from � if and only if M forces �.

Proof. We set L0 = L and Ln+1 = L(Cn+1), where C1; C2; : : : is an e�ective
sequence of in�nite, uniformly computable, and pairwise disjoint sets of constant
symbols. 2

Lemma20. There exists an e�ective procedure p which for all x; i 2 ! and all
�nite subsets �, if x is regarded as an index of a computable consistent theory
(�;�) of the language Li, produces an index p(x;�) of a computable complete
saturated theory (� (x;�); �(x;�)) in the language Li+1 extending (�;�).

Proof. The proof follows from the proof of Proposition 4. 2

We want to de�ne the base (W;�) of the desired decidable adequate Kripke
model for theory (�;?).

Let �0 : : : �n be a sequence of sentences with the following properties:

1. Every �i belongs to Sn(Li).
2. Every �i is either of the form � !  or 8y�(y).

We de�ne a procedure described below which depends on �0 : : : �n and con-
sists of at most n+ 1 steps.

Step 0. The step is unsuccessful if (�; �0) is inconsistent. If this happens
we terminate the procedure. Otherwise, we consider two cases:

Case 1. �0 is of the form � ! . In this case (�
S
f�g; fg) is consis-

tent. We e�ectively take an index x of this theory (�
S
f�g; fg). Applying

Lemma 20, we get the theory (�
S
f�g(x; fg);�(x; fg)). We set T (�0) to be

(�
S
f�g(x; fg);�(x; fg)).

Case 2. �0 is of the form 8y�(y). In this case there is a constant c 2 L1
such that (�; f�(c)g) is consistent. We e�ectively take an index x of this theory
(�; f�(c)g). Applying Lemma 20, we get the theory (� (x; f�(c)g);�(x; f�(c)g)).
We set T (�0) = (� (x; f�(c)g); �(x; f�(c)g)).

Step i+1, i � n. Suppose that T (�0; : : : ; �i) has been constructed. Consider
lT (�1; : : : ; �i). The step is unsuccessful if (lT (�1; : : : ; �i); f�i+1g) is inconsis-
tent. If this happens we terminate the procedure. Otherwise, consider two cases:

Case 1. �i+1 is � ! . In this case the theory (lT (�1; : : : ; �i)
S
f�g; fg) is

consistent. We e�ectively take an index x of this theory. Applying Lemma 20,
we get the theory (lT (�1; : : : ; �i)

S
f�g(x; fg); �(x; fg)). We set

T (�0; : : : ; �i+1) = (lT (�1; : : : ; �i)
[
f�g(x; fg; �(x; fg)):
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Case 2. �i+1 is of the form 8y�(y). In this case there is a constant c 2 Li+2
such that (lT (�1; : : : ; �i); f�(c)g) is consistent. We e�ectively compute an index
x of this theory. Applying Lemma 20, we get the theory (lT (�1; : : : ; �i)(x; f�(c)g),
�(x; f�(c)g)). We set

T (�1; : : : ; �i+1) = (lT (�1; : : : ; �i)(x; f�(c)g); �(x; f�(c)g)):

This concludes the description of the procedure.

De�nition 21. �0 : : : �n is T{ordered if T (�0; : : : ; �n) is de�ned.

Let W be the set of all T{ordered sequences. Let w; v be elements of W .
We put w � v if and only if w is an initial segment of v. The relation � is
computable and isomorphic to a disjoint union of countably many copies of an
in�nitely branching tree.

We de�ne the frame (W;�; D) as follows. Let w = �0 : : : �n. Then,

D(w) = the set of all constants of the language Ln+1:

This frame (W;�; D) is computable. We de�ne a valuation V on the frame as
follows. Let w = �0 : : : �n 2W and P 2 L be a predicate symbol. Then

P (c1; : : : ; cn) is (classically) true i� P (c1; : : : ; cn) belongs to lT (�0; : : : ; �n):

Thus, we have a Kripke model (W;� D;V ). Note that this model is decidable. A
standard argument using induction on � shows that a state of knowledge w forces
a sentence � if and only if � belongs to � (w). Moreover, for any � 2 Sn(L), � is
deducible from T if and only if � is forced in modelM. The theorem is proved.

Corollary 22. Any consistent theory (�;?) computable in X has an X{decidable
model M such that for all � 2 Sn(L), � is deducible from � if and only if M
forces �.

Proof. Relativize the proof of the previous theorem. 2

5 Computability of Adequate Models in QJ

We �x the logic QJ and begin with the investigation of computability of ad-
equate models for computable theories over logic QJ. We follow ideas of the
completeness proof of QJ from [4]. The completeness result for QJ states that
QJ is complete for the class of directed Kripke frames. The goal of the section
is to give an e�ective version of this completeness theorem. Our proof is an ef-
fectivization of the proof from [4]. We remind that a frame F = (W;�; D) is
directed if for all v; w 2W there exists a z 2 W such that v � z and w � z.

