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Abstract: We prove that any Chaitin 
 number (i.e., the halting probability of a
universal self-delimiting Turing machine) is wtt-complete, but not tt-complete. In this
way we obtain a whole class of natural examples of wtt-complete but not tt-complete
r.e. sets. The proof is direct and elementary.
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1 Introduction

Ku�cera [8] has used Arslanov's completeness criterion4 to show that all random
sets of r.e. T-degree are in fact T-complete. Hence, every Chaitin 
 number is
T-complete. In this paper we will strengthen this result by proving that every
Chaitin 
 number is weak truth-table complete. However, no Chaitin 
 number
can be tt-complete as, because of a result stated by Bennett [1] (see Juedes,
Lathrop, and Lutz [9] for a proof), there is no random sequence x such that
K �tt x.

5 Notice that in this way we obtain a whole class of natural examples
of wtt-complete but not tt-complete r.e. sets (a fairly complicated construction
of such a set was given by Lachlan [10]).

We continue with a piece of notation. Let N;Q be the sets of non-negative
integers and rationals. Let � = f0; 1g denote the binary alphabet, �� is the set
of (�nite) binary strings, �n is the set of binary strings of length n; the length of
a string x is denoted by jxj. By xjr we denote the pre�x of length r of the string
x. Let p(x) be the place of x in �� ordered quasi-lexicographically. Let �! the
set of in�nite binary sequences. The pre�x of length n of the sequence x 2 �!

is denoted by xjn. For every X � ��, X�! stands for the cylinder generated
by X , i.e., set of all sequences having a pre�x in X .
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Fix an acceptable g�odelization ('x)x2�� of all partial recursive (p.r.) func-
tions from �� to ��, and let Wx = dom('x) be the domain of ('x). Denote
by K the set fx 2 �� j x 2 Wxg. A Chaitin computer (self-delimiting Turing

machine) is a p.r. function C : �� o
! �� with a pre�x-free domain dom(C). The

program-size (Chaitin) complexity induced by Chaitin's computer C is de�ned
by HC(x) = minfjyj j y 2 ��; C(y) = xg (with the convention min; =1).

A Chaitin computer U is universal if for every Chaitin computer C, there is
a constant c > 0 (depending upon U and C) such that for every x there is x0

such that U(x0) = C(x) and jx0j � jxj + c;6 c is the \simulation" constant of C
on U .

A Martin-L�of test is an r.e. sequence (Vi)i�0 of subsets of �� satisfying the
following measure-theoretical condition:

�(Vi�
!) � 2�i;

for all i 2 N. Here � denotes the usual product measure on �!, given by
�(fwg�!) = 2�jwj, for w 2 ��.

An in�nite sequence x is random if for every Martin-L�of test (Vi)i�0, x =2T
i�0 Ai�

!: A real � 2 (0; 1) is random in case its binary expansion is a random

sequence.7

The halting probability of Chaitin's computer C is


C = �(dom(U)�!) =
X

x2dom(C)

2�jxj:

Any real 
C is recursively enumerable (r.e.) in the sense that the set fq 2
(0; 1) \Q j q < 
Cg is r.e. (see more about r.e. reals in [3]). Reals of the form

U , for some universal Chaitin computer U , are called Chaitin (
) numbers
(see [4, 6, 2]). Chaitin [4] has proved that every Chaitin number is random. See
Calude [2] for more details.

For a set A � �� we denote by �A the characteristic function of A. We
say that A is Turing reducible to B, and we write A �T B, if there is an oracle
Turing machine 'B

w
such that 'B

w
(x) = �A(x). We say that A is weak truth-table

reducible to B, and we write A �wtt B, if A �T B via a Turing reduction which
on input x only queries strings of length less than g(x), where g : �� ! N is a
�xed recursive function. We say that A is truth-table reducible to B, and we write
A �tt B, if there is a recursive sequence of Boolean functions fFxgx2��, Fx :
�rx+1 ! �, such that for all x, we have �A(x) = Fx(�B(0)�B(1) � � ��B(rx)).

8

An r.e. set A is tt(wtt)-complete if K �tt A (K �wtt A). See Odifreddi [11] for
more details.

2 Main Results

In what follows we will �x a universal Chaitin computer U and write H = HU ,

 = 
U .

6 In fact, c can be e�ectively obtained from U and C.
7 Actually, the choice of base is irrelevant, cf. Theorem 6.111 in Calude [2].
8 Note that in contrast with tt-reductions, a wtt-reduction may diverge.
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Theorem 2.1 The set H = f(x; n) j x 2 ��; n 2 N; H(x) � ng9 is wtt-
complete.