Theorem23. Let T = (�;?) be a computable saturated theory over logic QJ.
Then T possesses an adequate Kripke model which is decidable in 0! and whose
base is a directed frame.
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Proof. We begin with considering the partially ordered set (N?
;�), where N?

is the set of all �nite words over natural numbers, and � is de�ned as follows.
For v; w 2 N?

v � w i� w is an extension of v, that is, there exists a z 2 N? such
that v = wz. � denotes the empty word. Hence � is the least element of (N?

;�).
This partially ordered set is isomorphic to an in�nitely branching tree. We �x a
computable theory T = (�;?) with only one assumption, that � is saturated. 2

De�nition 24. A subordination model for � is a triple (N?
;�; �̂ ) which

satis�es the following properties.

1. �̂ is a mapping which assigns to every w 2 N? a saturated theory �̂ (w) of
the language L(w) = L+ C(w), where C(w) is an inifnite set of constants.

2. For all v � w, L(v) � L(w) and �̂ (w) � �̂ (w).
3. If w1 = wnv1, w2 = wkv2, and n 6= k, then (C(w1) n C(w))

T
(C(w2) n

C(w)) = ;.

4. If � ! � 62 �̂ (w), then there exists an n such that � 2 �̂ (wn) and � 62

�̂ (wn).

5. If 8x�(x) 62 �̂ (w), then there exists an n such that �(c) 62 �̂ (wn) for some
c 2 C(wn).

6. �̂ (�) = � .

Here is the lemma which shows that a subordination model for � carries all
the information needed to construct a model of T . The proof of the lemma is
standard.

Lemma25. Let T = (�;?) be a saturated theory. Every subordination model

(N?
;�; �̂ ) for � can be transformed into an adequate Kripke model M for T .

Moreover the base of M is (N?
;�). 2

De�nition 26. We say that a subordination model (N?
;�; �̂ ) for � is X{

decidable if the set f(�;w)j� 2 Sn(Lw)&� 2 �̂ (w)g is computable in X . If
X is a computable set, then the X{decidable subordination model is called de-
cidable.

Lemma27. 1. For every saturated theory T = (�;?) computable in X; there
exists an X{decidable subordination model for � .

2. Every X{decidable subordination model (N?
;�; �� ) for � can be transformed

into an X{decidable adequate Kripke model M for T . Moreover the base of
M is (N?

;�).

Proof. Slightly modifying the proof of Theorem 19, one can see that every com-
putable in X theory T = (�;?) possesses an X{decidable subordination model
for � 3. The proof of the second part follows from the fact that if subordination

model (N?
;�; �̂ ) is X{decidable, then the adequate Kripke model constructed

in the previous lemma is X{decidable as well. 2

3 To see this, in the proof of Theorem 19 for every w 2 W and all immediate extensions
w� of w introduce informally computable sequence Cw� of pairwise disjoint sets of
new constants.
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The next lemma, �rst proved in [4], uses the schema of the logic QJ and the
de�nition of subordination model in an essential way.

Lemma28. Let T = (�;?) be a saturated theory and let (N?
;�; �̂ ) be a sub-

ordination model for � . Then the set � (1) =
S
w2N? �̂ (w) is ?{consistent.

Proof. It su�ces to prove that for every m 2 !, the set �m =
S

jwj=m �̂w

is ?{consistent, where jwj is the length of w. Suppose that there exists an m

such that �m is not ?{consistent. We prove that in this case �m�1 is also not
?{consistent.

Since �m is not ?{consistent there exist �nite words w1k1; : : : ; wnkn of length

m such that �̂ (w1k1)
S
: : :
S
�̂ (wnkn) is not ?{consistent. Hence, there exist

sentences �1(�a1;�b1) 2 �̂ (w1k1), : : :, �n(�an;�bn) 2 �̂ (wnkn) such that

`QJ �1(�a1;�b1)& : : :&�n(�an;�bn)!?;

where bi 2 C(wi), ai 2 C(wiki) n C(wi) for all i, 1 � i � n. By the de�nition
of subordination model we have (C(wiki) n C(wi))

T
(C(wjkj) n C(wj)) = ;.

Therefore, from intuitionistic logic we obtain

`QJ 9�x1�1(�x1;�b1)& : : :&9�xn�n(�xn;�bn)!? :

Again from intuitionistic logic it also follows that

`QJ ::9�x1�1(�x1;�b1)& : : :&::9�xn�n(�xn;�bn)!? :

Note that 9�xi�i(�xi;�bi) 2 Sn(L(wi)). From the the fact that the logic is QJ, we
see that

�̂ (wi) `QJ ::9�xi�i(�xi;�bi) _ :9�xi�i(�xi;�bi):

Since �̂ (wi) is prime we get that ::9�xi�i(�xi;�bi) 2 �̂ (wi) or :9�xi�i(�xi;�bi) 2

�̂ (wi). It follows that ::9�xi�i(�xi;�bi) 2 �̂ (wi). Consequently
S

jwj=m�1
�̂ (w) is

not ?{consistent. This leads to a contradiction. 2

De�nition 29. Let T = (�;?) be a theory. An n{subordination model for

� is a triple (f0; : : : ; ng �N
?
;�; �̂ ) which satis�es the following properties.

1. �̂ is a mapping which assigns to every w 2 f0; 1; : : : ; ng � N
? a saturated

theory �̂w of the language L(w) = L+ C(w).

2. For every k � n, the triple (fkg �N
?
;�n

; �̂
n) is a subordination model for

�̂ ((k; �)), where �k
; �̂

k are restrictions of �; �̂ to fkg �N
?.

3. For all k � n,
S
w<(k;�) �̂ (w) � �̂ ((k; �)) and

S
w<(k;�) C(w) � C((k; �)).

4. For all k � n, (�̂ ((k; �));?) is a saturated theory.

5. �̂ ((0; �)) = � .

Lemma30. Let T = (�;?) be a theory. Every n{subordination model

(f0; 1; : : : ; ng �N
?
;�; �̂ )

for � can be transformed into an adequate Kripke model M for T . Moreover the
base of M is (f0; 1; : : : ; ng �N

?
;�). 2
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Theorem31. For every computable saturated theory T = (�;?); there exists
an adequate Kripke model M with the following properties:

1. The base of M is (f0; 1; : : : ; ng �N
?
;�).

2. The model M is decidable in 0n.

Proof. From Lemma 27, we see that every computable theory T = (�;?) pos-
sesses a decidable subordination model (N?

;�; �� ) for � . Consider the theory

T = (
S
w2N? �̂ (w);?). This theory is computably enumerable. It follows that

the deductive closure of
S
w2N? �̂ (w) is computable in 00. We can extend this

theory to a saturated theory T 0 = (� 0
;?) over an expanded language such that

T
0 is computable in 00. Now we can develop a subordination model (N?

;�; �� 0)
for � 0 in a such way that the set f(w; �)j� 2 Lw&� 2 �� 0(w)g is computable in
00. This shows that we can construct a 1{subordination model for � for which
the set f(w; �)j� 2 L(w)&� 2 �� 0(w)g is computable in 00. Hence by the pre-
vious lemma we can transform this 1{subordination model into an adequate
model of T which is decidable in 00. Iterating this procedure n� 1, we see that
� has an n{subordination model f0; 1; : : : ; ng � N

?
;�; �� (n) for which the set

f(w; �)j� 2 L(w)&� 2 �� (n)(w)g is computable in 0n. 2

De�nition 32. Let T = (�;?) be a saturated theory. An !{subordination

model for � is a triple (! �N
?
;�; �̂ ) such that.

1. �̂ is a mapping which assigns to every w 2 ! � N
? a saturated theory �̂w

of the language L(w) = L+ C(w).

2. For every n 2 !, the triple (fng�N?
;�n

; �̂
n) is a subordination model for

�̂ ((n; �)), where �n
; �̂

n are restrictions of �; �̂ to fng �N
?.

3. For all n 2 !,
S
w<(n;�) �̂ (w) � �̂ ((n; �)) and

S
w<(n;�)C(w) � C((n; �)).

4. For all n 2 !, (�̂ ((n; �));?) is a saturated theory.

5. �̂ ((0; �)) = � .

The following lemma is immediate

Lemma33. Let T = (�;?) be a saturated theory. Every !{subordination model

(! �N
?
;�; �̂ ) for � can be transformed into an adequate Kripke model M for

T . Moreover the base of M is (! �N
?
;�). 2

Proof of Theorem 23. Iterating the proof of Theorem 31 countably many

times de�ne a triple (! �N
?
;�; �̂ ) such that:

1. (f0g �N
?
;�0

; �̂
0) is a decidable subordination model for � , where �0

; �̂
0

are restrictions of � and �̂ to f0g �N
?

2. �̂ (n; �) is a saturated extension of
S
w<(n;�) �̂ (w).

3. For every n 2 !, (f0; 1; : : : ; ng � N
?
;�n

; �̂
n) is a n{subordination model

for � computable in 0n, where �n, �̂n are restrictions of � and �̂ to
f0; 1; : : : ; ng �N

?

4. The set f(�;w)jw 2 ! �N
?
; � 2 L(w); � 2 �̂ (w)g is computable in 0!.
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We see that the triple (! � N
?
;�; �̂ ) is an !{subordination model for T .

Hence this subordination model de�nes an adequate Kripke model M for T by

Lemma 33. By the last item of the properties �̂ we see that M is decidable in
0!. 2
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