Proof. We will re�ne the proof by Arslanov and Calude in [7]. To this aim we
will use Arslanov's Completeness Criterion (see Theorem III.8.17 in Odifreddi
[11], p. 338) for wtt-reducibility

an r.e. set A is wtt-complete i� there is a function f �wtt A without
�xed-points

and the estimation due to Chaitin [4, 5] (see Theorem 5.4 in Calude [2], pp. 77):

max
x2�n

H(x) = n+O(logn): (1)

First we construct a positive integer c > 0 and a p.r. function  : �� o

! ��

such that for every x 2 �� with Wx 6= ;,

U( (x)) 2 Wx; (2)

and

j (x)j � p(x) + c: (3)

Consider now a Chaitin computer C such that C(0p(x)1) 2 Wx whenever
Wx 6= ;. Let c0 be the simulation constant of C on U , and let � be a p.r. function
satisfying the following condition: if C(u) is de�ned, then U(�)(u) = C(u) and

j�(u)j � juj+ c0. Put c = c0+1 and notice that in case Wx 6= ;, C(0p(x)1) 2 Wx,

so �(0p(x)1) is de�ned and and belongs to Wx. Finally, put  (x) = �(0p(x)1) and
notice that

j (x)j = j�(0p(x)1)j � j0p(x)1j+ c0 = p(x) + c:

Next de�ne the function

F (y) = minfx 2 �� j H(x) > p(y) + cg;

where the minimum is taken according to the quasi-lexicographical order and c
comes from (3). In view of (1) it follows that

F (y) = minfx 2 �� j H(x) > p(y) + c; jxj � p(y) + cg:

The function F is total, H-recursive and U( (y)) 6= F (y) whenever Wy 6= ;.
Indeed, if Wy 6= ; and U( (y)) = F (y), then  (y) is de�ned, so U( (y)) 2 Wy

and j (y)j � p(y)+c. But, in view of the construction of F , H(F (y)) > p(y)+c,
an inequality which contradicts (3): H(F (y)) � j (y)j � p(y) + c.

Let f be an H-recursive function satisfying Wf(y) = fF (y)g. To compute
f(y) in terms of F (y) we need to perform the test H(x) > p(y)+c only for those

9 This set is essential in deriving Chaitin's information-theoretical version of incom-
pleteness, Chaitin [4].
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strings x satisfying the inequality jxj � p(y)+c, so the function f is wtt-reducible
to H.

We conclude by proving that for every y 2 ��, Wf(y) 6=Wy. If Wf(y) =Wy,
then Wy = fF (y)g, so by (3), U( (y)) 2 Wy , that is U( (y)) = F (y). Conse-
quently, by (2) H(F (y)) � j (y)j � p(y) + c, which contradicts the construction
of F . 2

Theorem 2.2 The set H is wtt-reducible to 
.

Proof. Let g : N! �� be a recursive, one-to-one function which enumerates
the domain of U and put !m =

P
m

i=0 2
�jg(i)j. Given x and n > 0 we compute

the smallest t � 0 such that

!t � 0:
0
1 � � �
n:

>From the relations

0:
0
1 � � �
n � !t < !t +

1X

s=t+1

2�jg(s)j = 
 < 0:
0
1 � � �
n + 2�n

we deduce that jg(s)j > n, for every s � t+1. Consequently, if x is not produced
by an element in the set fg(0); g(1); : : : ; g(t)g, then H(x) > n as H(x) = jg(s)j,
for some s � t + 1; conversely, if H(x) � n, then x must be produced via U by
one of the elements of the set fg(0); g(1); : : : ; g(t)g. 2

Since the result in Juedes, Lathrop, and Lutz [9] is obtained in a rather
indirect way, we conclude the paper by proving directly that K 6�tt x, for every
random sequence x.

Theorem 2.3 If K �tt x, then x is not random.

Proof. Assume x is random and K �tt x, that is there exists a recursive
sequence of Boolean functions fFugu2�� , Fu : �ru+1 ! �, such that for all
w 2 ��, we have �A(w) = Fw(x0x1 � � �xrw ). We will construct a Martin-L�of test
V such that x 2

T
n�0 Vn�

!, which will contradict the randomness of x.

For every string z let

M(z) = fu 2 �rz+1 j Fz(u) = 0g:

Consider the set

fz 2 �� j �(M(z)�!) �
1

2
g

of inputs to the tt-reduction of K to x where at least half of the possible oracle
strings give the output 0. This set is r.e., so let Wz0

be a name for it. From the
construction it follows that

z0 2 K , Fz0(x0x1 � � �xrz0 ) = 1;

hence if we put r = rz0 + 1 and

V0 = fu 2 �r j �(M(z0)�
!) �

1

2
, Fz0(u) = 1g
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we ensure that V is r.e. and �(V0�
!) � 1

2
. Moreover x 2 V0�

!, because if
u = xjr, then

�(M(z0)�
!) �

1

2
, z0 2 K , Fz0(u) = 1:

Assume now that zn; Vn have been constructed such that x 2 Vn�
! and

�(Vn�
!) � 2�n�1. Let zn+1 62 fz0; z1; : : : ; zng be such that

Wzn+1
= fu 2 �� j �(M(u)�! \ Vn�

!) �
1

2
� �(Vn�

!)g:

Then

zn+1 2 K , �(M(u)�! \ Vn�
!) �

1

2
� �(Vn�

!):

Finally put r = rzn+1+1 and

Vn+1 = fu 2 �r j ujrzn 2 Vn ^ (�(M(zn+1)�
! \ Vn�

!) �
1

2
� �(Vn�

!)

, Fzn+1(u) = 1)g

and note that Vn+1 is r.e., x 2 Vn+1 and

�(Vn+1�
!) �

1

2
� �(Vn�

!) � 2�n�2:

Consequently, (Vn)n is a Martin-L�of test with x 2
T
n�0 Vn�

!. 2
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